Preview

Chebyshevskii Sbornik

Advanced search

About application of number-theoretic grids in problems of acoustics

https://doi.org/10.22405/2226-8383-2021-22-3-368-382

Abstract

The article discusses spherical diffraction problem monochromatic sound wave absolutely rigid sphere. To represent the scattered field, a representation in the form of a Kirchhoff integral is used. This leads to the need to solve the Fredholm integral equation of the second kind to determine the velocity potential in the scattered wave on the surface of the scatterer. It is shown that the use of quadrature formulas based on number-theoretic grids allows you to reduce the number of calculations for the approximate calculation of integrals, when solving the integral equation and when calculating the scattered field on the surface of the sphere and in the far field. This method was compared with the simple cell method, which takes into account the mechanical formulation of the problem and has the same order of accuracy. Estimation of the accuracy of calculating the pressure on the surface of the sphere and the form-function of the scattered field based on the solution of the integral equation was carried out by comparison with the analytical solution based on the expansion in spherical wave functions.

About the Authors

Nikolai Nikolaevich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University, Tula State University
Russian Federation

candidate of physical and mathematical sciences



Sergey Alekseevich Skobel’tsyn
Tula State University
Russian Federation

candidate of physical and mathematical sciences, associate
professor



Lev Alekseevich Tolokonnikov
Tula State University
Russian Federation

doctor of physical and mathematical sciences, professor



Nikolai Vladimirovich Larin
Tula State University
Russian Federation

candidate of physical and mathematical sciences



References

1. S. M. Rao, 2011, “An iterative method to solve acoustic scattering problems using a boundary integral equation”, J. Acoust. Soc. Am. vol. 130, issue 4, pp. 1792–1798.

2. J. A. Fawcett, 2014, “Scattering from a finite cylinder near an interface”, J. Acoust. Soc. Am. vol. 136, issue 2, pp. 485–493.

3. A. M. A. Alsnayyan, J. Li, S. Hughey, A. Diaz and B. Shanker, 2020, “Efficient isogeometric boundary element method for analysis of acoustic scattering from rigid bodies”, J. Acoust. Soc.

4. Am. vol. 147, issue 5, pp. 3275–3284.

5. E. L. Shenderov, 1989, Sound emission and scattering, [Izluchenie i rasseianie zvuka], Leningrad, Shipbuilding.

6. E. L. Shenderov, 1972, Wave problems of hydroacoustics, [Volnovye zadachi gidroakustiki], Leningrad, Shipbuilding.

7. N. N. Kalitkin, 1978, Numerical methods [CHislennye metody], Moscow, Nauka.

8. E. A. Ivanov, 1968, Diffraction of electromagnetic waves on two bodies, [Difrakciya elektromagnitnyh voln na dvuh telah], Minsk: Science and Technology.

9. I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovol’skii, M. N. Dobrovol’skii, N. M. Dobrovol’skii, 2018, “On classical number-theoretic nets”, Chebyshevskii sbornik, vol. 19, no. 4, pp. 118—176.

10. N. M. Korobov, 1961, “Application of number-theoretical sieves to integral equations and interpolation formulas”, Collection of articles. To the 60th anniversary of academician Mikhail Alekseevich Lavrent’ev, Trudy Mat. Inst. Steklov., vol. 60, pp. 195—210.

11. Yu. N. Shakhov, 1961, “The approximate solution of Volterra equations of the second kind by the method of iterations”, Dokl. Akad. Nauk SSSR, vol. 136, issue 6, pp. 1302–1305.

12. M. Z. Ge¸cmen, E. ¸ Celik, 2021, “Numerical solution of Volterra–Fredholm integral equations with Hosoya polynomials”, Math Meth Appl Sci., vol. 44, pp. 11166–11173.

13. W. Shatanawi, N. Mlaiki, D. Rizk, et al., 2021, “Fredholm-type integral equation in controlled metric-like spaces”, Adv Differ Equ, 358 (2021).

14. S. C. Buranay, M. A. ¨ Ozarslan, S. S. Falahhesar, 2021, “Numerical Solution of the Fredholm and Volterra Integral Equations by Using Modified Bernstein–Kantorovich Operators”, Mathematics, 9, 1193.

15. V. A. Bykovskii, 1988, “Discrete Fourier transform and cyclic convolution on integral lattices”, Dokl. Akad. Nauk SSSR, 302:1, pp. 11–13.

16. Yu. Kolomoitsev, J. Prestin, 2021, “Approximation properties of periodic multivariate quasiinterpolation operators”, Journal of Approximation Theory, vol. 270, 105631.

17. P. Dencker, W. Erb, Yu. Kolomoitsev, T. Lomako, 2017, “Lebesgue constants for polyhedral sets and polynomial interpolation on Lissajous–Chebyshev nodes”, Journal of Complexity, vol. 43, pp. 1-27.

18. N. N. Dobrovol’skii, 2007, “Discrepancy of two-dimensional Smolyak grids”, Chebyshevskii sbornik, vol 8, no 1, pp. 110—152

19. N. M. Korobov, 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], 2nd ed., MTSNMO, Moscow, Russia.

20. N. M. Dobrovol’skii, A. R. Yesayan, O. V. Andreeva, N. V. Zaitseva, 2004, “Multidimensional number-theoretic Fourier interpolation” [Mnogomernaya teoretiko-chislovaya Fur’e

21. interpolyaciya], Chebyshevskii sbornik, vol 5, no 1, pp. 122—143


Review

For citations:


Dobrovol’skii N.N., Skobel’tsyn S.A., Tolokonnikov L.A., Larin N.V. About application of number-theoretic grids in problems of acoustics. Chebyshevskii Sbornik. 2021;22(3):368-382. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-368-382

Views: 319


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)