Preview

Chebyshevskii Sbornik

Advanced search

New estimates for the exceptional set of the sum of two primes from an arithmetic progression

https://doi.org/10.22405/2226-8383-2022-23-2-21-41

Abstract

The paper studies the question of representing numbers as the sum of two primes from an arithmetic progression, that is, the binary Goldbach problem, when primes are taken from an
arithmetic progression. New estimates are proved for the number of even natural numbers that are (possibly) not representable as a sum of two primes from an arithmetic progression and for a number representing a given natural number, as a sum of two primes from an arithmetic progression.

About the Authors

Ismail Allakov
Termez State University
Uzbekistan

professor, doctor of physical and mathematical sciences



Abduvahid Shukurovich Safarov
Termez State University
Uzbekistan

candidate of physical and mathematical sciences



References

1. Allakov I., 2008, “About Goldbach numbers” // Chebyshevsky collection, № 9, Vol. 1, pp.13–17.

2. Vinogradov I. M., 1980, “Method of trigonometric sums in number theory” // Nauka, M., pp. 200.

3. Vinogradov I. M., 1976, “Special variants of the method of trigonometric sums” // Nauka, M., pp. 95.

4. Hua-Lo-Gen, 1947, “Additive theory of prime numbers” // Tr. Matem. ins. im. V.A.Steklov., pp.3–179.

5. Hua-Lo-Gen., 1964, “The method of trigonometric sums and its applications in number theory” // Mir, M., pp.18–19.

6. Output, J. G. van. der.. 1937, “Sur l’hypothese de Goldbach pour Presque tous les nombers pairs” // Acta arithm. - Warsaw, Vol. 2. pp. 266–290.

7. Chudakov N. G., 1937, “On the Goldbach’s problem. // Docl. USSR Academy of Sciences”, № 17, pp.331–334.

8. Estermann T., 1938, “On Goldbach’s problem: Proof that almost all even positive integers are sums of two primes” // Proc.Lond. Math. Soc. № 2(44), pp. 307–314.

9. Hardy G. H. and Littlewood J.E., 1923, “Some problems of partitio numerorum; III: On the expression of a number as sum of primes” // Acta Math., № 44., pp. 1–70.

10. Vaughan R. C., 1997, The Hardi-Littlewood method. Second edition. //Cambridge University Press, № 2, pp.176–256.

11. Lavrik A. F., 1961, “On binary problems of additive theory of prime numbers in connection with the method of trigonometric sums by I.M. Vinogradov” //Bulletin of LSU., № 13., pp.11–27.

12. Vaughan R. C., 1972, “On Goldbach’ s problem” // Acta arithm. - 1972 v.22. pp. 21-48.

13. Montgomery H. L., 1975, “Vaughan R. C.„ The exceptional set in Goldbach’s problem” // Acta algorithm. № 27, pp.353–370.

14. Allakov I., 1983, “An exceptional set of the sum of two primes”. Dissertation for the degree of Candidate of Physical and Mathematical Sciences. Leningrad. LSU,148(1983).

15. Vinogradov A. I., 1985, “On the binary Hardy-Littlewood problem”, Acta arithm. 46, 33-56 (1985).

16. Arkhipov G. I., Chubarikov V.N., 2002, “On an exceptional set in a binary Goldbach type problem”. Dokl.RAN, 387, 3, pp. 295–296 (2002).

17. Plaksin V. A., 1990, “About one question of Hua-Lo-Ken”, Math. Notes, № 3, Vol. 47, pp. 78–90.

18. Allakov I., 2012, “Solving some additive problems of number theory by analytical methods”, (Talim, Tashkent).

19. Allakov I., Safarov A. Sh., 2020, “Exceptional set of the sum of a prime number and a fixed degree of a prime number”. Russian Mathematics. № 64, pp. 8–21.

20. Wu Fang., 1957, “On the solutions of the systems of linear equations with prime variables”. Acta Math. Sinica”, № 7, pp. 102–121.

21. Liu M. C., 1987(1989), “Tsang K. M. Small prime solutions of linear equation”s. Proc. Intern. Number. Th. Conf. Laval Uniyersity. Cand. Math. Soc. pp. 595–624 (Berlin–New-York).

22. Chubarikov V. N., 2011, “Multidimensional problems of prime number theory”. Chebyshev collection, № 12, Vol. 4, pp. 176–256.

23. Allakov I., 2000, “About the representation of numbers by the sum of two primes from an arithmetic progression”. News of universities. Mathematics, № 8(459). pp. 3–15.

24. Karatsuba A. A., 1983, “Fundamentals of analytical number theory”, Nauka, M.

25. Davenport Harold, 1997, “Multiplicative Number Theory”, (Shringer-Verlag, New York, Heidelberg, Berlin. Second edi..

26. Montgomery H. L. and Vaughan R. C., 2006, “Multiplicative number theory. I. Classical theory”. (Published in the United States of America by Cambridge University Press, New York).

27. Prahar K., 1967, “Distribution of prime numbers”, Mir, M.

28. Gallagher P. X., 1970, “A large sieve density estimate near”, Inv.Math. № 11, pp. 329–339.

29. Kolmogorov A. N., Fomin S. V., 1976, “Elements of the theory of function and functional analysis”, Nauka, M.

30. Allakov I., Israilov M., 1982, “Estimation of trigonometric sums by prime numbers in arithmetic progression”, Reports of the Academy of Sciences of Uzbekistan, № 4, pp. 5–6.


Review

For citations:


Allakov I., Safarov A.Sh. New estimates for the exceptional set of the sum of two primes from an arithmetic progression. Chebyshevskii Sbornik. 2022;23(2):21-41. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-2-21-41

Views: 347


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)