Preview

Chebyshevskii Sbornik

Advanced search

Some number-theoretic methods for solving partial derivatives

https://doi.org/10.22405/2226-8383-2021-22-3-256-297

Abstract

In this paper, a new method is constructed for solving partial differential equations using a sequence of nested generalized parallelepiped grids.
This method is a generalization and development of the V. S. Ryaben’kii and N. M. Korobov method for the approximate solution of partial differential equations for the case of using
arbitrary generalized parallelepiped grids for integer lattices. The error of this method was also found. In the case of using an infinite sequence of nested generalized parallelepiped grids,
a fairly fast convergence will take place.
In addition, a variant of constructing optimal grids in the two-dimensional case is proposed.
It is based on the integer approximation of algebraic lattices. In the two-dimensional case, the grids constructed in this way will always give generalized parallelepiped grids. Moreover, there
are simple ways to assess the quality of the resulting meshes. One such method, based on the use of a hyperbolic parameter, is considered in this paper.

About the Author

Alexander Valer’evich Rodionov
Tula State Lev Tolstoy Pedagogical University
Russian Federation


References

1. Sh. K. Abikenova, A. Utesov, N. T. Temirgaliyev, 2012, “On the discretization of solutions of

2. the wave equation with initial conditions from the generalized Sobolev classes”, Math. Notes,

3. vol. 91, iss. 3, pp. 459-463.

4. E. A. Bailov, N. T. Temirgaliyev, 2006, “On the discretization of solutions of the equation

5. Poisson”, J. calculation. matem. and math. phys., vol. 46, no. 9, pp. 1594-1604.

6. V. A. Bykovsky, S. V. Gassan, 2011, “On the optimality parameter of Korobov parallelepipedal

7. grids for cubature formulas”, Zh. calculation. matem. and math. phys., vol. 51, no. 8, pp. 1363-

8.

9. I. M. Vinogradov. Fundamentals of number theory / I. M. Vinogradov — M.: Nauka, 1981.

10. A. S. Herzog, 2011, “Parametrization of a four-dimensional grid of a biquadratic Dirichlet

11. field”, Scientific Vedomosti of the Belgorod State University. Series: Mathematics. Physics,

12. vol. 23(188), iss. 5, pp. 41–53.

13. S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N.

14. Dobrovolsky, N. M. Dobrovolsky, L. P. Dobrovolskaya, A.V. Rodionov, O. A. Pihtilkova, 2017,

15. “A number-theoretic method in approximate analysis”, Chebyshevskii sbornik, vol. 18, iss. 4,

16. pp. 6-85.

17. L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovolsky, N. N. Dobrovolsky, 2012,

18. “Multidimensional number-theoretic grids and lattices and algorithms for finding optimal

19. coefficients”, Tula: Publishing House of Tula State Lev Tolstoy Pedagogical University, 283 p.

20. L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovolsky, N. N. Dobrovolsky, 2012,

21. “Hyperbolic zeta functions of grids and lattices and calculation of optimal coefficients”,

22. Chebyshevskii sbornik.

23. N. N. Dobrovolsky, N. M. Dobrovolsky, I. Yu. Rebrova, A. V. Rodionov, 2019, “Monoids of

24. natural numbers in the number-theoretic method in approximate analysis”, Chebyshevskii

25. sbornik, 2019, vol. 20, iss. 1. pp. 164–178.

26. N. M. Dobrovolsky, 2015, “On modern problems of the theory of the hyperbolic zeta function

27. lattices”,Chebyshevskii sbornik, vol. 16, iss. 1, pp. 176–190.

28. L. P. Dobrovolskaya, N. M. Dobrovolsky, A. S. Simonov, 2008, “On the error of approximate

29. integration over modified grids”, Chebyshevskii sbornik, vol. 9, iss. 1(25), pp. 185–223.

30. M. N. Dobrovolsky, N. M. Dobrovolsky, O. V. Kiseleva, 2002, “On the product of generalized

31. parallelepipedal grids of integer lattices”, Chebyshevskii sbornik, vol. 3, iss. 2(4), pp. 43–59.

32. M. N. Dobrovolsky, 2004, “On optimal coefficients of combined grids”, Chebyshevskii sbornik,

33. vol. 5, iss. 1(9), pp. 95–121.

34. M. N. Dobrovolsky, 2003, “Estimates of sums on a hyperbolic cross”, Izv. TulSU. Ser.

35. Mathematics. Mechanics. Computer science, vol. 9, iss. 1, pp. 82–90.

36. N. M. Dobrovolsky, 1984, “Hyperbolic zeta function of lattices”, Dep. in VINITI 24.08.84,

37. N 6090-84.

38. N. M.Dobrovolsky, E. V. Manokhin, 1998, “Banach spaces of periodic functions”, Izv. TulSU.

39. Ser. Mechanics. Mathematics. Informatics, vol. 4, iss. 3, pp. 56–67.

40. N. M. Dobrovolsky, 1984, “On quadrature formulas on classes 𝐸𝛼

41. 𝑠 (𝑐) and 𝐻𝛼

42. 𝑠 (𝑐)”, Dep. in VINITI

43. 08.84. № 6091–84.

44. N. M. Dobrovolsky, A. R. Yesayan, I. Yu. Rebrova, 1998, “On a recursive algorithm for lattices”

45. Approximation theory and harmonic analysis: Tez. dokl. International conf. Tula, p. 90.

46. N. M. Dobrovolsky, 1984, “Number-theoretic grids and their applications”, Dis. ... candidate of

47. physics. – mat. nauk, Tula.

48. N. M. Dobrovolsky, 1985, “Number-theoretic grids and their applications”, Abstract of the

49. dissertation ... candidate of Physics.–mat. nauk. Moscow.

50. N. M. Dobrovolsky, 1985, “Number-theoretic grids and their applications”, Number theory and

51. its applications: Tez. dokl. All-Union. conf. Tbilisi, pp. 67–70.

52. N. M. Dobrovolsky, 2005, “Multidimensional number-theoretic grids and lattices and their

53. applications”, Tula: Publishing house of Tula State Pedagogical University. L. N. Tolstoy

54. University.

55. N. M. Dobrovolsky, V. S. Vankova, 1990, “Numerical experiment on the use of parallelepipedal

56. grids”, Algorithmic problems of the theory of groups and subgroups: Tula Collection, pp. 153–

57.

58. N. M. Dobrovolsky, A. R. Yesayan, O. V. Andreeva, N. V. Zaitseva, 2004, “Multidimensional

59. number-theoretic Fourier interpolation”, Chebyshevskii sbornik, vol. 5, iss. 1(9), pp. 122–143.

60. N. M. Korobov, 1957, “Approximate calculation of multiple integrals using methods of number

61. theory” DAN USSR, no. 6, pp. 1062–1065.

62. N. M. Korobov, 1963, “Number-theoretic methods in approximate analysis”, Moscow: Fizmatgiz.

63. N. M. Korobov, 1959, “On the approximate calculation of multiple integrals”, DAN SSSR,

64. vol. 124, no. 6, pp. 1207–1210.

65. N. M. Korobov, 2004, Number-theoretic methods in approximate analysis, (second edition).

66. Moscow: ICNMO.

67. I. Y. Rebrova, V. N. Chubarikov, N. N. Dobrovolsky, M. N. Dobrovolsky, N. M. Dobrovolsky,

68. , “On classical number-theoretic grids”, Chebyshevskii sbornik, vol. 19, iss. 4, pp. 118–176.

69. A. V. Rodionov, 2013, “The solution of partial differential equations by the method of

70. V. S. Ryabenky”, Izv. Sarat. un-ta. Nov. ser. Ser. Mathematics. Mechanics. Computer Science,

71. vol. 13:4(2), pp. 120–124.

72. A.V. Rodionov, 2014, “About N. M. Korobov’s method of approximate solution of the Dirichlet

73. problem”, vol. Chebyshevskii sbornik, vol. 15:3, pp. 48–85.

74. A. V. Rodionov, 2020, “Hyperbolic parameter of approximation of quadratic algebraic lattices

75. by integers”, Chebyshevskii sbornik, vol. 21, iss. 3, pp. 241–249.

76. V. S. Ryabenky, 1961, “On one method for obtaining difference schemes and on the use of

77. number-theoretic grids for solving the Cauchy problem by the finite difference method”, Tr.

78. matem. V. A. Steklov Institute, vol. 60, p. 232–237.

79. K. K. Frolov, 1976, “Upper estimates of the error of quadrature formulas on classes of functions”,

80. DAN USSR. vol. 231, no. 4, pp. 818–821.

81. K. K. Frolov, 1979, “Quadrature formulas on classes of functions”, Dis. ... candidate of Physical

82. and Mathematical Sciences. M.: VC of the USSR Academy of Sciences.

83. Sharygin I. F., 1963, “Lower estimates of the error of quadrature formulas on classes of

84. functions”, Zhurn. computational math. and checkmate. physics. 7, no. 4, p. 784–802.

85. A. Buchholz, F. Wenzel, S. Mandt, 2018, “Quasi-Monte Carlo Variational Inference”, 35th

86. International Conference on Machine Learning, ICML 2018, t. 2, pp. 1055–1068.

87. J. Chen, R. Du, P. Li, L. Lyu, 2021, “Quasi-monte carlo sampling for solving partial differential

88. equations by deep neural networks”, Numerical Mathematics, tom 14, vol. 2, pp. 377–404.

89. Jingrun Chen, Rui Du and Keke Wu, 202, “A comparative study of the Deep Galerkin

90. method and the Deep Ritz method for elliptic problems with different boundary conditions”,

91. Communications in Mathematical Research, pp. 36(3). 354-376.

92. Jiao, Yulin, 2021, “Error analysis of deep Ritz methods for elliptic equations”. ArXiv

93. abs/2107.14478.

94. Y. Liao, P. Ming, 2021, “Deep nitsche method: Deep ritz method with essential boundary

95. conditions”, Communications in Computational Physics, tom 29, vol. 5, pp. 1365–1384.

96. Z. Wang, Z. Zhang, 2020, “A mesh-free method for interface problems using the deep learning

97. approach”, Journal of Computational Physics, tom 400, no. 108963.

98. V. Temlyakov, 2018, “Multidimensional approximation”, Cambridge monogr. Application.

99. Calculate. Math., 32, Cambridge University Press, Cambridge, 550 p.

100. D. D˜ung, V. Temlyakov, T. Ulrich, 2018, “Hyperbolic cross approximation”, Advanced courses

101. in Mathematics-CRM Barcelona, Birk¨auser Basel, Basel, 218 p.

102. V. N. Temlyakov, 2018, “Universal sampling”, Difficulty Log, vol. 47, pp. 97–109.

103. V. N. Temlyakov, M. Ulrich, 2020, “On the discrepancy of a fixed volume of Fibonacci sets in

104. integral norms”, Journal of Complexity, vol. 61, 101472.

105. J. Sirignano, K. Spiliopoulos, 2017, “DGM: A deep learning algorithm for solving partial

106. differential equations”, Journal of Computational Physics, tom 375, pp. 1339–1364.

107. E. Weinan, Bing Yu., 2018, “The Deep Ritz method: a numerical algorithm based on deep

108. learning for solving variational problems”, Communications in Mathematics and Statistics,

109. vol. 6, pp. 1–12.


Review

For citations:


Rodionov A.V. Some number-theoretic methods for solving partial derivatives. Chebyshevskii Sbornik. 2021;22(3):256-297. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-256-297

Views: 381


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)