Some number-theoretic methods for solving partial derivatives
https://doi.org/10.22405/2226-8383-2021-22-3-256-297
Abstract
In this paper, a new method is constructed for solving partial differential equations using a sequence of nested generalized parallelepiped grids.
This method is a generalization and development of the V. S. Ryaben’kii and N. M. Korobov method for the approximate solution of partial differential equations for the case of using
arbitrary generalized parallelepiped grids for integer lattices. The error of this method was also found. In the case of using an infinite sequence of nested generalized parallelepiped grids,
a fairly fast convergence will take place.
In addition, a variant of constructing optimal grids in the two-dimensional case is proposed.
It is based on the integer approximation of algebraic lattices. In the two-dimensional case, the grids constructed in this way will always give generalized parallelepiped grids. Moreover, there
are simple ways to assess the quality of the resulting meshes. One such method, based on the use of a hyperbolic parameter, is considered in this paper.
About the Author
Alexander Valer’evich RodionovRussian Federation
References
1. Sh. K. Abikenova, A. Utesov, N. T. Temirgaliyev, 2012, “On the discretization of solutions of
2. the wave equation with initial conditions from the generalized Sobolev classes”, Math. Notes,
3. vol. 91, iss. 3, pp. 459-463.
4. E. A. Bailov, N. T. Temirgaliyev, 2006, “On the discretization of solutions of the equation
5. Poisson”, J. calculation. matem. and math. phys., vol. 46, no. 9, pp. 1594-1604.
6. V. A. Bykovsky, S. V. Gassan, 2011, “On the optimality parameter of Korobov parallelepipedal
7. grids for cubature formulas”, Zh. calculation. matem. and math. phys., vol. 51, no. 8, pp. 1363-
8.
9. I. M. Vinogradov. Fundamentals of number theory / I. M. Vinogradov — M.: Nauka, 1981.
10. A. S. Herzog, 2011, “Parametrization of a four-dimensional grid of a biquadratic Dirichlet
11. field”, Scientific Vedomosti of the Belgorod State University. Series: Mathematics. Physics,
12. vol. 23(188), iss. 5, pp. 41–53.
13. S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N.
14. Dobrovolsky, N. M. Dobrovolsky, L. P. Dobrovolskaya, A.V. Rodionov, O. A. Pihtilkova, 2017,
15. “A number-theoretic method in approximate analysis”, Chebyshevskii sbornik, vol. 18, iss. 4,
16. pp. 6-85.
17. L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovolsky, N. N. Dobrovolsky, 2012,
18. “Multidimensional number-theoretic grids and lattices and algorithms for finding optimal
19. coefficients”, Tula: Publishing House of Tula State Lev Tolstoy Pedagogical University, 283 p.
20. L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovolsky, N. N. Dobrovolsky, 2012,
21. “Hyperbolic zeta functions of grids and lattices and calculation of optimal coefficients”,
22. Chebyshevskii sbornik.
23. N. N. Dobrovolsky, N. M. Dobrovolsky, I. Yu. Rebrova, A. V. Rodionov, 2019, “Monoids of
24. natural numbers in the number-theoretic method in approximate analysis”, Chebyshevskii
25. sbornik, 2019, vol. 20, iss. 1. pp. 164–178.
26. N. M. Dobrovolsky, 2015, “On modern problems of the theory of the hyperbolic zeta function
27. lattices”,Chebyshevskii sbornik, vol. 16, iss. 1, pp. 176–190.
28. L. P. Dobrovolskaya, N. M. Dobrovolsky, A. S. Simonov, 2008, “On the error of approximate
29. integration over modified grids”, Chebyshevskii sbornik, vol. 9, iss. 1(25), pp. 185–223.
30. M. N. Dobrovolsky, N. M. Dobrovolsky, O. V. Kiseleva, 2002, “On the product of generalized
31. parallelepipedal grids of integer lattices”, Chebyshevskii sbornik, vol. 3, iss. 2(4), pp. 43–59.
32. M. N. Dobrovolsky, 2004, “On optimal coefficients of combined grids”, Chebyshevskii sbornik,
33. vol. 5, iss. 1(9), pp. 95–121.
34. M. N. Dobrovolsky, 2003, “Estimates of sums on a hyperbolic cross”, Izv. TulSU. Ser.
35. Mathematics. Mechanics. Computer science, vol. 9, iss. 1, pp. 82–90.
36. N. M. Dobrovolsky, 1984, “Hyperbolic zeta function of lattices”, Dep. in VINITI 24.08.84,
37. N 6090-84.
38. N. M.Dobrovolsky, E. V. Manokhin, 1998, “Banach spaces of periodic functions”, Izv. TulSU.
39. Ser. Mechanics. Mathematics. Informatics, vol. 4, iss. 3, pp. 56–67.
40. N. M. Dobrovolsky, 1984, “On quadrature formulas on classes 𝐸𝛼
41. 𝑠 (𝑐) and 𝐻𝛼
42. 𝑠 (𝑐)”, Dep. in VINITI
43. 08.84. № 6091–84.
44. N. M. Dobrovolsky, A. R. Yesayan, I. Yu. Rebrova, 1998, “On a recursive algorithm for lattices”
45. Approximation theory and harmonic analysis: Tez. dokl. International conf. Tula, p. 90.
46. N. M. Dobrovolsky, 1984, “Number-theoretic grids and their applications”, Dis. ... candidate of
47. physics. – mat. nauk, Tula.
48. N. M. Dobrovolsky, 1985, “Number-theoretic grids and their applications”, Abstract of the
49. dissertation ... candidate of Physics.–mat. nauk. Moscow.
50. N. M. Dobrovolsky, 1985, “Number-theoretic grids and their applications”, Number theory and
51. its applications: Tez. dokl. All-Union. conf. Tbilisi, pp. 67–70.
52. N. M. Dobrovolsky, 2005, “Multidimensional number-theoretic grids and lattices and their
53. applications”, Tula: Publishing house of Tula State Pedagogical University. L. N. Tolstoy
54. University.
55. N. M. Dobrovolsky, V. S. Vankova, 1990, “Numerical experiment on the use of parallelepipedal
56. grids”, Algorithmic problems of the theory of groups and subgroups: Tula Collection, pp. 153–
57.
58. N. M. Dobrovolsky, A. R. Yesayan, O. V. Andreeva, N. V. Zaitseva, 2004, “Multidimensional
59. number-theoretic Fourier interpolation”, Chebyshevskii sbornik, vol. 5, iss. 1(9), pp. 122–143.
60. N. M. Korobov, 1957, “Approximate calculation of multiple integrals using methods of number
61. theory” DAN USSR, no. 6, pp. 1062–1065.
62. N. M. Korobov, 1963, “Number-theoretic methods in approximate analysis”, Moscow: Fizmatgiz.
63. N. M. Korobov, 1959, “On the approximate calculation of multiple integrals”, DAN SSSR,
64. vol. 124, no. 6, pp. 1207–1210.
65. N. M. Korobov, 2004, Number-theoretic methods in approximate analysis, (second edition).
66. Moscow: ICNMO.
67. I. Y. Rebrova, V. N. Chubarikov, N. N. Dobrovolsky, M. N. Dobrovolsky, N. M. Dobrovolsky,
68. , “On classical number-theoretic grids”, Chebyshevskii sbornik, vol. 19, iss. 4, pp. 118–176.
69. A. V. Rodionov, 2013, “The solution of partial differential equations by the method of
70. V. S. Ryabenky”, Izv. Sarat. un-ta. Nov. ser. Ser. Mathematics. Mechanics. Computer Science,
71. vol. 13:4(2), pp. 120–124.
72. A.V. Rodionov, 2014, “About N. M. Korobov’s method of approximate solution of the Dirichlet
73. problem”, vol. Chebyshevskii sbornik, vol. 15:3, pp. 48–85.
74. A. V. Rodionov, 2020, “Hyperbolic parameter of approximation of quadratic algebraic lattices
75. by integers”, Chebyshevskii sbornik, vol. 21, iss. 3, pp. 241–249.
76. V. S. Ryabenky, 1961, “On one method for obtaining difference schemes and on the use of
77. number-theoretic grids for solving the Cauchy problem by the finite difference method”, Tr.
78. matem. V. A. Steklov Institute, vol. 60, p. 232–237.
79. K. K. Frolov, 1976, “Upper estimates of the error of quadrature formulas on classes of functions”,
80. DAN USSR. vol. 231, no. 4, pp. 818–821.
81. K. K. Frolov, 1979, “Quadrature formulas on classes of functions”, Dis. ... candidate of Physical
82. and Mathematical Sciences. M.: VC of the USSR Academy of Sciences.
83. Sharygin I. F., 1963, “Lower estimates of the error of quadrature formulas on classes of
84. functions”, Zhurn. computational math. and checkmate. physics. 7, no. 4, p. 784–802.
85. A. Buchholz, F. Wenzel, S. Mandt, 2018, “Quasi-Monte Carlo Variational Inference”, 35th
86. International Conference on Machine Learning, ICML 2018, t. 2, pp. 1055–1068.
87. J. Chen, R. Du, P. Li, L. Lyu, 2021, “Quasi-monte carlo sampling for solving partial differential
88. equations by deep neural networks”, Numerical Mathematics, tom 14, vol. 2, pp. 377–404.
89. Jingrun Chen, Rui Du and Keke Wu, 202, “A comparative study of the Deep Galerkin
90. method and the Deep Ritz method for elliptic problems with different boundary conditions”,
91. Communications in Mathematical Research, pp. 36(3). 354-376.
92. Jiao, Yulin, 2021, “Error analysis of deep Ritz methods for elliptic equations”. ArXiv
93. abs/2107.14478.
94. Y. Liao, P. Ming, 2021, “Deep nitsche method: Deep ritz method with essential boundary
95. conditions”, Communications in Computational Physics, tom 29, vol. 5, pp. 1365–1384.
96. Z. Wang, Z. Zhang, 2020, “A mesh-free method for interface problems using the deep learning
97. approach”, Journal of Computational Physics, tom 400, no. 108963.
98. V. Temlyakov, 2018, “Multidimensional approximation”, Cambridge monogr. Application.
99. Calculate. Math., 32, Cambridge University Press, Cambridge, 550 p.
100. D. D˜ung, V. Temlyakov, T. Ulrich, 2018, “Hyperbolic cross approximation”, Advanced courses
101. in Mathematics-CRM Barcelona, Birk¨auser Basel, Basel, 218 p.
102. V. N. Temlyakov, 2018, “Universal sampling”, Difficulty Log, vol. 47, pp. 97–109.
103. V. N. Temlyakov, M. Ulrich, 2020, “On the discrepancy of a fixed volume of Fibonacci sets in
104. integral norms”, Journal of Complexity, vol. 61, 101472.
105. J. Sirignano, K. Spiliopoulos, 2017, “DGM: A deep learning algorithm for solving partial
106. differential equations”, Journal of Computational Physics, tom 375, pp. 1339–1364.
107. E. Weinan, Bing Yu., 2018, “The Deep Ritz method: a numerical algorithm based on deep
108. learning for solving variational problems”, Communications in Mathematics and Statistics,
109. vol. 6, pp. 1–12.
Review
For citations:
Rodionov A.V. Some number-theoretic methods for solving partial derivatives. Chebyshevskii Sbornik. 2021;22(3):256-297. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-256-297