Preview

Chebyshevskii Sbornik

Advanced search

The number of primitive unassociated third-order matrices of a given determinant

https://doi.org/10.22405/2226-8383-2021-22-5-129-137

Abstract

When studying questions of the asymptotic distribution of integer points over domains on hyperboloids, as well as integer matrices of the second and third orders, it becomes necessary
to use primitive unassociated matrices of the second and third orders of a given determinant.
Counting the number of integer matrices of the same order and a given determinant requires the selection of pairwise unassociated matrices among them. Non-associated second-order matrices appear when considering preliminary ergodic theorems for flows of integer points on hyperboloids when applying the discrete ergodic method to the problem of representing integers by ternary quadratic forms. The number of unassociated second-order matrices is also used to express the number of binary quadratic forms, the arithmetic minimum of which is divisible. In addition, formulas for the number of primitive unassociated matrices of the second and third orders make it possible to determine the orders of the principal terms in asymptotic formulas for the number of integer matrices of large norm(determinant). In this paper, based on the canonical triangular form of the third-order integer matrices, a formula is obtained for the number of primitive unassociated third-order matrices represented by the canonical decomposition. A formula is also obtained for the number of primitive unassociated matrices of the third order of a given determinant, divisible by a given matrix. The main results related to the question of the number of non-associated integer matrices of a given determinant belong to Yu. V. Linnik, B. F. Skubenko, A.V. Malyshev and the authors of this work, the results of which can be further transferred to integer matrices of any order.

About the Authors

Rezuan Auesovich Dokhov
North Caucasus Center for Mathematical Research; North Caucasus Federal University (Stavropol)
Russian Federation

candidate of physical and mathematical sciences



Urusbi Mukhamedovich Pachev
Kabardino-Balkarian State University named after H. M. Berbekov (Nalchik); North Caucasus Center for Mathematical Research; North Caucasus Federal University (Stavropol)
Russian Federation

doctor of physical and mathematical sciences



References

1. Linnik, Y. V. 1967, “Ergodic properties of algebraic fields“, Leningrad, Leningrad University Press, 210 p.

2. Malyshev, A. V., & Pachev, U. M. 1982, “Arithmetic of second-order matrices“, J Math Sci, vol. 19, pp. 1096-1122, DOI: 10.1007/BF01085126.

3. Pachev, U. M. 1982, “Distribution of integral points on certain two-sheeted hyperboloids“ J Math Sci vol. 19, pp. 1122-1155, DOI: 10.1007/BF01085127.

4. Pachev, U. M. 2003, “On the number of reduced integer indefinite binary quadratic forms with the condition of divisibility of the first coefficients“, Chebyshevskij sbornik, vol. 4, no. 3, pp. 92- 105.

5. Pachev, U. M. 2006, “Representation of integers by isotropic ternary quadratic forms“, Izv. Math., vol. 70, no. 3, pp. 587-604, DOI: 10.4213/im676

6. Pachev, U. M. 2007, “On the asymptotics of the number of reduced integer binary quadratic forms with the condition of divisibility of the first coefficients“, Siberian Math. J., vol. 48, no. 2, pp. 300-310, DOI: 10.1007/s11202-007-0031-3

7. Pachev, U. M. 2015, “On the number of primitive unassociated matrices of the second order of the determinant n, divisible by a given matrix“, Vladikavkaz Mathematical Journal, vol. 17,

8. no. 2. pp. 62-67.

9. Pachev, U. M. 2008, “On the arithmetic of the ring of integer matrices of the 𝑛-th order“, Vladikavkaz Mathematical Journal, vol. 10, no. 1, pp. 75-78.

10. Pachev, U. M. & Dohov, R. A. 2019, “About primitive unassociated third-order matrix of a given determinant“, Materials of the XVII International Conference "Algebra, number Theory and Discrete Geometry: modern problems, applications and problems of history dedicated to the 100th anniversary of the birth of Professor N. I. Feldman and the 90th anniversary of the birth of Professors A. I. Vinogradov, A.V. Malyshev and B. F. Skubenko, Tula: Izdatel’stvo TGPU im. L.N. Tolstogo, pp. 121-123.

11. Linnik, Yu. V. & Skubenko, B. F. 1962, “The asymptotic behavior of third-order integralmatrices“, Sov. Math. Dokl., no. 3, pp. 1428-1430

12. Linnik, Yu. V.; Skubenko, B. F. 1964, “Asymptotic distribution of third-order integer matrices“, Vestnik Leningradskogo universiteta. Ser. Matematika. Mekhanika. Astronomiya, no. 13, pp. 26- 36.

13. Pachev, U. M., Shakova, T. A. 2019, “On the units of the quaternion order of an indefinite anisotropic ternary quadratic form“, Chebyshevskij sbornik, vol. 20, no. 4, pp. 270-280, DOI:

14. 22405/2226-8383-2018-20-4-270-280

15. Newman M. 1972, “Integral matrices“, New York: Academic Press, 244 p.

16. Venkov, B. A. 1952, “On the integral invariant of the group of unimodular linear substitutions“, Uchenye zapiski Leningradskogo universiteta, vol. 144, no. 23, pp. 3-25.

17. Vinogradov, I. M. 1981, “Elements of number theory“, Moscow: Nauka, 180 p.

18. Sidorov, S. V. 2016, “On similarity classes of second-order matrices with zero trace over the ring of integers“, Izvestiya vysshih uchebnyh zavedenij. Matematika, no. 4, pp. 79-86, DOI:

19. 3103/S1066369X16040101

20. Sidorov, S. V. 2009, “On the similarity of third-order matrices over the ring of integers having a reducible characteristic polynomial“, Vestn. NNGU.: Ser. matem. modelir. i optimal’noe

21. upravlenie, no. 1, pp. 119-127.


Review

For citations:


Dokhov R.A., Pachev U.M. The number of primitive unassociated third-order matrices of a given determinant. Chebyshevskii Sbornik. 2021;22(5):129-137. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-5-129-137

Views: 287


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)