Ball’s lemma as an exercise
https://doi.org/10.22405/2226-8383-2021-22-3-464-466
Abstract
We suggest an extremely short proof of Ball’s lemma by means of harmonic analysis only.
About the Author
Elijah Rafailovich LiflyandRussian Federation
department of mathematics
References
1. K. I. Babenko, 1961, "An inequality in the theory of Fourier integral" , Izv. Akad. Nauk SSSR
2. Ser. Mat. vol. 25, 531–542 (Russian).
3. K. Ball, 1986, "Cube slicing in Rn" , Proc. Amer. Math. Soc. vol. 97, 465–473.
4. W. Beckner, 1975, "Inequalities in Fourier analysis" , Ann. Math. vol. 102, 159–182.
5. S. Bochner, 1959. Lectures on Fourier Integrals, Princeton Univ. Press, Princeton, N. J.
6. B. Makarov and A. Podkorytov, 2013. Real Analysis: Measures, Integrals and Applications, Springer
Review
For citations:
Liflyand E.R. Ball’s lemma as an exercise. Chebyshevskii Sbornik. 2021;22(3):464-466. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-464-466