Preview

Chebyshevskii Sbornik

Advanced search

Integer polynomials and Minkowski’s theorem on linear forms

https://doi.org/10.22405/2226-8383-2022-23-1-45-52

Abstract

In paper Minkowski’s theorem on linear forms [1] is applied to polynomials with integer coefficients
𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + . . . + 𝑎1𝑥 + 𝑎0 (3)
with degree 𝑑𝑒𝑔𝑃 = 𝑛 and height 𝐻(𝑃) = max06𝑖6𝑛 |𝑎𝑖|. Then, for any 𝑥 ∈ [0, 1) and a natural number 𝑄 > 1, we obtain the inequality
|𝑃(𝑥)| < 𝑐1(𝑛)𝑄−𝑛 (4)
for some 𝑃(𝑥),𝐻(𝑃) ≤ 𝑄. Inequality (4) means that the entire interval [0, 1) can be covered by intervals 𝐼𝑖, 𝑖 = 1, 2, . . . at all points of which inequality (4) is true. An answer is given to the question about the size of the 𝐼𝑖 intervals. The main result of this paper is proof of the following statement.
For any 𝑣, 0 ≤ 𝑣 < (𝑛+1)/3 , there is an interval 𝐽𝑘, 𝑘 = 1, . . . ,𝐾, such that for all 𝑥 ∈ 𝐽𝑘, the inequality (4) holds and, moreover,
𝑐2𝑄−𝑛−1+𝑣 < 𝜇𝐽𝑘 < 𝑐3𝑄−𝑛−1+𝑣.

About the Authors

Vasilii Ivanovich Bernik
Institute of Mathematics NAS Belarus
Belarus

doctor of physical and mathematical sciences, professor



Irina Alexandrovna Korlyukova
Grodno State University
Belarus

candidate of physical and mathematical sciences, associate professor



Alexey Sergeevich Kudin
Institute of Mathematics NAS Belarus
Belarus

candidate of physical and mathematical sciences



Anastasia Vladimirovna Titova
Institute of Mathematics NAS Belarus
Russian Federation

postgraduate student



References

1. Cassels, J. V. S. 1961, “Introduction to the theory of Diophantine approximations“ Moscow: Izd-vo Inostr. Liter 213 p.

2. Sprindzhuk, V. G. 1967, “Mahler’s problem in metric number theory“ Minsk: Science and Technology 184 p.

3. Kemesh O. N., Panteleeva Zh. I., Titova A. V. 2021, “Sharp estimates for the measure of small values of integer polynomials“ "Vesnik"of the Mogilev State University A.A. Kuleshova vol. 57, no. 1. pp. 81–86.

4. Kudin A. S., Panteleeva Zh. I., Titova A. V. (in press), “Unimprovable estimates for the Haar measure of sets of p-adic numbers with small values of integer polynomials“ "Vesnik"of the Mogilev State University. A.A. Kuleshova

5. Beresnevich V. 1999, “On approximation of real numbers by real algebraic numbers“ Acta Arithmetica, vol. 90, no. 2, pp. 97–112.

6. Beresnevich V., Bernik V., G¨otze F. 2010, “The distribution of close conjugate algebraic numbers“ Compositio Mathematica, vol. 146, no. 5, pp. 1165–1179.

7. Beresnevich V., Bernik V., G¨otze F. 2016, “Integral polynomials with small discriminants and resultants“ Advances in Mathematics, vol. 298, pp. 393–412.

8. Beresnevich V. 2012, “Rational points near manifolds and metric Diophantine approximation“ Annals of Mathematics, vol. 175, no. 1, pp. 187–235.

9. Bernik V. I. 1983, “Application of Hausdorff Dimension in the theory of Diophantine Approximation“ Acta Arithmetica, vol. 42, no. 3, pp. 219–253.

10. Mahler K. 1932, “Uber das Mass der Menge aller 𝑆-Zahlen“ Math. Ann., vol. 106, pp. 131–139.

11. Kubilius Y.P. 1949, “On the application of the method acad. Vinogradov to the solution of one problem of metric number theory“ DAN USSR, vol. 67, pp. 783–786.

12. Schmidt WM. 1964, “Metrische S¨atze ¨uber simultane Approximation abh¨angiger Gr¨oßen“ Monatshefte f¨ur Mathematik, vol. 68, no. 2, pp. 154–166.

13. Sprindzhuk V. G. 1965, “Proof of Mahler’s conjecture on the measure of the set of S-numbers“ Izv. Academy of Sciences of the USSR, vol. 29, no. 2, pp. 379–436.

14. Volkmann, B. 1960, “Ein metrischer Beitrag ¨uber Mahlerschen 𝑆−Zahlen, I“ J. reine und angew. Math., vol. 203, no. 3–4, pp. 154–156.

15. Baker, A. 1966, On a Theorem of Sprindzuk Proc. R. Soc. Lond. A., vol. 292, no. 1428, pp. 92–104.

16. Sprindzhuk V. G. 1967, “Mahler’s problem in metric number theory“ Minsk: Science and technology, 181 p.

17. Khintchine, A. 1924, “Einige s¨atze ¨uber kettenbr¨uche, mit anwendungen auf die theorie der Diophantischen approximationen“ Mathematische Annalen, vol. 92, no. 1–2, pp. 115–125.

18. Bernik V. I. 1989–1990, “On the Exact Order of Approximation of Zero by Values of Integer Polynomials“ Acta Arithmetica, vol. 53, no. 1, pp. 17–28.

19. Beresnevich V. 2002, “A Groshev type theorem for convergence on manifolds“ Acta Mathematica Hungarica, vol. 94, no. 1—2, pp. 99 –130.

20. Bernik V., Kleinbock D., Margulis G. 2001, “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions“ International Mathematics Research Notices, vol. 9, pp. 453– 486.

21. Beresnevich V., Bernik V., Kleinbock D., Margulis G. 2002, “Metric Diophantine approximation: The Khintchine – Groshev theorem for nondegenerate manifolds“ Moscow Mathematical

22. Journal, vol. 2, no. 2, pp. 203–225.

23. Bernik V, G¨otze F. 2015, “Distribution of real algebraic numbers of arbitrary degree in short intervals“ Izvestiya: Mathematics, vol. 79, no. 1. pp. 18–39.


Review

For citations:


Bernik V.I., Korlyukova I.A., Kudin A.S., Titova A.V. Integer polynomials and Minkowski’s theorem on linear forms. Chebyshevskii Sbornik. 2022;23(1):45-52. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-1-45-52

Views: 338


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)