Realization of focal singularities of integrable systems using billiard books with a Hooke potential field
https://doi.org/10.22405/2226-8383-2021-22-5-44-57
Abstract
Systems of particle motion in the Hooke central potential field on a billiard book glued from flat circular billiard domains are considered. An important class of nondegenerate focal
singularities of the rank 0 of integrable systems with 2 degrees of freedom is completely realized by this class of billiards. Namely, for each semi-local focal singularity the constructed billiard system has a singularity fiberwise homeomorphic to the given one.
About the Authors
Victoria Viktorovna VedyushkinaRussian Federation
doctor of physics and mathematics
Vladislav Alexandrovich Kibkalo
Russian Federation
candidate of physics and mathematics
Sergey Evgenievich Pustovoitov
Russian Federation
postgraduate student
References
1. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 3, 15–25; Moscow
2. University Mathematics Bulletin, 74:3 (2019), 98–107
3. A.V.Bolsinov, A.T.Fomenko. Integrable Hamiltonian systems. Geometry, topology, classification. Chapman & Hall/CRC, Boca Raton (2004).
4. V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Mat. Sb., 209:12 (2018), 17–56; Sb. Math., 209:12 (2018), 1690–1727
5. Vedyushkina V. V., Kibkalo V. A., Fomenko A. T. Topological modeling of integrable systems by billiards: Realization of numerical invariants // Doklady Mathematics. — 2020. — Vol. 102, no. 1. — P. 269–271
6. V. V. Vedyushkina, V. A. Kibkalo, “Realization of numeriсal invariant of the Siefert bundle of integrable systems by billiards”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 4, 22–28
7. V. V. Vedyushkina, I. S. Kharcheva, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems”, Mat. Sb., 212:8 (2021), 89–150; Sb. Math., 212:8 (2021),
8. –1179
9. Glutsyuk A., On polynomially integrable Birkhoff billiards on surfaces of constant curvature // Journal of the European Mathematical Society. 2021. 23, №3. 995–1049.
10. Bialy M., Mironov A.E., Algebraic non-integrability of magnetic billiards // J. Phys. A. 2016. 49, №45. 455101.
11. Kaloshin V., Sorrentino A., On the local Birkhoff conjecture for convex billiards // Ann. of Math. 2018. 188, №1. 315–380.
12. A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Izv. Akad. Nauk SSSR Ser. Mat.,
13. :3 (1990), 546–575; Math. USSR-Izv., 36:3 (1991), 567–596
14. Kibkalo V.A., Fomenko A.T., Kharcheva I.S., Realization of integrable Hamiltonial systems by billiard books// Transactions of the Moscow Mathematical Society, 2021, 80
15. I. S. Kharcheva, “Isoenergy manifolds of integrable billiard books”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 4, 12–22
16. Eliasson L.H., Normal forms for Hamiltonian systems with Poisson commuting integrals — elliptic case // Commentarii Mathematici Helvetici. 1990. 65. 4–35.
17. Zung N.T., Symplectic topology of integrable Hamiltonian systems. I: Arnold-Liouville with singularities. Compositio Math. 1996. 101, №2. 179–215.
18. Kibkalo V.A. “Billiards with potential model four-dimensional singularities of integrable systems”, Books of Abstracts Int. Sc. Conf. “Contemporary Problems of Mathematics and
19. Mechanics”. Moscow, 2019, vol. 2, pp. 563-566. (In Russ.)
20. Fomenko A.T., Kibkalo V.A., Saddle Singularities in Integrable Hamiltonian Systems: Examples and Algorithms // Contemp. Appr. Meth. in Fund. Math. Mech., Understanding Complex Systems, eds. V. A. Sadovnichiy, M. Z. Zgurovsky, Springer, Cham. 2021. 1–24.
21. I. F. Kobtsev, “Geodesic flow of a 2D ellipsoid in an elastic stress field: topological classification of solutions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 2, 27–33; Moscow University Mathematics Bulletin, 73:2 (2018), 64–70
22. S. E. Pustovoytov, “Topological analysis of a billiard in elliptic ring in a potential field”, Fundam. Prikl. Mat., 22:6 (2019), 201–225
23. S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Mat. Sb., 212:2 (2021), 81–105; Sb. Math., 212:2 (2021), 211–233
24. Vedyushkina V.V., Integrable billiards on CW-complexes and integrable Hamiltonian systems, Habilitation thesis (Dr. of Phys. Math.). Moscow. MSU. 2020
25. Lazutkin V., KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer, Berlin. 1993.
26. Bolsinov A., Izosimov A., Smooth invariants of focus-focus singularities and obstructions to product decomposition, J. of Symplectic Geom., 17:6 (2019), 1613–1648.
27. S. V˜u Ngo. c, On semi-global invariants for focus-focus singularities. Topology 42 (2003), 365– 380.
28. A. Pelayo, S. V˜u Ngo. c, Semitoric integrable systems on symplectic 4-manifolds. Invent. Math. 177 (2009), 571–597.
29. A. A. Oshemkov, “Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems”, Sb. Math., 201:8 (2010), 1153–1191
30. Kozlov I.K., Oshemkov A.A., Classification of saddle-focus singularities. Chebyshevskii Sbornik. 21:2 (2020), 228–243. (In Russ.)
Review
For citations:
Vedyushkina V.V., Kibkalo V.A., Pustovoitov S.E. Realization of focal singularities of integrable systems using billiard books with a Hooke potential field. Chebyshevskii Sbornik. 2021;22(5):44-57. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-5-44-57