Preview

Chebyshevskii Sbornik

Advanced search

Billiard books of low complexity and realization of Liouville foliations of integrable systems

https://doi.org/10.22405/2226-8383-2022-23-1-53-82

Abstract

In paper we study the topology of integrable billiard books, (i.e. systems on CW-complexes glued from flat domains of confocal billiards. Significant progress has been made in proving the local version of the billiard Fomenko conjecture. In particular, billiards were used to realize an important class of subgraphs of the Fomenko - Zieschang graph invariants (that classify Liouville foliations of integrable systems in topological sense). Then we classify in combinatorial sense
billiard books of low complexity (with a small number of one-dimensional cells), glued from flat domains that contain foci of the family of quadrics. Calculation of Fomenko–Zieschang invariants for these systems is in progress.

About the Authors

Victoria Viktorovna Vedyushkina
Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences



Vladislav Alexandrovich Kibkalo
Lomonosov Moscow State University
Russian Federation

candidate of physical and mathematical sciences



References

1. Birkhoff, G. D. 1927, Dynamical systems // AMS Colloq. Publ., 9, AMS, New York, 1927, 295p.

2. Tabachnikov, S. L. 2005, Geometry and Billiards, Student Mathematical Library, vol. 30.

3. Dragovic, V. & Radnovic, M. 2010, Poncelet Porisms and Beyond: Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics, Frontiers in Mathematics, Birkh¨auser, 302p.

4. Kovlov, V.V & Treshchev, D. V. 1991, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, AMS, Providence, RI, 1991, viii+171 p.

5. Glutyuk, A. 2021, “On polynomially integrable Birkhoff billiards on surfaces of constant curvature“, J. of the Europ. Math. Soc., vol. 23, no. 3, pp. 995-1049.

6. Kaloshin, V. & Sorrentino, A. 2018, “On the local Birkhoff conjecture for convex billiards“, Ann. of Math., vol. 188, no. 1, pp. 315-380.

7. Vedyushkina, V. V. & Kharcheva, I. S. 2021, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems“, Sb. Math., vol. 209, no. 12, pp. 1690-1727.

8. Fokicheva, V. V. & Fomenko, A. T. 2019, “Billiards and integrability in geometry and physics. New scope and new potential“, Mosc. Univ. Math. Bull., vol. 74, no. 3, pp. 98-107.

9. Fokicheva, V. V. & Fomenko, A. T. 2015, Integrable Billiards Model Important Integrable Cases of Rigid Body Dynamics“, Dokl. Math., vol. 92, no. 3, pp. 682-684.

10. Fomenko A. T. 1987, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability“, Math. USSR-Izv., vol. 29, no. 3, pp. 629–658.

11. Fomenko A. T. & Zieschang H. 1991, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom“, Math. USSR-Izv., vol. 36, no. 3, pp. 567–596.

12. Bolsinov, A. V. & Fomenko, A. T. 2004, Integrable Hamiltonian systems: geometry, topology, classification, Chapman & Hall /CRC, Boca Raton, London, N.Y., Washington.

13. Vedyushkina, V. V. & Kharcheva, I. S. 2021, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems“, Sb. Math., vol. 212, no. 8, pp. 1122-1179.

14. Vedyushkina, V. V. & Kibkalo, V. A. 2020, “Realization of the numerical invariant of the Seifert fibration of integrable systems by billiards“, Mosc. Univ. Math. Bull., vol. 75, no. 4, pp. 161-168.

15. Vedyushkina, V. V. 2020, “Local Modeling of Liouville Foliations by Billiards: Implementation of Edge Invariants“, Mosc. Univ. Math. Bull., vol. 76, no. 2, pp. 60-64.

16. Vedyushkina, V. V., Kibkalo, V. A. & Fomenko, A. T. 2020, Topological modeling of integrable systems by billiards: realization of numerical invariants“, Dokl. Math., vol. 102, no. 1, pp. 269- 271.

17. Jacobi, C. G. 1884, Vorlesunger uber Dynamik, Berlin: Druck und Verlag von Reimer.

18. Glutsyuk, A. A. 2018, “On Two-Dimensional Polynomially Integrable Billiards on Surfaces of Constant Curvature“, Dokl. Math., vol. 98, no. 1, pp. 382-385.

19. Bialy, M. & Mironov A. E. 2016, “Algebraic non-integrability of magnetic billiards“, J. Phys. A., vol. 49, no. 45, pp. 455101.

20. Glutsyuk, A.A. 2020, “On commuting billiards in higher-dimensional spaces of constant curvature“, Pacific J. Math., vol. 305, no. 2, pp. 577-595.

21. Vedyushkina, V.V, Fomenko, A. T. & Kharcheva, I. S. 2018., “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards“, Dokl. Math., vol. 97, no. 2, pp. 174-176.

22. Dragovi´𝑐, V. & Radnovi´𝑐, M. 2009, “Bifurcations of Liouville tori in elliptical billiards“, Regul. Chaotic Dyn., vol. 14, no. 4-5, pp. 479-494.

23. Fokicheva, V. V. 2012, “Description of singularities for system “billiard in an ellipse“, Moscow Univ. Math. Bull., vol. 67, no. 5-6, pp. 217-220.

24. Fokicheva, V. V. 2014, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas“, Mosc. Univ. Math. Bull., vol. 69, no. 4, pp. 148–158.

25. Dragovi´𝑐, V. & Radnovi´𝑐, M. 2019, “Caustics of Poncelet Polygons and Classical Extremal Polynomials“, Regul. Chaotic Dyn., vol. 24, no. 1, pp. 1-35.

26. Adabrah, A. K., Dragovi´𝑐, V. & Radnovi´𝑐, M. 2019, “Elliptical Billiards in the Minkowski Plane and Extremal Polynomials“, Rus. J. Nonlin. Dyn., vol. 15, no. 4, pp. 397-407.

27. Bolsinov, A. V., Matveev, S. V. & Fomenko A.T. 1990, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity“, Russian Math. Surveys, vol. 45, no. 2, pp. 59-94.

28. Fomenko, A. T. 1986, “Morse theory of integrable Hamiltonian systems“, Soviet Math. Dokl., vol. 33, no. 2, pp. 502-506.

29. Fokicheva, V. V. 2015, “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics“, Sb. Math., vol. 206, no. 10, pp. 1463–1507.

30. Vedyushkina, V. V. & Fomenko, A. T., “Integrable Topological Billiards and Equivalent Dynamical Systems“, Izv. Math., vol. 81, no. 4, pp. 688–733.

31. Vedyushkina, V. V. 2019, “The Fomenko–Zieschang invariants of nonconvex topological billiards“, Sb. Math., vol. 210, no. 3, 310–363.

32. Kibkalo, V. A., Fomenko, A. T. & Kharcheva, I. S. 2021, “Realization of Integrable Hamiltonian Systems by Billiard Books“, Trans. of Moscow Math. Soc., vol. 82, no. 1, (in press). Available at: https://arxiv.org/abs/2012.05337 .

33. Vedyushkina, V. V. & Fomenko, A. T. 2021, “Force Evolutionary Billiards and Billiard Equivalence of the Euler and Lagrange Cases“, Dokl. Math., vol. 103, no. 1, pp. 1-4.

34. Fokicheva, V. 2016, Topological Classification of Integrable Billiards, PhD Thesis, Moscow, Lomonosov MSU.

35. Matveev, S. V. & Fomenko A. T. 1997, Algorithmic and Computer Methods for Three-Manifolds, Springer, 352 p.

36. Vedyushkina, V. V. 2020, Integrable billiards on CW-complexes and integrable Hamiltonian systems, Doctoral Thesis, Moscow, Lomonosov MSU.

37. Vedyushkina, V. V. 2020, “Integrable billiard systems realize toric foliations on lens spaces and the 3-torus“, Sb. Math., vol. 211, no. 2, pp. 201-225.


Review

For citations:


Vedyushkina V.V., Kibkalo V.A. Billiard books of low complexity and realization of Liouville foliations of integrable systems. Chebyshevskii Sbornik. 2022;23(1):53-82. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-53-82

Views: 358


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)