On the character sums modulo equal of the power prime number 2
https://doi.org/10.22405/2226-8383-2022-23-2-201-208
Abstract
In this paper the analog of A.G.Postnikov formula for a primitive Dirichlet’s character on modulo equals a prime-power of number two is found. The deduction is based on the detail consideration the algebraic structure of a reducing of a residues system modulo of a primepower of the number two.
References
1. Vinogradov I. M. 1976. Special variants of the trigonometrical sums method. — M.: Fizmatlit, pp. 144.
2. Vinogradov I. M. 1983. Elements of the number theory. — M.: Fizmatlit, pp. 160.
3. Hasse H. 1950. Vorlesungen ueber Zahlentheorie. — Berlin, 78-114.
4. Postnikov A. G. 1955. On character sums modulo equals the power of prime number.// Izv. AN SSSR, ser. math., v.19, No. 1, p.11-16.
5. Barban M. B., Linnik J. V., Chudakov N. G. 1964. On prime numbers in an arithmetic progression with a prime-power difference.//Acta arithm. V.9, №4, p.375–390.
6. Hua Loo-Keng. 1983. Selected Papers. — N.-Y.,Heidelberg, Berlin, pp.888.
7. Arkhipov G. I., 2013. Selected papers. — Orjol: Publ.House of the Orjol University, pp. 464.
8. Karatsuba A. A. 1983. Foundations of analytic number theory. 2nd Ed. — M.: Nauka. Gl. red. phis.-math.literature, pp. 240 (in Russian).
9. Petechuk M. M. 1979. A sum of the divisor function values in an arithmetic progression with a odd prime-power difference.//Acta arithm. V.9, №4, p.375–390.
10. Arkhipov G. I.„ Sadovnichii V. A., Chubarikov V. N. 2004. Lecture on mathematical analysis. 4th Ed., corr. — M.: Drofa. pp. 640.
Review
For citations:
Hafez A. On the character sums modulo equal of the power prime number 2. Chebyshevskii Sbornik. 2022;23(2):201-208. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-2-201-208