Preview

Chebyshevskii Sbornik

Advanced search

Refinement of the mean angle estimation in the Feyesh Toth problem

https://doi.org/10.22405/2226-8383-2022-23-3-245-248

Abstract

The Fejes T´oth problem about the maximum 𝐸* of the mean value of the sum of angles between lines in R3 with a common center is considered. L. Fejes T´oth suggested that 𝐸* = 𝜋/3 = 1.047 . . .. This conjecture has not yet been proven. D. Bilyk and R.W. Matzke proved that 𝐸*<= 1.110 . . .. We refine this estimate using an extremal problem of the Delsarte type: 𝐸* <= 𝐴* <= 1.08326. Using the dual problem 𝐵* we show that the solution of the 𝐴* problem does not allow us to prove the Fejes T´oth conjecture, since 1.05210 < 𝐴*.

About the Authors

Dmitry Viktorovich Gorbachev
Tula State University
Russian Federation

doctor of physical and mathematical sciences



Daniil Ruslamovich Lepetkov
Tula State University
Russian Federation


References

1. Andreev, N.N. & Yudin, V.A. 1997. “An extremal location of points on a sphere”, Mat. Pros.,

2. vol. 3, no. 1, pp. 115–125. (In Russ.)

3. Bilyk, D. & Matzke, R.W. 2019. “On the Fejes T´oth problem about the sum of angles between

4. lines”, Proc. Amer. Math. Soc., vol. 147, no. 1, pp. 51–59.

5. Fodor, F., Vıgh, V. & Zarn´ocz, T. 2016. “On the angle sum of lines”, Arch. Math. (Basel),

6. vol. 106, no. 1, pp. 91–100.


Review

For citations:


Gorbachev D.V., Lepetkov D.R. Refinement of the mean angle estimation in the Feyesh Toth problem. Chebyshevskii Sbornik. 2022;23(3):245-248. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-3-245-248

Views: 251


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)