The method of approximate solution of a system of differential equations from the Ramsey–Kass–Koopmans model, based on the solution in quadratures of one subclass of similar systems
https://doi.org/10.22405/2226-8383-2022-23-4-115-125
Abstract
The article is devoted to the Ramsey–Kass–Koopmans model. We consider an auxiliary system of differential equations, which is analogous to the system that arises in the case of constancy of the stationary rate of savings. We found that systems of this class are solved in quadrature. This allows us to find approximate solutions to the system describing the original model.
About the Authors
Artem Ivanovich KozkoRussian Federation
candidate of physical and mathematical sciences
Lyubov Mihailovna Luzhina
Russian Federation
candidate of physical and mathematical sciences
Anton Yurievich Popov
Russian Federation
doctor of physical and mathematical sciences
Vladimir Grirorevich Chirskii
Russian Federation
doctor of physical and mathematical sciences
References
1. Acemoglu, Daron. 2009, “The Neoclassical Growth Model. Introduction to Modern Economic
2. Growth“, Princeton: Princeton University Press. pp. 287–326. ISBN 978-0-691-13292-1.
3. B´enassy, Jean-Pascal. 2011, “The Ramsey Model. Macroeconomic Theory“, New York: Oxford
4. University Press. pp. 145–160. ISBN 978-0-19-538771-1.
5. Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. 2019, “Optimal exponent in
6. the Ramsey–Kass–Koopmans problem with logarithmic utility function“, Chebyshevskii
7. Sbornik. vol. 20(4), September. pp. 197-207. (In Russ.) https://doi.org/10.22405/
8. -8383-2018-20-4-197-207
9. Kozko, A. I., Luzhina, L. M., Popov, A. Yu., Chirskii, V. G. 2020, “On the Ramsey–
10. Kass–Koopmans problem for consumer choice“, Results of science and technology. Modern
11. mathematics and its applications. Thematic review. vol. 182, September, pp. 39-44. (In Russ.)
12. DOI: 10.36535/0233-6723-2020-182-39-44.
13. Kozko, A. I., Luzhina, L. M., Popov, A. Yu., Chirskii, V. G. 2019, The model of the problem
14. Ramsey–Kass–Koopmans // Moscow state pedagogical University (Moscow). Classical and
15. modern geometry, materials of the international conference dedicated to the 100th anniversary
16. of V. T. Bazylev. under the editorship of A. V. Tsarev. Moscow. pp. 87-88.
17. Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. 2019, “Assessment of the necessary
18. initial economic resource in the Ramsey–Kass–Koopmans problem“, Chebyshevskii
19. Sbornik. vol. 20(4), September, pp. 188-196. (In Russ.) https://doi.org/10.22405/
20. -8383-2018-20-4-188-196.
21. Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. 2022, “The consumption function in the
22. Ramsey–Kass–Koopmans economic growth model in the case of a stationary saving function“,
23. Chebyshevskii Sbornik. vol. 23(1), September, pp. 118-129. (In Russ.) https://doi.org/10.
24. /2226-8383-2018-20-4-188-196.
25. Rahul, Giri. “Growth Model with Endogenous Savings: Ramsey–Cass–Koopmans Model“, 2018,
26. http://ciep.itam.mx/\~{}rahul.giri/uploads/1/1/3/6/113608/ramsey-cass-koopmans\
27. _model.pdf.
28. Barro, Robert J., Sala-i-Martin, Xavier. 2003, “Economic growth (2nd ed.)“, Massachusetts:
29. MIT Press, ISBN 9780262025539.
30. Groth, Christian and Koch, Karl-Josef and Steger, Thomas Michael. 2006, “Rethinking the
31. Concept of Long-Run Economic Growth (April 2006)“, CESifo Working Paper Series, no. 1701.
32. Available at SSRN: https://ssrn.com/abstract=899250.
33. Groth, Christian and Koch, Karl-Josef and Steger, Thomas Michael. 2010, “When Economic
34. Growth is Less than Exponential“, Economic Theory, vol. 44, no. 2, pp. 213-242.
35. Groth, C. 2010, “Chapter 10: The Ramsey Model“, Available at: http://web.econ.ku.dk/
36. okocg/VV/VV-2010/Lecture\%20notes/Ch7-2010-1.pdf.
37. Romer, D. 2006, “Advanced Macroeconomics. 3rd ed“, New York: McGraw-Hill/Irwin, pp. 651.
38. Robert J. Barro. 1999, “Ramsey Meets Laibson in the Neoclassical Growth Model“, The
39. Quarterly Journal of Economics, Oxford University Press, vol. 114, no. 4, pp. 1125-1152.
40. King Robert, G., and Sergio Rebelo. 1993, “Transitional Dynamics and Economic Growth in
41. the Neoclassical Model“, American Economic Review. vol. 83, September, pp. 908-931.
42. Pierre-Olivier, Gourinchas. 2014, “Notes for Econ202A: The Ramsey–Cass–Koopmans Model“,
43. UC Berkeley Fall, https://eml.berkeley.edu/\~{}webfac/gourinchas/e202a\_f14/Notes\
44. _Ram\-sey\_Cass\_Koop\-mans\_pog.pdf.
Review
For citations:
Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G. The method of approximate solution of a system of differential equations from the Ramsey–Kass–Koopmans model, based on the solution in quadratures of one subclass of similar systems. Chebyshevskii Sbornik. 2022;23(4):115-125. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-115-125