Metric Segments in Gromov–Hausdorff class
https://doi.org/10.22405/2226-8383-2022-23-3-5-18
Abstract
We study properties of metric segments in the class of all metric spaces considered up to an isometry, endowed with Gromov–Hausdorff distance. On the isometry classes of all compact
metric spaces, the Gromov-Hausdorff distance is a metric. A metric segment is a class that consists of points lying between two given ones. By von Neumann–Bernays–G¨odel (NBG) axiomatic set theory, a proper class is a “monster collection”, e.g., the collection of all sets.
We prove that any metric segment in the proper class of isometry classes of all metric spaces with the Gromov-Hausdorff distance is a proper class if the segment contains at least one metric
space at positive distances from the segment endpoints. If the distance between the segment endpoints is zero, then the metric segment is a set. In addition, we show that the restriction of
a non-degenerated metric segment to compact metric spaces is a non-compact set.
Keywords
References
1. Hausdorff, F. 1914, Grundz¨uge der Mengenlehre, Veit, Leipzig [reprinted by Chelsea in 1949].
2. Gromov, M. 1981, “Groups of Polynomial growth and Expanding Map”, In: Publications
3. Mathematiques, I.H.E.S., Paris, Vol. 53.
4. Burago, D. Yu., Burago, Yu. D. & Ivanov, S. V., 2001, A Course in Metric Geometry, American
5. Mathematical Society, Providence, RI.
6. Edwards, D. 1975, “The Structure of Superspace”, In: Studies in Topology, ed. by Stavrakas, N.
7. M. and Allen, K. R., Academic Press, Inc. New York, London, San Francisco.
8. Tuzhilin, A. A. 2017, “Who Invented the Gromov–Hausdorff Distance?”, ArXiv e-prints,
9. arXiv:1612.00728.
10. Mendelson, E. 1979, Introduction to mathematical logic. D. Van Nostrand company, INC.
11. Princeton, New Jersey.
12. Ivanov, A. O. & Tuzhilin, A. A., 2017, Geometry of Hausdorff and Gromov–Hausdorff distances,
13. the case of compact spaces, Izd-vo Popech. Soveta Mech.-Mat. Facult. MGU, Moscow [in
14. Russian].
15. Ivanov, A. O., Nikolaeva, N. K. & Tuzhilin, A. A. 2016, “The Gromov–Hausdorff Metric on the
16. Space of Compact Metric Spaces is Strictly Intrinsi”, Mathematical Notes, vol. 100, no. 6, pp.
17. –173.
18. Iliadis, S. D., Ivanov, A. O. & Tuzhilin A. A. 2016, “Realizations of Gromov–Hausdorff Distanc”,
19. ArXiv e-prints, arXiv:1603.08850.
20. Ivanov, A. O., Tuzhilin, A. A. 2019,“Hausdorff realization of linear geodesics of Gromov–
21. Hausdorff spac”, ArXiv e-prints, arXiv: 1904.09281.
22. Ivanov, A. O. & Tuzhilin, A. A. 2019, “Isometry group of Gromov–Hausdorff space”, Matematicki
23. Vesnik, vol. 71, no. 1–2, pp. 123–154.
24. Memoli, F. 2007, “On the Use of Gromov–Hausdorff Distances for Shape Comparison”, In:
25. Proceedings of Point Based Graphics 2007, Ed. by Botsch M., Pajarola R., Chen B., and Zwicker
26. M., The Eurographics Association, Prague, 2007, pp. 81–90.
27. Klibus, D.P., 2018, Сoursework. Compact convexity of balls in the Gromov-Hausdorff space.
28. Available at: http://dfgm.math.msu.su/files/0students/2018-kr5-klibus.pdf.
29. John L. Kelley. 1955, General topology. D. van Nostrand Company, Inc., New York, Toronto,
30. and London.
31. Engelking, R. 1977, General topology. Pa´nstwowe Wydawnictwo Naukowe, Warszawa. Manuscript
32. of second edition, 1985.
Review
For citations:
Borisova O.B. Metric Segments in Gromov–Hausdorff class. Chebyshevskii Sbornik. 2022;23(3):5-18. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-3-5-18