On real zeros of the derivative of the Hardy function
https://doi.org/10.22405/2226-8383-2021-22-5-234-240
Abstract
The existence of the zeros of the Riemann zeta-function in the short segments of the critical line
(or the real zeros of Hardy's function $Z(t)$, that is the same) is one of the topical problems in the theory of the Riemann zeta-function.
The study of the zeros of Hardy function's derivatives $Z^{(j)}(t)$ is the generalization of such problem.
Let $T>0$. Let us define the quantity $H_j(T)$, the distance from $T$ to the nearest real zero not less than $T$ of the $j$-th derivative of the Hardy function. In the paper, an upper bound for $H_j(T)$ is proved.
About the Author
Shamsullo Amrulloevich KhayrulloevTajikistan
candidate of physical and mathematical sciences
References
1. Karatsuba, A. A., 1985, “The Riemann zeta function and its zeros“, Russian Math. Surveys vol. 40,
2. pp. 23 -– 82.
3. Hardy G. H., 1914, “Sur les zeros de la fonction 𝜁(𝑠) de Riemann”, Compt.Rend. Acad.Sci., vol. 158,
4. pp. 1012 – 1014.
5. Hardy, G. H., & Littlewood, J. E. 1921, “The zeros of Riemann’s zeta–function on the critical line”,
6. Math.Z., vol. 10, pp. 283 – 317.
7. Moser, J., 1976, “On a certain sum in the theory of the Riemann zeta-function”, Acta Arith., pp. 31 – 43.
8. (Russian).
9. Karatsuba, A. A., 1983, “On the distance between consecutive zeros of the Riemann zeta function that
10. lie on the critical line”, Proc. Steklov Inst. Math., vol. 157, pp. 51 — 66.
11. Karatsuba, A. A., 1984, “On the zeros of the function 𝜁(𝑠) on short intervals of the critical line”, Math.
12. USSR-Izv., 24, no. 3, pp. 523 – 537.
13. Voronin, S. M. & Karatsuba, A. A., 1994, The Riemann zeta function, Fiziko-Matematicheskaya
14. Literatura, Moscow, 376 pp. ISBN: 5-02-014120-8
15. Rakhmonov, Z. Kh. & Khayrulloev, Sh. A., 2009, “The neibour zero of the Riemann’s zeta-function
16. laying on a critical line”, Doklady Akademii nauk Respubliki Tajikistan, vol. 52, no. 5, pp. 331 – 337.
17. Khayrulloev, Sh. A., 2010, “On the zeros of the Riemann zeta function on the critical line”, Bulletin of
18. the Tajik National University, pp. 35 – 40.
19. Karatsuba, A. A., 1985, “The distribution of zeros of the function 𝜁(1/2+𝑖𝑡)”, Math. USSR-Izv., vol. 25,
20. no. 3, pp. 519 – 529.
21. Karatsuba, A. A., 1996, “Density theorem and the behavior of the argument of the Riemann zeta
22. function”, Math. Notes, vol. 60, no. 3, pp. 333 – 334.
23. Khayrulloev, Sh. A., 2010, “On the functions of Hardy zeros and its derivatives lying on the critical
24. line”, Chebyshevskii Sb., vol. 20, Is. 4, pp. 335 -– 348.
25. Rakhmonov, Z. Kh. & Khayrulloev, Sh. A., 2006, “Distance between the next zeros of Riemann’s zetafunction
26. in the critical line”, Doklady Akademii nauk Respubliki Tajikistan, vol. 49, no. 5, pp. 393 – 400.
27. Khayrulloev, Sh. A., 2019, “Neighboring zeros of the 𝑛–th order derivative of the Hardy function”,
28. Doklady Akademii nauk Respubliki Tajikistan, vol. 62, no. 3 – 4, pp. 145 – 149.
29. Graham, S. W. & Kolesnik, G., 1991, “Van Der Corput’s Method of Exponential Sums”, Cambridge
30. University Press. Cambridge, New York, Port Chester, Melbourne, Sydney, 119 p.
Review
For citations:
Khayrulloev Sh.A. On real zeros of the derivative of the Hardy function. Chebyshevskii Sbornik. 2021;22(5):234-240. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-5-234-240