Preview

Chebyshevskii Sbornik

Advanced search

The integral formula in problems of the stability of inhomogeneous rods

https://doi.org/10.22405/2226-8383-2021-22-3-345-352

Abstract

A heterogeneous in length bar with a variable cross-section is considered. The bar is compressed by a variable longitudinal force which is distributed along its axis. The article describes the case of stability loss of the straight form of equilibrium of a bar, when both, linear and curved forms are possible. The critical combination of rigidity and longitudinal force is the result of an integral representation for the solution of the given stability equation with variable coefficients by the aid of the solution of similar equation but with constant coefficients. The integral representation includes the Green function of the given equation which can be obtained by the method of perturbations. The example of compiling of the equation for critical loading
is reduced.

About the Authors

Vladimir Ivanovich Gorbachev
Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences, professor



Alexey Anatol’evich Ruban
Lomonosov Moscow State University
Russian Federation

postgraduate student



References

1. Feodos’ev V. I. Soprotivlenie materialov, M.: Nauka, 1979. 560 s.

2. Timoshenko S.P. Soprotivlenie materialov. CHast’ 2, M.: 1956. 470 s.

3. Dinnik A. N. Ustojchivost’ uprugih sistem, M.: ONTI, 1935. 183 s.

4. Mikeladze SH. E. Novye metody integrirovaniya differencial’nyh uravnenij, M.-L.: GITTL, 1951. 291 s.

5. Kolatc L. Zadachi na sobstvennye znacheniya, M.: Nauka, 1968. 503 s.

6. Timoshenko S.P. Soprotivlenie materialov. CHast’ 2, M.: 1956. 470 s.

7. Bahvalov N. S., Panasenko G.P. Osrednennie processov v periodicheskih sredah. M.: Nauka, 1984. 352 s.

8. Pobedrya B. E. Mekhanika kompozicionnyh materialov. M.: Izd-vo MGU, 1984. 336 s.

9. Gorbachev V. I., Moskalenko O. B. Gorbachev V. I., Moskalenko O. B. Stability of bars with variable rigidity, Moscow University Mechanics Bulletin. — 2010. — Vol. 65, no. 6. — P. 147–150.

10. Gorbachev V. I., Moskalenko O. B. Stability of a straight bar of variable rigidity, Mechanics of Solids. — 2011. — Vol. 46, no. 4. — P. 645–655.

11. Gorbachev V. I. Metod tenzorov Grina dlya resheniya kraevyh zadach teorii uprugosti neodnorodnyh sred, Vychislitel’naya mekhanika deformiruemogo tverdogo tela. 1991. № 2. 61– 76.

12. Gorbachev V. I., Moskalenko O. B. Stability of bars with variable rigidity compressed by a distributed force, — 2012. — Vol. 67, no. 1. — P. 5–10.

13. Kech V., Teodoresku P. Vvedenie v teoriyu obobshchennyh funkcij s prilozheniyami v tekhnike. M: Mir, 1978. 518 s.


Review

For citations:


Gorbachev V.I., Ruban A.A. The integral formula in problems of the stability of inhomogeneous rods. Chebyshevskii Sbornik. 2021;22(3):345-352. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-345-352

Views: 306


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)