Preview

Chebyshevskii Sbornik

Advanced search

Integer approximation of a segment

https://doi.org/10.22405/2226-8383-2022-23-4-20-38

Abstract

Let 𝑂𝑋𝑌 be a Cartesian coordinate system with an integer lattice whose unit squares are staggered. The integer approximation of the segment 𝐴𝐵 is given using the cellular domain S𝐴𝐵 of (colored) cells, the interior of each of which.has a non-empty intersection with 𝐴𝐵.
If 𝑃± 𝐴𝐵 — right and left closed half-planes defined by the line 𝑙𝐴𝐵 by the point 𝐴 and 𝐵, then S± 𝐴𝐵 = S𝐴𝐵 ∩ 𝑃± 𝐴𝐵 — its right and left areas. (There are no integer points inside S𝐴𝐵.)
Polyline L±(𝐴±,𝐵±) from S± 𝐴𝐵 with ends 𝐴± and 𝐵± and whole vertices — right and left by (integer) approximations of the segment 𝐴𝐵 — the ends are selected from the vertices of the extreme cells. If 𝑙𝐴𝐵 is parallel to one of the coordinate axes, then we assume S𝐴𝐵 = ? and then approximation of the segment 𝐴𝐵 is minimum segment with integer ends containing 𝐴𝐵.
Such approximations are constructed using the algorithm ‘pulling noses", which is a geometric interpretation of the chain fraction of the angular coefficient of the straight line 𝑙𝐴𝐵. Based on this construction method, an exact formula for calculating the number of integer points inside an arbitrary triangle is obtained, and the problem of S.V. Konyagin is partially solved about chess coloring: If U(𝑡) is the set of all colored cells from a triangle cut off by a straight line 𝑓𝑡 : 𝑦 = −𝛼𝑥 + 𝑡, 𝛼, 𝑡 > 0, then the difference 𝑢(𝑡) between white and black cells from U(𝑡)for every positive irrational 𝛼 is bounded neither from below nor from above when 𝑡 → ∞. The solution is obtained for numbers of the form: 𝑒±1, tg±1, [𝑎−0 ; 𝑎−1 , 𝑎−2 , . . .]±1, [𝑎+0 ; 𝑎+1 , 𝑎+2 , . . .]±1,
[𝑎+0 ; 𝑎−1 , 𝑎+2 , 𝑙𝑑𝑜𝑡𝑠]±1, where the superscript plus (minus) indicates on the parity (odd) of the element of the continued fraction defined by 𝛼.
The method of constructing an approximation of the segment was used to solve the problem of chess coloring for the numbers
(√5+1)/2 , [𝑎+0 ; 𝑎+1 , 𝑎+2 , . . .], 𝑎−2𝑛+1 and [𝑎−0 ; 𝑎−1 , 𝑎−
2 , 𝑙𝑑𝑜𝑡𝑠], if limited 2𝑘−1𝑏3𝑏9 · · · 𝑏6(𝑘−1)+3 + · · · + 22Σ︀𝑘
𝑖1>𝑖2>𝑖3=1 𝑏6(𝑘−𝑖1)+3𝑏6(𝑘−𝑖2)+3 𝑏6(𝑘−𝑖3)+3 + 2
Σ︀𝑘 𝑖1>𝑖2=1 𝑏6(𝑘−𝑖1)+3𝑏6(𝑘−𝑖2)+3 + Σ︀𝑘 𝑖=1 𝑏6(𝑘−𝑖1)+3 + 1,
for some 𝑏𝑛 = ⌊︁𝑎−(𝑛−1)/2⌋︁ representing the whole part of 𝑎−
(𝑛−1)/2 . So for 𝑏𝑛 = 0 the chain fraction is [𝑎− 0 ; 𝑎−1 , 𝑎−2 , . . .] =
(√5+1)/2 .

About the Author

Mansur Mullagayanovich Gallamov

Russian Federation

candidate of physical and mathematical sciences,
Participant of the Nikolsky Seminar (MIAN)



References

1. Khinchin А.Ya., 1978, 4 izd. Zepnyie drobi [The continued fractions]. Nauka, Moscow, pp. 112.

2. Bukhshtab A. A., 1966. Teoriya chisel [Theory numbers]. Prosveschenit, Moscow, pp. 376.

3. Nesterenko Yu. V., 2008. Teoriya chisel [Theory numbers]. Izdatel‘skiy zentr “Akademiya”,

4. Moscow, pp. 272.

5. Nesterenko Yu. V., Nikishin E. N., 1983, Очерк о цепных дробях. // Kvant, Moscow, no. 5, pp.

6. –20, no. 6, pp. 26–30.

7. Mikhalovich Sh. Kh., 1967. Teoriya chisel [Theory numbers]. Vyishaya shkola, Moscow, pp.336.

8. Aleksandrov P. S, Markushevich A. I., Rhinchin A.Ya. (redaktoryi), 1951. Энциклопедия эле-

9. ментарной математики.Книга 1. Арифметика [Encyclopedia of elementary mathematics.

10. Book 1. Arithmetic]. Moscow – Leningrad, TTL, pp. 448.

11. Vasil’ev N. B., 1974. The circumformula for Pick // Kvant, Moscow, no. 12, pp.39–43

12. Vavilov V. V., Ustinov A. V., 2006, Mnogougol‘niki nf reshetkakh [The polygons an lattices].

13. NZNMO, Moscow, pp.72.

14. Grunbaum, Branko, and G. C. Shephard., 2001. Pick’s Theorem. // The American Mathematical

15. Monthly, vol. 100, no. 2, Mathematical Association of America, 1993, pp. 150–61,

16. Arnol‘d V. I., 2001. Zepnyie drobi [The continued fractions]. NZNMO, Moscow, pp. 40.

17. Davenport H. ., 1965, The higher arithmetic. An introduction to the theory of numbers. Harper

18. torchbooks? the science library. Harper & Brothers, New York, pp. 176.

19. Klein F., 1987, 4-ое издание. Элементарная математика с точки зрения высшей. Ариф-

20. метика. Алгебра. Анализ [Elementary mathematics in terms of higher. Arithmetic. Algebra.

21. Analysis] Nauka, Moscow, Vol. I, pp. 432.

22. Khovanova T., Konyagin S. 2011 Sequences of Integers with Missing Quotients and Dense Points

23. Without Neighbors. arXiv:1104.0441v1 [math.CO] (4 Apr 2011), pp.1–20.

24. Gallamov М. М. Straight line 𝑦 = 𝑒 · 𝑥 + 𝑡 and chess coloring // «Algebra, teoriya chisel i

25. diskretnaya geometriya: sovremennye problemy, priloghenuya i problemyi istorii». Materialyi

26. XVI Mezhdunarodnoy konferenzii, posvyaschennaya 80-letiyu so dnya roghdeniya professora

27. Misheelya Deza. Tula, 13–18 maya 2019 g. S. 247–250.

28. Gallamov М. М. Straight line 𝑦 = 1−

29.

30.

31. · 𝑥 + 𝑡 and chess coloring // «Algebra, teoriya chisel

32. i diskretnaya geometriya: sovremennye problemy, priloghenuya i problemyi istorii». Materialyi

33. XVII Mezhdunarodnoy konferenzii, posvyaschennaya 100-letiyu so dnya roghdeniya professora

34. Nauma Il’cha Fel’dmana, 90-letiyu so dnya roghdeniya professorov Askol’da Ivanovicha

35. Vinogradova, Aleksandra* Vasil’evicha Malysheva i Borisa Faddeevicha Skubenko. Tula, 23–29

36. sentyabr’ 2020 g.

37. Галламов М. М. Straight line 𝑦 = −[𝑎±0 ; 𝑎±1 , 𝑎±2 , ...] · 𝑥 + 𝑡 s chetnymyi 𝑎+𝑛i nechetnymyi 𝑎−𝑛= 𝑎(̸= 1) and chess coloring // «Algebra, teoriya chisel i diskretnaya geometriya:

38. sovremennye problemy, priloghenuya i problemyi istorii». Materialyi XVIII Mezhdunarodnoy

39. konferenzii, posvyaschennaya 100-letiyu so dnya roghdeniya professorov Borisa Maksimovicha

40. Bredihina, Vasikiya Iikicha Nechatva i Sergeya Borisovicha Stechkina. Tula, 23–26 sentyabrya

41. g. S. 261–265.

42. Gallamov M. M. Zelochislennaya approksimaziya otreska /// «Algebra, teoriya chisel i diskretnaya

43. geometriya: sovremennye problemy, priloghenuya i problemyi istorii». Materialyi XXI

44. Mezhdunarodnoy konferenzii, posvyaschennaya 85-letiyu so dnya roghdeniya professora A. A.

45. Karazuby. Tula, 17–21 maya 2022 g. S. 235–238.


Review

For citations:


Gallamov M.M. Integer approximation of a segment. Chebyshevskii Sbornik. 2022;23(4):20-38. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-20-38

Views: 261


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)