Preview

Chebyshevskii Sbornik

Advanced search

The method of approximate solution of a system of differential equations from the Ramsey–Kass–Koopmans model, based on the solution in quadratures of one subclass of similar systems

https://doi.org/10.22405/2226-8383-2022-23-4-115-125

Abstract

The article is devoted to the Ramsey–Kass–Koopmans model. We consider an auxiliary system of differential equations, which is analogous to the system that arises in the case of constancy of the stationary rate of savings. We found that systems of this class are solved in quadrature. This allows us to find approximate solutions to the system describing the original model.

About the Authors

Artem Ivanovich Kozko
Lomonosov Moscow State University
Russian Federation

candidate of physical and mathematical sciences



Lyubov Mihailovna Luzhina
Lomonosov Moscow State University
Russian Federation

candidate of physical and mathematical sciences



Anton Yurievich Popov
Lomonosov MoscowState University
Russian Federation

doctor of physical and mathematical sciences



Vladimir Grirorevich Chirskii
Lomonosov Moscow State University; Russian Presidential Academy of National Economy and Public Administration
Russian Federation

doctor of physical and mathematical sciences



References

1. Acemoglu, Daron. 2009, “The Neoclassical Growth Model. Introduction to Modern Economic

2. Growth“, Princeton: Princeton University Press. pp. 287–326. ISBN 978-0-691-13292-1.

3. B´enassy, Jean-Pascal. 2011, “The Ramsey Model. Macroeconomic Theory“, New York: Oxford

4. University Press. pp. 145–160. ISBN 978-0-19-538771-1.

5. Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. 2019, “Optimal exponent in

6. the Ramsey–Kass–Koopmans problem with logarithmic utility function“, Chebyshevskii

7. Sbornik. vol. 20(4), September. pp. 197-207. (In Russ.) https://doi.org/10.22405/

8. -8383-2018-20-4-197-207

9. Kozko, A. I., Luzhina, L. M., Popov, A. Yu., Chirskii, V. G. 2020, “On the Ramsey–

10. Kass–Koopmans problem for consumer choice“, Results of science and technology. Modern

11. mathematics and its applications. Thematic review. vol. 182, September, pp. 39-44. (In Russ.)

12. DOI: 10.36535/0233-6723-2020-182-39-44.

13. Kozko, A. I., Luzhina, L. M., Popov, A. Yu., Chirskii, V. G. 2019, The model of the problem

14. Ramsey–Kass–Koopmans // Moscow state pedagogical University (Moscow). Classical and

15. modern geometry, materials of the international conference dedicated to the 100th anniversary

16. of V. T. Bazylev. under the editorship of A. V. Tsarev. Moscow. pp. 87-88.

17. Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. 2019, “Assessment of the necessary

18. initial economic resource in the Ramsey–Kass–Koopmans problem“, Chebyshevskii

19. Sbornik. vol. 20(4), September, pp. 188-196. (In Russ.) https://doi.org/10.22405/

20. -8383-2018-20-4-188-196.

21. Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. 2022, “The consumption function in the

22. Ramsey–Kass–Koopmans economic growth model in the case of a stationary saving function“,

23. Chebyshevskii Sbornik. vol. 23(1), September, pp. 118-129. (In Russ.) https://doi.org/10.

24. /2226-8383-2018-20-4-188-196.

25. Rahul, Giri. “Growth Model with Endogenous Savings: Ramsey–Cass–Koopmans Model“, 2018,

26. http://ciep.itam.mx/\~{}rahul.giri/uploads/1/1/3/6/113608/ramsey-cass-koopmans\

27. _model.pdf.

28. Barro, Robert J., Sala-i-Martin, Xavier. 2003, “Economic growth (2nd ed.)“, Massachusetts:

29. MIT Press, ISBN 9780262025539.

30. Groth, Christian and Koch, Karl-Josef and Steger, Thomas Michael. 2006, “Rethinking the

31. Concept of Long-Run Economic Growth (April 2006)“, CESifo Working Paper Series, no. 1701.

32. Available at SSRN: https://ssrn.com/abstract=899250.

33. Groth, Christian and Koch, Karl-Josef and Steger, Thomas Michael. 2010, “When Economic

34. Growth is Less than Exponential“, Economic Theory, vol. 44, no. 2, pp. 213-242.

35. Groth, C. 2010, “Chapter 10: The Ramsey Model“, Available at: http://web.econ.ku.dk/

36. okocg/VV/VV-2010/Lecture\%20notes/Ch7-2010-1.pdf.

37. Romer, D. 2006, “Advanced Macroeconomics. 3rd ed“, New York: McGraw-Hill/Irwin, pp. 651.

38. Robert J. Barro. 1999, “Ramsey Meets Laibson in the Neoclassical Growth Model“, The

39. Quarterly Journal of Economics, Oxford University Press, vol. 114, no. 4, pp. 1125-1152.

40. King Robert, G., and Sergio Rebelo. 1993, “Transitional Dynamics and Economic Growth in

41. the Neoclassical Model“, American Economic Review. vol. 83, September, pp. 908-931.

42. Pierre-Olivier, Gourinchas. 2014, “Notes for Econ202A: The Ramsey–Cass–Koopmans Model“,

43. UC Berkeley Fall, https://eml.berkeley.edu/\~{}webfac/gourinchas/e202a\_f14/Notes\

44. _Ram\-sey\_Cass\_Koop\-mans\_pog.pdf.


Review

For citations:


Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. The method of approximate solution of a system of differential equations from the Ramsey–Kass–Koopmans model, based on the solution in quadratures of one subclass of similar systems. Chebyshevskii Sbornik. 2022;23(4):115-125. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-115-125

Views: 242


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)