Topological and homological properties of the orbit space of a simple three-dimensional compact linear Lie group
https://doi.org/10.22405/2226-8383-2022-23-3-169-177
Abstract
The article is devoted to the question whether the orbit space of a compact linear group is a topological manifold and a homological manifold. In the paper, the case of a simple three-dimensional group is considered. An upper bound is obtained for the sum of the halfdimension integral parts of the irreducible components of a representation whose quotient space is a homological manifold, that enhances an earlier result giving the same bound if the quotient
space of a representation is a smooth manifold. The most of the representations satisfying this bound are also researched before. In the proofs, standard arguments from linear algebra, theory of Lie groups and algebras and their representations are used.
About the Author
Oleg Grigorievich StyrtRussian Federation
candidate of physical and mathematical sciences
References
1. Mikhailova, M. A. 1985, “On the quotient space modulo the action of a finite group generated
2. by pseudoreflections“, Mathematics of the USSR-Izvestiya, vol. 24, no. 1, pp. 99-119.
3. DOI: 10.1070/IM1985v024n01ABEH001216
4. Lange, C. 2013, “When is the underlying space of an orbifold a topological manifold?“, arXiv:
5. math.GN/1307.4875.
6. Styrt, O. G. 2009, “On the orbit space of a compact linear Lie group with commutative connected
7. component“, Tr. Mosk. Mat. O-va, vol. 70, pp. 235-287.
8. Styrt, O. G. 2011, “On the orbit space of a three-dimensional compact linear Lie group“, Izv.
9. RAN, Ser. math., vol. 75, no. 4, pp. 165-188.
10. Styrt, O. G. 2013, “On the orbit space of an irreducible representation of a special unitary
11. group“, Tr. Mosk. Mat. O-va, vol. 74, no. 1, pp. 175-199.
12. Styrt, O. G. 2014, “On the orbit spaces of irreducible representations of simple compact Lie
13. groups of types 𝐵, 𝐶, and 𝐷“, J. Algebra, vol. 415, pp. 137-161.
14. Styrt, O. G. 2016, “Topological and homological properties of the orbit space of a compact linear
15. Lie group with commutative connected component“, arXiv: math.AG/1607.06907.
16. Styrt, O. G. 2018, “Topological and homological properties of the orbit space of a compact linear
17. Lie group with a commutative connected component“, Vestn. Mosk. Gos. Tekh. Univ. im. N.E.
18. Baumana, Estestv. Nauki (Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.), no. 3,
19. pp. 68-81.
20. DOI: 10.18698/1812-3368-2018-3-68-81
21. Styrt, O. G. 2018, “More on the topological and homological properties of the orbit space in a
22. compact linear Lie group featuring a commutative connected component“, Vestn. Mosk. Gos.
23. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki (Herald of the Bauman Moscow State Tech.
24. Univ., Nat. Sci.), no. 6, pp. 48-63.
25. DOI: 10.18698/1812-3368-2018-6-48-63
26. Bredon, G. E. 1972, “Introduction to compact transformation groups“, Academic Press, 459 p.
Review
For citations:
Styrt O.G. Topological and homological properties of the orbit space of a simple three-dimensional compact linear Lie group. Chebyshevskii Sbornik. 2022;23(3):169-177. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-3-169-177