Preview

Chebyshevskii Sbornik

Advanced search

The inverse problem for a basic monoid of type 𝑞

https://doi.org/10.22405/2226-8383-2022-23-4-64-76

Abstract

In the paper for an arbitrary basic monoid 𝑀(P(𝑞)) of type 𝑞 the inverse problem is solved, that is, finding the asymptotics for the distribution function of the elements of the monoid 𝑀(P(𝑞)), based on the asymptotics of the distribution of pseudo-prime numbers P(𝑞) of type 𝑞.
To solve this problem, we consider two homomorphisms of the main monoid 𝑀(P(𝑞)) of type 𝑞 and the distribution problem reduces to the additive Ingham problem.
It is shown that the concept of power density does not work for this class of monoids. A new concept of 𝐶 logarithmic 𝜃-power density is introduced.
It is shown that any monoid 𝑀(P(𝑞)) for a sequence of pseudo-simple numbers P(𝑞) of type 𝑞 has upper and lower bounds for the element distribution function of the main monoid 𝑀(P(𝑞)) of type 𝑞.
It is shown that if 𝐶 is a logarithmic 𝜃-power density for the main monoid 𝑀(P(𝑞)) of the type 𝑞 exists, then 𝜃 = 1
2 and for the constant 𝐶 the inequalities are valid 𝜋√︁1/(3ln𝑞)<= 𝐶 <= 𝜋√︁2/(3ln𝑞).
The results obtained are similar to those previously obtained by the authors when solving the inverse problem for monoids generated by an arbitrary exponential sequence of primes of type 𝑞.
For basic monoids 𝑀(P(𝑞)) of the type 𝑞, the question remains open about the existence of a 𝐶 logarithmic 1 2 -power density and the value of the constant 𝐶.

About the Authors

Nikolai Nikolaevich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University; Tula State University
Russian Federation

candidate of physical and mathematical sciences



Irina Yuryevna Rebrova
Tula State Lev Tolstoy Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



Nikolai Mihailovich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Bombieria E., Ghoshb A., 2011, “Around the Davenport–Heilbronn function”, Uspekhi Mat.

2. Nauk, 66:2(398) pp. 15–66.

3. Bredikhin, B.M., 1960, “The remainder term in the asymptotic formula for the function 𝜈𝐺(𝑥)”,

4. Izvestiya vuzov Matematika, no. 6, pp. 40–49.

5. Bredikhin, B.M., 1960, “An elementary solution of inverse problems on bases of free semigroups”,

6. matematicheskiy sbornik, 50(92):2, pp. 221–232.

7. Bredikhin, B.M., 1958, “Free numerical semigroups with power densities”, Doklady Akademii

8. nauk SSSR, 118:5, pp. 855–857.

9. Bredikhin, B.M., 1958, “On power densities of some subsets of free semigroups”, Izvestiya vuzov

10. Matematika, no. 3, pp. 24–30.

11. Bredikhin, B.M., 1958, “Free numerical semigroups with power densities”, matematicheskiy

12. sbornik, 46(88):2, pp. 143–158.

13. Bredikhin, B.M., 1956, “An example of a finite homomorphism with a bounded adder function”,

14. UMN, 11:4(70), pp. 119–122.

15. Bredikhin, B.M., 1956, “Some questions of the theory of characters of commutative semigroups”,

16. Trudy 3-go Vsesoyuznogo matematicheskogo s’yezda, vol. 1, Moskva, izdatel’stvo akademii nauk

17. SSSR, no. 3.

18. Bredikhin, B.M., 1954, “On adder functions of characters of numerical semigroups”, DAN 94,

19. pp. 609 – 612.

20. Bredikhin, B.M., 1953, “On the characters of numerical semigroups with a rather rare base”,

21. DAN 90, pp. 707–710.

22. Voronin S. M., Karacuba A. A., 1994, Dzeta-funkcija Rimana, Izd-vo Fiz-matlit, Moskva, 376 p.

23. Gurvic A., Kurant R., 1968, Teorija funkcij, Izd-vo Nauka, Moskva, 618 p.

24. Demidov S. S., Morozova E. A., Chubarikov V. N., Rebrov I. Yu., Balaba I. N., Dobrovol’skii

25. N. N., Dobrovol’skii N. M., Dobrovol’skaya L. P., Rodionov A. V., Pikhtil’kova O. A.,

26. , "Number-theoretic method in approximate analysis" Chebyshevskii Sbornik vol. 18, № 4.

27. pp. 6–85.

28. Dobrovolsky N. N., 2017, "The zeta-function is the monoid of natural numbers with unique

29. factorization" , Chebyshevskii Sbornik, vol 18, № 4 pp. 188–208.

30. N. N. Dobrovol’skii, 2018, "On monoids of natural numbers with unique factorization into prime

31. elements" , Chebyshevskii sbornik, vol. 19, no. 1, pp. 79–105.

32. N. N. Dobrovol’skii, 2018, "The zeta function of monoids with a given abscissa of absolute

33. convergence" , Chebyshevskii sbornik, vol. 23, no. 4, pp. 142–150.

34. N. N. Dobrovol’skii, M. N. Dobrovol’skii, N. M. Dobrovol’skii, I. N. Balaba, I. Yu. Rebrova, 2018,

35. "About «zagrobelna the series» for the zeta function of monoids with exponential sequence of

36. simple" , Chebyshevskii sbornik, vol. 19, no. 1, pp. 106–123.

37. N. N. Dobrovol’skii, M. N. Dobrovol’skii, N. M. Dobrovol’skii, I. N. Balaba, I. Yu. Rebrova,

38. , "Dirichlet series algebra of a monoid of natural numbers" , Chebyshevskii sbornik, vol. 20,

39. no. 1, pp. 180–196.

40. N. N. Dobrovol’skii, N. M. Dobrovol’skii, I. Yu. Rebrova, A. V. Rodionov, 2019, "Monoids

41. of natural numbers in the numerical-theoretical method in the approximate analysis" ,

42. Chebyshevskii sbornik, vol. 20, no. 1, pp. 164–179.

43. N. N. Dobrovol’skii, A. O. Kalinina, M. N. Dobrovol’skii, N. M. Dobrovol’skii 2018, "On the

44. number of prime elements in certain monoids of natural numbers" , Chebyshevskii sbornik,

45. vol. 19, no. 2, pp. 123–141.

46. N. N. Dobrovol’skii, A. O. Kalinina, M. N. Dobrovol’skii, N. M. Dobrovol’skii 2018, "On the

47. monoid of quadratic residues" , Chebyshevskii sbornik, vol. 19, no. 3, pp. 95–108.

48. Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol’skii N. M., Dobrovolsky N. N., 2014,

49. "On Hyperbolic Zeta Function of Lattices" , In: Continuous and Distributed Systems. Solid

50. Mechanics and Its Applications, Vol. 211. pp. 23–62. DOI:10.1007/978-3-319-03146-0_2.

51. N. N. Dobrovol’skii, I. Yu. Rebrova, N. M. Dobrovol’skii, 2020, "Inverse problem for a monoid

52. with an exponential sequence of Prime numbers" , Chebyshevskii sbornik, vol. 21, no. 1, pp.

53. –185.

54. Postnikov, A. G., 1971, Introduction to analytical number theory Izd-vo "Nauka" , Moskva,

55. p.

56. Titchmarsh E. K., 1952, Teorija dzeta-funkcii Rimana Izd-vo I-L, Moskva, 407 p.

57. Trost E., 1959, "Prime numbers" , Izd-vo Fiz-matlit, Moskva, 136 p.

58. Chandrasekharan K., 1974, Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, Moskva, 188 p.

59. Chudakov N. G., 1947, Introduction to the theory of 𝐿-Dirichlet functions — M.-L.: OGIZ, —

60. p.

61. Davenport H., Heilbronn H., 1936, "On the zeros of certain Dirichlet series" , J. London Math.

62. Soc. Vol. 11. pp. 181–185.


Review

For citations:


Dobrovol’skii N.N., Rebrova I.Yu., Dobrovol’skii N.M. The inverse problem for a basic monoid of type 𝑞. Chebyshevskii Sbornik. 2022;23(4):64-76. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-64-76

Views: 263


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)