From the algebraic methods of Diophantus–Fermats–Euler to the arithmetic of algebraic curves: about the history of diophantine equations after Euler
https://doi.org/10.22405/2226-8383-2021-22-3-383-404
Abstract
Talking about the Diophantine analysis’ history, namely, the problem of rational solutions of Diophantine equations, we should note the longevity of the algebraic approach, which goes
back to Diophantus’ “Arithmetica”. Indeed, after the European mathematicians of the second half of the XVI century became acquainted with Diophantus’ oeuvre, algebraic apparatus
of variable changes, substitutions and transformations turned into the main tool of finding rational solutions of Diophantine equations. Despite the limitations of this apparatus, there were
obtained important results on rational solutions of quadratic, cubic and quartic indeterminate equations in two unknowns. Detailed historico-mathematical analysis of these results was done, inter alia, by I. G. Bashmakova and her pupils. The paper examines the departure from this algebraic treatment of Diophantine equations, typical for most of the research up to the end of XIX century, towards a more general viewpoint on this subject, characterized also by radical expansion of the tools used in the Diophantine equations’ investigations. The works
of A. L. Cauchy, C. G. J. Jacobi and ´E. Lucas, where this more general approach was developed, are analyzed. Special attention is paid to the works of J. J. Sylvester on Diophantine equations
and the paper “On the Theory of Rational Derivation on a Cubic Curve” by W. Story, which were not in the focus of the research on history of the Diophantine analysis and where apparatus
of algebraic curves was used in a pioneering way.
About the Authors
Tatiana Alekseevna LavrinenkoRussian Federation
candidate of physical and mathematical sciences
Aleksei Aleksandrovich Belyaev
Russian Federation
candidate of physical and mathematical sciences
References
1. Poincar´e, J. H. 1901, “Sur les propri´et´es arithm´etiques des courbes alg´ebriques”, Journal de math´ematiques pures et appliq´ees, 5e s´erie, 7, pp. 161–233.
2. Bashmakova, I. G. & Slavutin, E. I. 1984, History of Diophantine Analysis from Diophantus to Fermat, Nauka, Moscow (reprint. 2015, LENAND, Moscow) (in Russian)
3. Hofmann, J. E. 1961, “ ¨Uber zahlentheoretische Methoden Fermats und Eulers, ihre Zusammenh ¨ange und ihre Bedeutung”, Archive for History of Exact Sciences, vol. 1, pp. 122–159.
4. Weil, A. 1983, Number Theory. An Approach through History: from Hammurapi to Legendre, Birkh¨auser, Boston, etc. (reprint. 2007, Birkh¨auser, Boston).
5. Lavrinenko, T. A. 1984, Indeterminate equations in the works of L. Euler and mathematicians of the 19th century. Dissertation, Moscow, 166 p. (in Russian)
6. Lavrinenko, T. A. 1988, “Diophantine Equations in L. Euler’s Works”, in The Development of Leonard Euler’s Ideas and Modern Science, Nauka, Moscow, pp. 153–165 (in Russian).
7. Euler, L. 1770, Vollst¨andige Anleitung zur Algebra, Zweyter Teil, Petersbourg (reprint. 1959, Stuttgart); 1911, Leonhardi Euleri Opera omnia, ser.1, vol. 1, Lipsiae et Berolini, pp. 209–498.
8. Euler, L. 1862, Opera postuma mathematica et physica, Vol. 1, Petropoli.
9. Lavrinenko, T. A. 1986, “Reconstructions of methods for obtaining four formulas from unpublished Euler manuscripts on Diophantine analysis”, Istoriya i metodologiya estestvennih nauk, vol. XXXII, pp. 111–120 (in Russian).
10. Lavrinenko, T. A. 1983, “Solving of Indeterminate Equations of Third and Fourth Degrees in the Late Euler’s Works”, Istoriko-Matematicheskie Issledovaniya, vol. 27, pp. 67–79 (in Russian).
11. Lagrange, J. L. 1777, “Sur quelques probl`emes de l’analyse de Diophante”, Nouveaux m´emoires de l’Acad´emy royale des sciences, et belles-lettres de Berlin, 1777; Lagrange, J. L. 1869, Oeuvres, vol. 4, Gauthiers-Villars, Paris, pp. 377–398.
12. Lavrinenko, T. A. 1985, “On Methods of Solving Indeterminate Equations in Rational Numbers in the 18th-19th centuries”, Istoriko-Matematicheskie Issledovaniya, vol. 28, pp. 202–223 (in Russian).
13. Cauchy, A.–L. 1826, Exercices de math´ematiques, Paris; Cauchy, A.–L., 1887, Ouevres compl`etes (II) 6, Paris, pp. 286–315.
14. Jacobi, C. G. J. 1835, “De usu theoriae integralium ellipticorum et integralium abelianorum in analysi diophantea”, J. reine angew. Math., vol. 13, pp. 353–355; Jacobi C. 1882, Gesammelte Werke, Bd. 2, Berlin, S. 53–55.
15. Bashmakova, I. G. 1975, “Arithmetic of algebraic curves (from Diophantus to Poincar´e)”, Istoriko-Matematicheskie Issledovaniya, vol. 20, pp. 104–124 (in Russian); Bashmakova, I. G., 1981, “Arithmetic of algebraic curves from Diophantus to Poincar´e”, Historia Mathematica, vol. 8, no. 4, pp. 393–416 (in English).
16. Newton, I. 1971, The Mathematical Papers of Isaac Newton, vol.4, Whiteside, D. T. (ed.), Cambridge.
17. Sylvester, J. J. 1847, “An Account of a Discovery in the Theory of Numbers Relative to the Equation 𝐴𝑥3 + 𝐵𝑦3 + 𝐶𝑧3 = 𝐷𝑥𝑦𝑧”, Philosophical Magazine, 31, pp. 189–191; Sylvester, J. J.
18. , Collected Mathematical Papers, 1, Cambridge University Press, Cambridge, pp. 107–109.
19. Sylvester, J. J. 1847, “On the Equation in Numbers 𝐴𝑥3+𝐵𝑦3+𝐶𝑧3 = 𝐷𝑥𝑦𝑧, and Its Associate System of Equations, Phil. Mag., 31, pp. 293–296; Sylvester, J. J. 1904, Collected Mathematical Papers, 1, Cambridge University Press, Cambridge, pp. 110–113.
20. Sylvester, J. J. 1847, “On the General Solution (in Certain Cases) of the Equation 𝑥3+𝑦3+𝐴𝑧3 = 𝑀𝑥𝑦𝑧 &𝑐.”, Phil. Mag., 31, pp. 467–471; Sylvester, J. J. 1904, Collected Mathematical Papers, 1, Cambridge University Press, Cambridge, pp. 114–118.
21. Sylvester, J. J. 1856, “Recherches sur les solutions en nombres entiers positifs ou n´egatifs de l’´equation cubique homog`ene `a trois variables”, Annali di scienze matematiche e fisiche, 7, pp. 398–400; Sylvester, J. J. 1908, Collected Mathematical Papers, 2, Cambridge University Press,
22. Cambridge, pp. 63–64.
23. Sylvester, J. J. 1858, “Note on the Algebraical Theory of Derivative Points of Curves of the Third Degree”, Phil. Mag., 16, pp. 116–119; Sylvester, J. J. 1908, Collected Mathematical Papers, 2, Cambridge University Press, Cambridge, pp. 107–109.
24. Parshall, K. H. 1998, James Joseph Sylvester: Life and Work in Letter, Oxford University Press, Oxford.
25. Sylvester, J. J. 1879/80, “On Certain Ternary Cubic-Form Equations”, Amer. J. Math., 2, pp. 280–285 and 357–393; 3, pp. 58–88 and 179–189; Sylvester, J. J., Collected Mathematical Papers, 3, Cambridge University Press, Cambridge, pp. 312–391.
26. Lucas, ´E. 1878, “Sur l’analyse ind´etermin´ee du troisi`eme degr´e et sur la question 802 (Sylvester)”, Nouv. ann. math., 2e s´erie, 17, pp. 507–514.
27. Lavrinenko, T. A. 2002, “Solving an Indeterminate Third Degree Equation in Rational Numbers. Sylvester and Lucas”, Revue d’Histoire des Math´ematiques (Soci´et´e Math´ematique de France), t.8, no. 1, pp. 67–111.
28. Lavrinenko T. A. & Михно Г. А., 2014, “On the introduction of a group structure on a cubic and solving Diophantine equations”, Vestnik TvGU. Seriya: Prikladnaya matematika, no. 4,
29. pp. 95–104 (in Russian).
30. Parshall, K. H. & Rowe, D. E. 1994, The Emergence of the American Mathematical Research Community 1876-1900: J. J. Sylvester, Felix Klein, and E. H. Moore, American Mathematical
31. Society, Providence.
32. Cooke, R. & Rickey, V. F. 1989, “W. E.Story of Hopkins and Clark”, in Duren (Peter) et al., eds., A Century of Mathematics in America – Part III, American Mathematical Society, Providence,
33. pp. 29–76.
34. Story, W. E. 1880, “On the Theory of Rational Derivation on a Cubic Curve”, Amer. J. Math., 3, pp. 356–387.
35. Clebsch, R. F. A. 1864, “ ¨Uber einen Satz von Steiner und einige Punkte der Theorie der Curven dritter Ordnung”, Journal f¨ur die reine und angewandte Mathematik, vol. 63, pp. 94–121.
36. Hilbert D. & Hurwitz A. 1890, “ ¨Uber die diophantischen Gleichungen vom Geschlecht Null”, Acta Mathematica, V. 14, P. 217–224.
37. Noether M. 1884, “Rationale Ausf¨uhrung der Operationen in der Theorie der algebraischen Funktionen”, Math. Annalen, 23, S. 311–358.
38. Dickson, L. E. 1920, History of the Theory of Numbers, vol.2: Diophantine Analysis, Carnegie Institute of Washington, Washington (reprint. 1971, Chelsea, New York).
Review
For citations:
Lavrinenko T.A., Belyaev A.A. From the algebraic methods of Diophantus–Fermats–Euler to the arithmetic of algebraic curves: about the history of diophantine equations after Euler. Chebyshevskii Sbornik. 2021;22(3):383-404. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-383-404