On the development of nonlinear integral equations at the early stage and the contribution of domestic mathematics
https://doi.org/10.22405/2226-8383-2021-22-3-311-344
Abstract
The paper considers the preconditions and the origin of the theory of nonlinear integral equations. The appearance of this theory was a natural consequence of the development of all
mathematics of the XVIII-XIX cc. At the same time, the growing interest in nonlinear problems in the late XIX and early XX centuries had a strong motivating effect. The direct investigation
of specific nonlinear integral equations was triggered by an urgent applied problem on the equilibrium figures of rotating liquid masses, which has attracted a significant number of major
mathematicians since Newton. In the first decades of the development of the theory of nonlinear integral equations, traditional approaches were cultivated, which were used to study differential and algebraic equations, according to the equation-solution scheme. That is, the foreground was the calculation and assessment of its accuracy. The complexity and originality of nonlinear problems immediately revealed the relevance of questions of the existence and uniqueness of their solutions, which made it necessary to involve other, just emerging areas of mathematics. The theory of integral equations in general was one of the origins of functional analysis. Moreover, both theories were closely intertwined and mutually stimulated each other in their evolution. This fully applies to nonlinear integral equations, for which qualitative methods have become of paramount importance. At the stage considered in this work, there was a parallel development and mixing of traditional methods for studying equations and new approaches of a qualitative
nature. In the next phase, new approaches came to the fore, merging with functional analysis and topology.
About the Authors
Egor Mikhailovich BogatovRussian Federation
candidate of physical and mathematical sciences
Ravil’ Rafkatovich Mukhin
Russian Federation
doctor of physical and mathematical sciences
References
1. Abel, N.H. 1823, “Solution de quelques probl`emes `a l’aide d’int´egrales d´efinies”, Magazin Naturvidensk., vol. 1, pp. 55–68. Abel, N.H. 1823, “Solution de quelques probl`emes `a l’aide
2. d’int´egrales d´efinies”, Magazin Naturvidensk., vol. 1, pp. 55–68.
3. Archibald, T. 1996, “From attraction theory to existence proofs: the evolution of potentialtheoretic methods in the study of boundary-value problems, 1860-1890”, Revue d’histoire des
4. math., vol. 2, no. 1, pp. 67-93.
5. Akhmedov, K. T. 1957, “The analytic method of Nekrasov–Nazarov in non-linear analysis”, Uspekhi Mat. Nauk, vol. 12:4, no.76, pp. 135–153.
6. Bakhtin, I.A., Krasnosel’skii M. A. 1955, “On the problem of longitudinal bending of a rod of variable stiffness“, Moscow, Dokl. Akad. Nauk SSSR, Vol. 105 (4), pp. 621-624.
7. Bogatov, E.M. 2020, “On the history of the positive (1900s-1960s) and the contribution of M.A. Krasnosel’skii”, Scientific bulletin of BelSU. Ser. Appl. Mat., Phys., vol. 52, no. 2, pp. 105-127.
8. Bogatov, E.M., Mukhin, R.R. 2016, “ About the history of nonlinear integral equations”, Izvestiya VUZ. Applied nonlinear dynamics, Vol. 24 (2), pp. 77-114.
9. Bogatov, E.M., Mukhin, R.R., 2020, “On the early history of nonlinear integral equations”, Algebra, number theory and discrete geometry: modern problems, applications and problems
10. of history. Materials XVII Int. conf., Tula, TGPU im. L.N. Tolstogo, pp. 321-325.
11. Banach, S. 1922, “Sur les op´erations dans les ensembles abstraits et leur application aux ´equations integrals“, Fund. Math. Vol. 3, pp. 133—181.
12. Bateman, H. 1910, “Report on the history and present state of the theory of integral equations”, British Ass. for the Adv. of Sci., Vol. 80, pp. 345-424.
13. Bˆocher, M. 1909, An introduction to the study of integral equations, The University Press, Cambridge, 78 p.
14. Vainberg, M. M., Trenogin, V. A. 1962, “The methods of Lyapunov and Schmidt in the theory of non-linear equations and their further development”, Russian Math. Surveys, Vol.
15. :2, pp. 1–60.
16. Weyl, H. 1944, “David Hilbert and his mathematical work”, Bull. Amer. Math. Soc., Vol. 50, Iss. 9, pp. 612-654.
17. Villat, H. 1911, “Sur la r´esistance des fluides”, Ann. Sci. ´ Ec. Norm. Sup´er, Vol. 28, pp. 203-311.
18. Volterra, V. 1896, “Sulla inversione degli integrali definiti”, Tip. della R. Accademia dei Lincei, Vol. 5, pp. 177-185.
19. Volterra, V. 1897, “Sopra alcune questioni di inversione di integrali definiti”, Ann. Mat. Pura Appl. Vol. 25, pp. 139-178.
20. Volterra, V. 1884, “Sopra un problema di elettrostatica”, Nuovo Cimento, Vol. XVI, pp. 49-57.
21. Volterra, V. 1913, Lecons sur les ´equations int´egrales et les ´equations int´egro-differentielles. Gauthier Villars, Paris, 180 p.
22. Hammerstein, A. 1930, “Nichtlineare Integralgleichungen nebst Anwendungen”, Acta math., Vol. 54, pp. 117–176.
23. Hilbert, D. 1912, Grundziige einer allgemeinen Theorie der linearen Integralgieichimgen, B. G. Teubner, Leipzig, Berlin, 320 p.
24. Golomb, M. 1935, “ Zur Theorie der nichtlinearen Integralgleichungen, Integralgleichungssysteme
25. und allgemeinen Funktionalgleichungen”, Math. Zeitschrift, Vol. 39, pp. 45-75.
26. Golomb, M. (1934) Review of the article “Hammerstein, A. Nichtlineare Integralgleichungen nebst Anwendungen“. Jahrbuch Database Available at: http://www.zentralblatt-math.org/
27. jahrbuch/?id=66165\&type=pdf (accessed 19 October 2020)
28. Golubitsky, M., Schaeffer, D. G. 1985, Singularities and Groups in Bifurcation Theory, Vol. I. Springer, New York, 475 p.
29. Dieudonn´e J.1981, History of functional analysis, North-Holland publishing company, Amsterdam, 316 p.
30. Du Bois-Reymond, P.1888, “ Bemerkungen ¨uber Δ𝑧 = 0”, J. Reine Angew. Math., Vol. 103, pp. 204-229.
31. Idelson, N.I. 1947, “Comments to the book by A. Clairaut "Theory of the Earth’s Figure“’, in Teorija figury Zemli, osnovannaja na nachalah gidrostatiki [The theory of the figure of the Earth, based on the principles of hydrostatics], Izd-vo Akademii Nauk SSSR, Moscow, pp. 260-355.
32. Iurato, G. 2014, “The dawning of the theory of equilibrium figures: a brief historical account from the 17th through the 20th century”, History and Philosophy of Physics, Available at
33. https://arxiv.org/abs/1409.3858v2.
34. Clairaut, A. C. 1743, Th´eorie de la figure de la terre: tir´ee des principes de l’hydrostatique, chez David Fils, libraire, Vol. 668, 305 p.
35. Clairaut, A. 1947, Teorija figury Zemli, osnovannaja na nachalah gidrostatiki [The theory of the figure of the Earth, based on the principles of hydrostatics], Izd-vo Akademii Nauk SSSR, Moscow, 364 p.
36. Koch, H. von. 1899, “Sur les fonctions implicites d´efinies par une infinit´e d’´equations simultan´ees”, Bull. Soc. Math. Fr., Vol. 27, pp. 215-227.
37. Krasnosel’skii, M. A. 1964, Positive solutions of operator equations, Noordhoff, Groningen, 381 p.
38. Laplace, P. 1802, Trait´e de m´ecanique c´eleste, Livre III. Duprat, Paris, 382 p.
39. Levi-Civita, T. 1907, “Sulla resistenza d’attrito”, Rendiconti del Circolo matematico di Palermo, Vol. 23 (1), pp. 1-37.
40. Leray, J. 1933, “ ´Etude de diverses ´equations int´egrales non lin´eaires et de quelques probl`emes que pose l’Hydrodynamique”, J. Math. Pures Appl, Vol. 12, pp.1-82.
41. Leray J. 1934, “Sur le mouvement d’un liquide visqueux emplissant l’espace”, Acta math., Vol. 63, pp. 193-248.
42. Leray, J. 1934, “Essai sur les mouvements plans d’un fluide visqueux que limitent des parois”, J. Math. Pures Appl, Vol. 13, pp. 331-418.
43. Liapunoff, A.M. 1884, Ob ustojchivosti jellipsoidal’nyh form ravnovesija vrashhajushhejsja zhidkosti [On the stability of ellipsoidal forms of equilibrium of a rotating fluid] (Master’s
44. thesis). Printing house of the Academy of Sciences, St. Petersburg, XV+109 p.
45. Liapunoff, A.M. 1903, “Recherches dans la th´eorie de la figures des corps c´elestes”, Memoires de l’Academie Imperiale des Sciences de St. Petersburg. 8-me S´erie, Vol. 14, no. 7, pp. 1-37.
46. Liapounoff, A.M. 1904, “Sur la stabilite des figures ellipsoidales d’´equilibre d’un liquide anime d’un mouvement de rotation”, Ann. Fac. Sci. Toulouse Math., 2 ser., Vol. 6, pp. 5-116.
47. Liapounoff, A. 1905, “Sur un probl´eme de Tchebycheff”, Memoires de l’Academie Imperiale des Sciences de St. Petersburg, Vol. 17 (8𝑚𝑒 Serie), no. 3, pp. 1-31.
48. Liapunoff, A.M. 1906, “Sur les figures d’´equilibre peu diff´erentes des ellipsoides d’une masse liquide, homog`ene, dou´ee d’un mouvement de rotation. I partie. Etude generale du probleme”, St.-Psb. Imprim. de l’Acad. des Sc., IV+225 p.
49. Liapunoff, A.M. 1909. “Sur les figures d’´equilibre peu diff´erentes des ellipsoides d’une masse liquide, homog`ene, dou´ee d’un mouvement de rotation. II partie. Figures d’equilibre d´eriv´ees des ellipsoides de Maclaurin”, St.-Psb. Imprim. de l’Acad. des Sc., IV+203 p.
50. Liapunoff, A.M. 1912, “Sur les figures d’´equilibre peu diff´erentes des ellipsoides d’une masse liquide, homog`ene, dou´ee d’un mouvement de rotation. III partie. Figures d’´equilibre d´eriv´ees des ellipsoides de Jacobi”, St.-Psb. Imprim. de l’Acad. des Sc., IV+228 p.
51. Liapunoff, A.M. 1914, “Sur les figures d’´equilibre peu diff´erentes des ellipsoides d’une masse liquide, homog`ene, dou´ee d’un mouvement de rotation. IV partie. Nouvelles formules pour la recherches des figures d’´equilibre”, St.-Psb. Imprim. de l’Acad. des Sc., IV+112 p.
52. Liapounoff, A. 1916, “Sur les ´equations qui appartiennent aux surfaces des figures d’´equilibre d´eriv´ees des ellipsoides d’un liquide homog`ene en rotation”, Izvestija Imperatorskoj Akademii Nauk, VI ser., Vol. 10:3, pp. 139–168.
53. Liapounoff, A. 1916, “Nouvelles consid´erations relatives `a la th´eorie des figures d’´equilibre d´eriv ´ees des ellipsoides dans le cas d’un liquide homog`ene. Premi`ere partie”, Izvestija Imperatorskoj Akademii Nauk, VI ser., Vol. 10:7, pp. 471–502.
54. Liapounoff, A. 1916, “Nouvelles consid´erations relatives `a la th´eorie des figures d’´equilibre d´eriv ´ees des ellipsoides dans le cas d’un liquide homog`ene. Seconde partie”, Izvestija Imperatorskoj Akademii Nauk, VI ser., Vol. 10:8, pp. 589–620.
55. Lichtenstein, L. 1915, “ ¨Uber einige Existenzprobleme der Variationsrechnung”, J. Reine Angew. Math., Vol. 145, pp. 24–85.
56. Lichtenstein, L. 1918, “Untersuchungen ¨uber die Gleichgewichtsfiguren rotierender Fl¨ussigkeiten, deren Teilchen einander nach dem Newtonschen Gesetze an-ziehen. Erste Abhandlung. Homogene Fl¨ussigkeiten. Allgemeine Existenzs¨atze”, Math. Zeitschrift, Vol. 1, pp. 229-284.
57. Lichtenstein, L. 1931, Vorlesungen ¨uber einige Klassen nichtlinearer Integralgleichungen und Integro-Differentialgleichungen nebst Anwendungen, Julius Springer, Berlin, 164 p.
58. Lichtenstein, L. 1933, Gleichgewichtsfiguren rotierender Fl¨ussigkeiten. Springer, Berlin 1933, 201 p.
59. Liouville, J. 1837, “Second M´emoire sur le d´eveloppement des fonctions ou parties de fonctions en s´eries dont les divers termes sont assuj´etis `a satisfaire `a une mˆeme ´equation diff´erentielle du second ordre, contenant un param`etre variable ”, J. Math. Pures Appl., Vol. 2, pp. 16-35.
60. Liouville, J. 1850, “Sur le theoreme de M. Gauss, concernant le produit des deux rayons de courbure principaux en chaque point d’une surface, Notes IV de J. Liouville a ouvrage
61. Applications de Analyse a la Geometrie par G. Monge”, Bachelier Ed., Paris, pp. 583-600.
62. Lichtenstein, L. 1965, Figury ravnovesija vrashhajushhejsja zhidkosti [Equilibrium figures of a rotating fluid] Translated from German. Ed. G. N. Duboshin. Nauka, Moscow, 252 p.
63. L¨utzen, J. 2003, “Integral equations”, Companion Encyclopedia of the History and Philosophy
64. of the Mathematical Sciences, ed. Grattan-Guinness I., Johns Hopkins University Press, Baltimore, pp. 385-394.
65. Lyapunov, A.M. 1959, Collected Works. Vol. III. Izd-vo Akademii Nauk SSSR, Moscow- Leningrad, 376 p.
66. Murphy, R. 1833, “On the inverse method of definite integrals, with physical applications”, Trans. Cambridge Philos. Soc., Vol. 4, pp. 353–408.
67. Mukhin, R.R. 2018, Ocherki po istorii dinamicheskogo haosa: Issledovanija v SSSR v 1950-- 1980-e gody [Essays on the History of Dynamic Chaos: Research in the USSR in the 1950s-1980s. 2nd edition, stereotyped, URSS, Moscow, 320 p.
68. Nazarov, N.N. 1941, “Nonlinear integral equations of Hammerstein’s type”, Acta Universitatis Asiae Mediae, ser. V-а, Mathematicae, Fasciculus 33, pp. 1-79.
69. Nazarov, N.N. 1945, “Metody reshenija nelinejnyh integral’nyh uravnenij tipa Gammershtejna” [Methods for solving nonlinear integral equations of Hammerstein type], Acta Universitatis Asiae Mediae, new ser., Fasciculus 6, pp. 3-14.
70. Nekrasov, A.I. 1919, “O volne Stoksa” [About Stokes wave], Izvestija Ivanovo-Voznesenskogo politehnicheskogo instituta, Iss. 2, pp. 81-89.
71. Nekrasov, A.I. 1921, “O volnah ustanovivshegosja vida” [About steady-state waves], Izvestija Ivanovo-Voznesenskogo politehnicheskogo instituta, Iss. 3, pp. 52-65.
72. Nekrasov, A.I., 1922, “O preryvnom techenii zhidkosti v dvuh izmerenijah vokrug prepjatstvija v forme dugi kruga” [Discontinuous flow of fluid in two dimensions around an obstacle in the form of an arc of a circle], Izvestija Ivanovo-Voznesenskogo politehnicheskogo instituta, Iss. 5,
73. pp. 3-19.
74. Nekrasov, A.I. 1922, “O volnah ustanovivshegosja vida na poverhnosti tjazhjoloj zhidkosti” [On steady-state waves on the surface of a heavy liquid], Nauchnye izvestija Akademicheskogo centra NKP, Vol. 3, Physics, pp. 128-138.
75. Nekrasov, A.I. 1922, “O volnah ustanovivshegosja vida, gl.2. O nelinejnyh integral’nyh uravnenijah” [On steady-state waves, Ch. 2. On nonlinear integral equations], Izvestija Ivanovo-
76. Voznesenskogo politehnicheskogo instituta, Iss. 6, pp. 155-171.
77. Nekrasov, A.I. 1922, “O nelinejnyh integral’nyh uravnenijah s postojannymi predelami” [Nonlinear integral equations with constant limits], Izvestija Fizicheskogo instituta i instituta
78. biologicheskoj fiziki, Iss. 2, pp. 221-238.
79. Nekrasov, A.I. 1928, “O volnah ustanovivshegosja vida na poverhnosti tjazhjoloj zhidkosti (konechnoj glubiny)” [On steady-state waves on the surface of a heavy liquid (finite depth)],
80. Proceedings of the All-Russian. Math. Congress of 1927 in Moscow, Moscow-Leningrad, pp. 258-262.
81. Nekrasov, A.I. 1951, Tochnaja teorija voln ustanovivshegosja vida na poverhnosti tjazheloj zhidkosti [Exact theory of steady-state waves on the surface of a heavy liquid], Izd-vo Akademii
82. Nauk SSSR, Moscow, 96 p.
83. Nekrasov, A.I. 1961, Collected Works, Vol. 1 . Executive editor Ya.I. Sekerzh-Zenkovich, Izd-vo Akademii Nauk SSSR, Moscow, 444 p.
84. Neumann, C.1861,“ Ueber die Integration der partiellen Differentialgleichung:...= 0”, J. Reine Angew. Math.,Vol. 59, pp. 335-366.
85. Neumann, C. 1878, “ Untersuchungen ¨uber das Logarithmische und Newton’sche Potential”, Math. Annalen, Vol. 13, pp. 255–300.
86. Picard, E. 1890, “ M´emoire sur la th´eorie des ´equations aux d´eriv´ees partielles et la m´ethode des approximations successives ”, J. Math. Pures Appl, Vol. 6, pp. 145-210.
87. Picard, E. 1896, Trait´e d’Analyse, t. III. Gauthier-Villars. Paris, 568 p.
88. Poincar´e, Н. 1885, “ Sur l’´equilibre d’une masse fluide anim´ee d’un mouvement de rotation ”, Acta math., Vol. 7, no. 1, pp. 259-380.
89. Poincar´e, Н. 1888, “ Sur l’´equilibre d’une masse h´et´erog`ene en rotation”, CR, Vol. 106, pp. 1571-1574.
90. Poincar´e, H. 1897, “La m´ethode de Neumann et le probleme de Dirichlet”, Acta math., Vol. 20, pp. 59-142.
91. Poincar´e, H. 1902, Figures d’´equilibre d’une masse fluide: le¸cons profess´ees `a la Sorbonne en 1900, Gauthier-Villars, Paris, 211 p.
92. Poincar´e, H. 1974, “Fuksovy funkcii i uravnenie Δ𝑢 = 𝑒𝑢” [Fuchsian functions and equation Δ𝑢 = 𝑒𝑢], In Poincar´e A. Selected Works in Three Volumes. Vol. III. Mathematics. Nauka,
93. Moscow, pp. 235-309.
94. Poincar´e, H. 2000, Figury ravnovesija zhidkoj massy [Figures of equilibrium of liquid mass], Reguljarnaja i haoticheskaja dinamika, Izhevsk, 208 p.
95. Puiseux, V. 1850, “Recherches sur les fonctions alg´ebriques”, J. Math. Pures Appl., 1re s´erie, t. 15, pp. 365-480.
96. Radau, R.R. 1885, “Remarques sur la th´eorie de la figure de la Terre”, Bull. astronom., t. II, pp. 157-161.
97. Ritz, W. 1909, “ ¨Uber eine neue Methode zur L¨osung gewisser Variationsprobleme der mathematischen Physik”, J. Reine Angew. Math.,Vol. 135, pp. 1–61.
98. Sekerzh-Zen’kovich, Ya. I. 1960, “Aleksandr Ivanovich Nekrasov (on the 75th anniversary of his birth)”, Uspekhi Mat. Nauk, Vol. 15:1(91), pp. 153–162.
99. Smirnov, N.S. 1936, Vvedenie v teoriju nelinejnyh integral’nyh uravnenij, [Introduction to the theory of nonlinear integral equations], ONTI, Moscow-Leningrad, 124 p.
100. Smirnov, V.I. 1948, Ocherki nauchnyh trudov Ljapunova [Essays on Lyapunov’s scientific works], In Lyapunov A.M. Selected Works. Izd-vo Akademii Nauk SSSR, Leningrad, pp.341- 450.
101. Smirnov, V.I., Yushkevich, A.P. 1985, Perepiska A.M. Ljapunova s A. Puankare i P. Djujemom [Correspondence of A.M. Lyapunov with A. Poincar´e and P. Duhem], Ist.-Mat. Issled., Vol. 29, pp. 265-284.
102. Todhunter, I.1873, A History of the Mathematical Theories of Attraction and the Figure of the Earth: From the Time of Newton to that of Laplace. In 2 Volumes. Vol. II., Macmillan, London,
103. p.
104. Fourier, J. B. J. 1822, Th´eorie analytique de la chaleur, F. Didot, Paris, 639 p.
105. Fredholm, I. 1903, “Sur une classe d’´equations fonctionnelles”, Acta math., Vol. 27, pp. 365—390.
106. Fredholm, I. 1909, “Les ´equations int´egrales lin´eaires”, CR Congr´es des Math. tenua Stockholm 1909, pp. 92-100.
107. Khvedelidze, B.V. 1982, “Uravnenija Ljapunova-Shmidta” [Lyapunov-Schmidt equations], Matematicheskaja jenciklopedija v pjati tomah. Vol. 3. Ed. I.M. Vinogradov, Moscow, pp.
108. -474.
109. Hellinger, E. & Toeplitz, O. 1928, Integralgleichungen und Gleichungen mit unendlich vielen Unbekannten. Sonderausgabe aus der Encyklop¨adie der mathematischen Wissenschaften. Mit
110. einem Vorwort von E. Hilb, Verlag B. G. Teubner, Leipzig - Berlin, pp. 1335- 1616.
111. Schmidt, E.1907, “Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Teil. Entwicklung willk¨urlichen Funktionen nach System vorgeschriebener”, Math. Annalen, Vol. 63,
112. pp. 433–476.
113. Schmidt, E. 1907, “Zur Theorie der linearen und nichtlinearen Integralgleichungen. II. Teil. Aufl¨osung der allgemeinen linearen Integralgleichung”, Math. Annalen, Vol. 64, pp. 161-174.
114. Schmidt, E. 1908, “Zur Theorie der linearen und nichtlinearen Integralgleichungen. III. Teil. ¨Uber die Aufl¨osung der nichtlinearen Integralgleichung und die Verzweigung ihrer
115. L¨osungen”, Math. Annalen, Vol. 65, pp. 370-399.
116. Schwarz, H.A.1885 “Ueber ein die Fl¨achen kleinsten Fl¨acheninhalts betreffendes Problem der Variationsrechnung (Festschrift zum Jubelgeburtstage des Herrn Weierstrass)”, Acta societatis scientiarum Fennicae, Vol. 15. pp. 315–362.
117. Urysohn, P. 1923, ”Sur une classe d´equations int´egrales non lineaires”, Mat. Sb., Vol. 31:2, pp. 236–255.
118. Urysohn, P.S. 1951, Trudy po topologii i drugim oblastjam matematiki [Transactions in topology and other areas of mathematics. Notes and introductory article by P.S. Alexandrov], Vol. 1, GITTL, Moscow-Leningrad, 514 p.
119. Urysohn, P.S. 1951, Trudy po topologii i drugim oblastjam matematiki. [Transactions in topology and other areas of mathematics. Notes and introductory article by P.S. Alexandrov], Vol. 2, GITTL, Moscow-Leningrad, 480 p.
Review
For citations:
Bogatov E.M., Mukhin R.R. On the development of nonlinear integral equations at the early stage and the contribution of domestic mathematics. Chebyshevskii Sbornik. 2021;22(3):311-344. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-311-344