Preview

Chebyshevskii Sbornik

Advanced search

The final deviation and the main quality measure for Korobov grids

https://doi.org/10.22405/2226-8383-2022-23-2-56-73

Abstract

The paper considers four new concepts: a modified basic measure of the quality of a set of coefficients, absolutely optimal coefficients of the index 𝑠, the mathematical expectation of
the local deviation of the parallelepipedal grid and the variance of the local deviation of the parallelepipedal grid.
It is shown that at least ((𝑝−1)^𝑠)/2 of different sets (𝑎1, . . . , 𝑎𝑠) integers mutually prime with the module 𝑝 will be absolutely optimal sets of the index 𝑠 with the constant 𝐵 = 2𝑠.
It is established that any absolutely optimal set of optimal coefficients of the 𝑠 index is an optimal set of optimal coefficients of the 𝑠 index, while any subset of its 𝑠1 coefficients is an
optimal set of optimal coefficients of the 𝑠1 index.
For the finite deviation introduced by N. M. Korobov in 1967, new formulas and estimates are obtained for parallelepipedal grids.
In this paper, for the first time, the concept of the mathematical expectation of a local deviation is considered and a convenient formula for its calculation is found.
The concept of local deviation variance is also considered for the first time.
The paper outlines the directions of further research on this topic.

About the Authors

Nikolai Nikolaevich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University, Tula State University
Russian Federation

candidate of physical and mathematical sciences, associate professor



Mikhail Nikolaevich Dobrovol’skii
Geophysical centre of RAS
Russian Federation

candidate of candidate of physical and mathematical sciences



Irina Yuryevna Rebrova
Tula State Lev Tolstoy Pedagogical University
Russian Federation

candidate of physical and mathematical Sciences, associate professor



Nikolai Mihailovich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Авдеева М. О. Оценка количества локальных минимумов целочисленных решеток // Чебышевский сборник. Тула, 2004. Т. 5 вып. 4(12). С. 35 — 38.

2. Babenko, K.I. 1986, Osnovy chislennogo analiza [Fundamentals of numerical analysis], Nauka, Moscow, Russia.

3. Bykovskij, V.А 2002, “On the error of number-theoretic quadrature formulas”, Chebyshevskij sbornik, vol. 3, no. 2(4), pp. 27–33.

4. V. A. Bykovskii, 2003, “On the error of number-theoretic quadrature formulas”, Dokl. Math., 67:2, 175–176.

5. Gorkusha O. A. 2004, “Criterion of finiteness of the set of local lattice minima”, Algebra and Number Theory: Modern Problems and Applications: Thesis of the sixth International Conference dedicated to the 100th anniversary of N. G. Chudakov (Saratov, 13 — 17 September 2004). — Saratov: Sarat Publishing House. un-ta, p. 47.

6. Gorkusha O. A. 2002, “Criterion of finiteness of the set of local lattice minima”, Chebyshevskij sbornik, Vol. 5, issue 3(11). p. 15–17.

7. Demidov S. S., Morozova E. A., Chubarikov V. N., Rebrov I. Yu., Balaba I. N., Dobrovol’skii N. N., Dobrovol’skii N. M., Dobrovol’skaya L. P., Rodionov A. V., Pikhtil’kova O. A.,

8. , "Number-theoretic method in approximate analysis" Chebyshevskii Sbornik vol. 18, № 4. pp. 6–85.

9. Dobrovol’skii, N. M. 1984, “The hyperbolic Zeta function of lattices”, Dep. v VINITI, no. 6090–84.

10. A. N. Kormacheva, N. N. Dobrovol’skii, N. M. Dobrovol’skii, 2021, “On the hyperbolic parameter of a two-dimensional lattice of comparisons”, Chebyshevskii sbornik, vol. 22, no. 4, pp. 168–182.

11. Korobov, N.M. 1959, “On approximate computation of multiple integrals”, Doklady Аkademii nauk SSSR, vol. 124, no. 6, pp. 1207–1210.

12. Korobov, N.M. 1959, “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, no. 4, pp. 19–25.

13. Korobov, N.M. 1960, “Properties and calculation of optimal coefficients”, Doklady Аkademii nauk SSSR, vol. 132, no. 5, pp. 1009–1012.

14. Korobov, N.M. 1963, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], Fizmat-giz, Moscow, Russia.

15. Korobov, N.M. 1967, “About some questions of the theory of Diophantine approximations”, Uspekhi matematicheskikh nauk, vol. 22, no. 3(135), pp. 83–118.

16. Korobov, N.M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.

17. Lokutsievskij, O. V. & Gavrikov, M. B. 1995, Nachala chislennogo analiza [The beginning of numerical analysis], TOO “Yanus”, Moscow, Russia.

18. Roth, K.F. 1954, “On irregularities of distribution”, Mathematika, 1, pp. 73–79.


Review

For citations:


Dobrovol’skii N.N., Dobrovol’skii M.N., Rebrova I.Yu., Dobrovol’skii N.M. The final deviation and the main quality measure for Korobov grids. Chebyshevskii Sbornik. 2022;23(2):56-73. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-2-56-73

Views: 295


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)