Preview

Chebyshevskii Sbornik

Advanced search

Realization of focal singularities of integrable systems using billiard books with a Hooke potential field

https://doi.org/10.22405/2226-8383-2021-22-5-44-57

Abstract

Systems of particle motion in the Hooke central potential field on a billiard book glued from flat circular billiard domains are considered. An important class of nondegenerate focal
singularities of the rank 0 of integrable systems with 2 degrees of freedom is completely realized by this class of billiards. Namely, for each semi-local focal singularity the constructed billiard system has a singularity fiberwise homeomorphic to the given one.

About the Authors

Victoria Viktorovna Vedyushkina
Lomonosov Moscow State University
Russian Federation

doctor of physics and mathematics



Vladislav Alexandrovich Kibkalo
Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics
Russian Federation

candidate of physics and mathematics



Sergey Evgenievich Pustovoitov
Lomonosov Moscow State University
Russian Federation

postgraduate student



References

1. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 3, 15–25; Moscow

2. University Mathematics Bulletin, 74:3 (2019), 98–107

3. A.V.Bolsinov, A.T.Fomenko. Integrable Hamiltonian systems. Geometry, topology, classification. Chapman & Hall/CRC, Boca Raton (2004).

4. V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Mat. Sb., 209:12 (2018), 17–56; Sb. Math., 209:12 (2018), 1690–1727

5. Vedyushkina V. V., Kibkalo V. A., Fomenko A. T. Topological modeling of integrable systems by billiards: Realization of numerical invariants // Doklady Mathematics. — 2020. — Vol. 102, no. 1. — P. 269–271

6. V. V. Vedyushkina, V. A. Kibkalo, “Realization of numeriсal invariant of the Siefert bundle of integrable systems by billiards”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 4, 22–28

7. V. V. Vedyushkina, I. S. Kharcheva, “Billiard books realize all bases of Liouville foliations of integrable Hamiltonian systems”, Mat. Sb., 212:8 (2021), 89–150; Sb. Math., 212:8 (2021),

8. –1179

9. Glutsyuk A., On polynomially integrable Birkhoff billiards on surfaces of constant curvature // Journal of the European Mathematical Society. 2021. 23, №3. 995–1049.

10. Bialy M., Mironov A.E., Algebraic non-integrability of magnetic billiards // J. Phys. A. 2016. 49, №45. 455101.

11. Kaloshin V., Sorrentino A., On the local Birkhoff conjecture for convex billiards // Ann. of Math. 2018. 188, №1. 315–380.

12. A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Izv. Akad. Nauk SSSR Ser. Mat.,

13. :3 (1990), 546–575; Math. USSR-Izv., 36:3 (1991), 567–596

14. Kibkalo V.A., Fomenko A.T., Kharcheva I.S., Realization of integrable Hamiltonial systems by billiard books// Transactions of the Moscow Mathematical Society, 2021, 80

15. I. S. Kharcheva, “Isoenergy manifolds of integrable billiard books”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 4, 12–22

16. Eliasson L.H., Normal forms for Hamiltonian systems with Poisson commuting integrals — elliptic case // Commentarii Mathematici Helvetici. 1990. 65. 4–35.

17. Zung N.T., Symplectic topology of integrable Hamiltonian systems. I: Arnold-Liouville with singularities. Compositio Math. 1996. 101, №2. 179–215.

18. Kibkalo V.A. “Billiards with potential model four-dimensional singularities of integrable systems”, Books of Abstracts Int. Sc. Conf. “Contemporary Problems of Mathematics and

19. Mechanics”. Moscow, 2019, vol. 2, pp. 563-566. (In Russ.)

20. Fomenko A.T., Kibkalo V.A., Saddle Singularities in Integrable Hamiltonian Systems: Examples and Algorithms // Contemp. Appr. Meth. in Fund. Math. Mech., Understanding Complex Systems, eds. V. A. Sadovnichiy, M. Z. Zgurovsky, Springer, Cham. 2021. 1–24.

21. I. F. Kobtsev, “Geodesic flow of a 2D ellipsoid in an elastic stress field: topological classification of solutions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 2, 27–33; Moscow University Mathematics Bulletin, 73:2 (2018), 64–70

22. S. E. Pustovoytov, “Topological analysis of a billiard in elliptic ring in a potential field”, Fundam. Prikl. Mat., 22:6 (2019), 201–225

23. S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Mat. Sb., 212:2 (2021), 81–105; Sb. Math., 212:2 (2021), 211–233

24. Vedyushkina V.V., Integrable billiards on CW-complexes and integrable Hamiltonian systems, Habilitation thesis (Dr. of Phys. Math.). Moscow. MSU. 2020

25. Lazutkin V., KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer, Berlin. 1993.

26. Bolsinov A., Izosimov A., Smooth invariants of focus-focus singularities and obstructions to product decomposition, J. of Symplectic Geom., 17:6 (2019), 1613–1648.

27. S. V˜u Ngo. c, On semi-global invariants for focus-focus singularities. Topology 42 (2003), 365– 380.

28. A. Pelayo, S. V˜u Ngo. c, Semitoric integrable systems on symplectic 4-manifolds. Invent. Math. 177 (2009), 571–597.

29. A. A. Oshemkov, “Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems”, Sb. Math., 201:8 (2010), 1153–1191

30. Kozlov I.K., Oshemkov A.A., Classification of saddle-focus singularities. Chebyshevskii Sbornik. 21:2 (2020), 228–243. (In Russ.)


Review

For citations:


Vedyushkina V.V., Kibkalo V.A., Pustovoitov S.E. Realization of focal singularities of integrable systems using billiard books with a Hooke potential field. Chebyshevskii Sbornik. 2021;22(5):44-57. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-5-44-57

Views: 286


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)