Distribution of products of shifted primes in arithmetic progressions with increasing difference
https://doi.org/10.22405/2226-8383-2022-23-3-156-168
Abstract
We obtain an asymptotic formula for the number of primes 𝑝 ≤ 𝑥1, 𝑝 ≤ 𝑥2 such that
𝑝1(𝑝2 + 𝑎) ≡ 𝑙 (mod 𝑞) with 𝑞 ≤ 𝑥æ0 , 𝑥1 ≥ 𝑥1−𝛼, 𝑥2 ≥ 𝑥𝛼,
$$æ0 =1/(2, 5 + 𝜃 + 𝜀), 𝛼 ∈[︂(𝜃 + 𝜀)ln 𝑞/ln 𝑥, 1 − 2, 5(ln 𝑞/ln 𝑥)]︂,$$
where 𝜃 = 1/2, if 𝑞 is a cube free and 𝜃 = 5
6 otherwise. This is the refinement and generalization
of the well-known formula of A.A.Karatsuba.
About the Author
Zarullo Khusenovich RakhmonovTajikistan
doctor of physical and mathematical sciences, professor,
academician of the National Academy of Sciences of Tajikistan, director of the A. Dzhuraev Institute of Mathematics
References
1. Karatsuba A. A., 1970, “The distribution of products of shifted prime numbers in arithmetic
2. progressions”, Dokl. Akad. Nauk SSSR, vol. 192, Is. 4, pp. 724–727.
3. Karatsuba, A. A., 2008, “Arithmetic problems in the theory of Dirichlet characters”, Russian
4. Mathematical Surveys, vol 63, Is. 4, pp. 641-690.
5. Peteˇcuk M. M., 1980,“The sum of the values of the divisor function in arithmetic progressions
6. whose difference is a power of an odd prime”, Mathematics of the USSR-Izvestiya, vol. 15, Is. 1,
7. pp. 145-160.
8. Chubarikov V. N., 1973, “A more precise bound for the zeros of Dirichlet 𝐿-series modulo with
9. a power of prime”, Moscow University Mathematics Bulletin, vol. 28, no 1-2, pp. 76–81.
10. Friendlander J. B., & Iwaniec H., 1985, “The divisor problem for arithemetic progressions”, Acta
11. Arith., vol. 45, Is. 3, pp. 273-277.
12. Rakhmonov Z. Kh., 1990, “The distribution of Hardy–Littlewood numbers in arithmetic
13. progressions”, Mathematics of the USSR-Izvestiya, vol. 34, Is. 1, pp. 213-228.
14. Pan Chengdong, & Pan Chengbiao, 1991,“Foundation to Analytic Number Theory”, Science
15. Press, Beijing, 1991, (in Chinese).
16. Montgomery, H., 1971, Topics in Multiplicative Number Theory, vol. 227. Springer-Verlag,
17. Berlin-New York.
18. Vaughan, R. O., 1975, “Mean value theorems in prime number theory”, J.London Math. Soc.,
19. vol. s2-10, Is. 2, pp. 153-162, https://doi.org/10.1112/jlms/s2-10.2.153.
20. Rakhmonov, Z. Kh., 1994, “Theorem on the mean value of 𝜓(𝑥, 𝜒) and its applications”, Russian
21. Academy of Sciences. Izvestiya Mathematics, vol. 43, Is. 1, pp. 49–64.
22. Rakhmonov, Z. Kh., 1994, “Mean values of the Chebyshev function”, Russ. Acad. Sci., Dokl.,
23. Math., vol. 48, Is. 1, pp. 85-87.
24. Rakhmonov, Z. Kh., & Nozirov O. O., 2021, “On the mean values of the Chebyshev function
25. and their applications”, , Chebyshevskii Sbornik, vol. 22, no 5(81), pp. 198–222.
26. Rakhmonov, Z. Kh., 1995, “A mean-value theorem for Chebyshev functions”, Russian Academy
27. of Sciences. Izvestiya Mathematics, vol. 44, Is. 3, pp. 555–569.
28. Rakhmonov, Z. Kh., 1996, “The mean-value theorem in prime number theory”, Doklady
29. Mathematics, vol. 54, Is. 1, pp. 597-598.
30. Timofeev, N. M., 1988, “Distribution in the mean of arithmetic functions in short intervals in
31. progressions”, Mathematics of the USSR-Izvestiya, vol. 30, Is. 2, pp. 315–335.
32. Vinogradov, I. M., 1938, “On the distribution of quadratic rests and non-rests of the form 𝑝+𝑘
33. to a prime modulus”, Rec. Math. [Mat. Sbornik] N.S., vol. 3(45), no 2, pp. 311–319.
34. Vinogradov, I. M., 1943, “An improvement of the estimation of sums with primes”, Izv. Akad.
35. Nauk SSSR. Ser. Mat., vol. 7, no 1, pp. 17–34.
36. Jutila, M., 1968, “On the least Goldbach’s number in an arithmetical progression with a prime
37. difference”, Ann. Univ. Turku; Ser. A, I 118(5).
38. Vinogradov, I. M., 1952, “New approach to the estimation of a sum of values of 𝜒(𝑝 + 𝑘)”,
39. Izv. Akad. Nauk SSSR. Ser. Mat., vol. 16, Is. 3, pp. 197–210.
40. Vinogradov, I. M., 1953, “Improvement of an estimate for the sum of the values 𝜒(𝑝 + 𝑘)”, Izv.
41. Akad. Nauk SSSR. Ser. Mat., vol. 17, Is. 4, pp. 285–290.
42. Linnik, Yu. V., 1975, “Recent works of I.M. Vinogradov”, Proceedings of the Steklov Institute of
43. Mathematics, vol. 132, pp. 25–28.
44. Karatsuba, A. A., 1968, “Sums of characters, and primitive roots, in finite fields”, Dokl. Akad.
45. Nauk SSSR, vol. 180, Is. 6. № 6, pp. 1287-1289.
46. Karatsuba, A. A., 1970, “Estimates of character sums”, Math. USSR-Izv., vol. 4, Is. 1, pp. 19–29.
47. Karatsuba, A. A., 1970, “Sums of characters over prime number”, Math. USSR-Izv., vol. 4, Is. 2,
48. pp. 303–326.
49. Karatsuba, A. A., 1970, “Sums of characters with prime numbers”, Dokl. Akad. Nauk SSSR,
50. vol. 190, Is. 3, pp. 517–518.
51. Rakhmonov, Z. Kh., 1986, “On the distribution of values of Dirichlet characters”, Russian Math.
52. Surveys, vol. 41, Is. 1, pp/ 237–238. doi:10.1070/RM1986v041n01ABEH0032
53. Rakhmonov, Z. Kh., 1986, “Estimation of the sum of characters with primes”, Dokl. Akad. Nauk
54. Tadzhik. SSR, vol. 29, Is. 1, pp. 16–20„ (in Russian).
55. Rakhmonov, Z. Kh., 1995, “On the distribution of the values of Dirichlet characters and their
56. applications”, Proc. Steklov Inst. Math., vol. 207, pp. 263–272.
57. Rakhmonov, Z. Kh., 1986 “The least Goldbach number in an arithmetic progression”, Izv. Akad.
58. Nauk Tadzhik. SSR. Otdel. Fiz.-Mat., Khim. i Geol. Nauk, № 2(100), pp. 103-106, (in Russian).
59. Huxley, M. N., 1971, “On the difference between consecutive primes”, Inventiones mathematicae,
60. vol. 15, Is. 2, pp. 164–170.
61. Fridlander, Dzh. B., & Gong, K., & Shparlinskii, I. E., 2010, “Character sums over shifted
62. primes”, Math. Notes, vol. 88, Is. 3-4, pp. 585-598. doi:10.1134 S0001434610090312.
63. Rakhmonov, Z. Kh., 2013, “Distribution of values of Dirichlet characters in the sequence of
64. shifted primes”, Doklady Akademii nauk Respubliki Tajikistan, vol. 56, № 1, pp. 5-9, (in
65. Russian).
66. Rakhmonov, Z. Kh., 2013, “Distribution of values of Dirichlet characters in the sequence of
67. shifted primes”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., vol. 13, Is. 4(2), pp. 113-
68. , (in Russian).
69. Rakhmonov, Z. Kh., 2014, “Sums of characters over prime numbers”, Chebyshevskii Sb., vol. 15,
70. no 2, pp. 73-100, (in Russian).
71. Kerr, B., 2021, “Bounds of Multiplicative Character Sums over Shifted Primes”, Proc. Steklov
72. Inst. Math., vol. 314, pp. 64–89.
73. Rakhmonov, Z. Kh., 2017, “Sums of values of nonprincipal characters over a sequence of shifted
74. primes”, Proc. Steklov Inst. Math., vol. 299, pp. 219–245.
75. Rakhmonov, Z. Kh., 2017, “On the estimation of the sum the values of Dirichlet character
76. in a sequence of shifted primes”, Doklady Akademii nauk Respubliki Tajikistan, vol. 60, no 9,
77. pp. 378-382, (in Russian).
78. Rakhmonov Z. Kh., 2018, “Sums of Values of Nonprincipal Characters over Shifted Primes”,
79. In: Pintz J., Rassias M. (eds) Irregularities in the Distribution of Prime Numbers, Springer
80. International Publishing, pp. 187-217.
Review
For citations:
Rakhmonov Z.Kh. Distribution of products of shifted primes in arithmetic progressions with increasing difference. Chebyshevskii Sbornik. 2022;23(3):156-168. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-3-156-168