Preview

Chebyshevskii Sbornik

Advanced search

Hidden markov models in the problem of detecting attacks on computer networks

https://doi.org/10.22405/2226-8383-2021-22-5-391-399

Abstract

The article deals with the problem of detecting attacks on computer networks. A method of proactive counteraction based on the use of detectors built in the form of hidden Markov models is proposed.

About the Author

Vyacheslav Leonidovich Tokarev
Tula State University
Russian Federation

doctor of technical sciences, professor





References

1. Bazrafshan, Z., Hashemi, H., Fard, S.M.H. and Hamzeh, A. (2013) A Survey on Heuristic Malware Detection Techniques. The 5th Conference on Information and Knowledge Technology

2. (IKT 2013), Shiraz, 28-30 May 2013, 113-120. http://dx.doi.org/10.1109/ikt.2013.6620049

3. Shelukhin O. I. Detection of intrusions into computer networks (network anomalies) / O. I. Shelukhin, D. Zh. Sakalema, A. S. Filinova-M.: Hotline-Telecom, 2013. - 220 p

4. Biryukov A. A. Information security: protection and attack. - Moscow: DMK Press, 2012. - 474 p.

5. Chris Kaspersky. Computer viruses inside and out. - SbP: Peter, 2006. - 526 p.

6. Tokarev V. L., Sychugov A. A. Detection of malicious software using immune detectors / / Izvestiya Tulskogo gosudarstvennogo universiteta. Technical sciences. Issue 10. Tula: TulSU

7. Publishing House, 2017. - pp.216-230.

8. Alqurashi, S. and Batarfi, O. A Comparison of Malware Detection Techniques Based on Hidden Markov Model. Journal of Information Security, 7, 215-223. http://dx.doi.org/10.4236/jis.2016.

9.

10. Frazzoli, Emilio. "Intro to Hidden Markov Models the Baum-Welch Algorithm". Aeronautics and Astronautics, Massachusetts Institute of Technology. Retrieved 2 October 2013.


Review

For citations:


Tokarev V.L. Hidden markov models in the problem of detecting attacks on computer networks. Chebyshevskii Sbornik. 2021;22(5):391-399. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-5-391-399

Views: 387


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)