Preview

Chebyshevskii Sbornik

Advanced search

Ball’s lemma as an exercise

https://doi.org/10.22405/2226-8383-2021-22-3-464-466

Abstract

We suggest an extremely short proof of Ball’s lemma by means of harmonic analysis only.

About the Author

Elijah Rafailovich Liflyand
Bar-Ilan University
Russian Federation

department of mathematics



References

1. K. I. Babenko, 1961, "An inequality in the theory of Fourier integral" , Izv. Akad. Nauk SSSR

2. Ser. Mat. vol. 25, 531–542 (Russian).

3. K. Ball, 1986, "Cube slicing in Rn" , Proc. Amer. Math. Soc. vol. 97, 465–473.

4. W. Beckner, 1975, "Inequalities in Fourier analysis" , Ann. Math. vol. 102, 159–182.

5. S. Bochner, 1959. Lectures on Fourier Integrals, Princeton Univ. Press, Princeton, N. J.

6. B. Makarov and A. Podkorytov, 2013. Real Analysis: Measures, Integrals and Applications, Springer


Review

For citations:


Liflyand E.R. Ball’s lemma as an exercise. Chebyshevskii Sbornik. 2021;22(3):464-466. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-464-466

Views: 277


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)