Preview

Chebyshevskii Sbornik

Advanced search

Polyadic Liouville numbers

https://doi.org/10.22405/2226-8383-2021-22-3-245-255

Abstract

We study here polyadic Liouville numbers, which are involved in a series of recent papers. The author considered the series
𝑓0(𝜆) =∞Σ︁𝑛=0(𝜆)𝑛𝜆𝑛, 𝑓1(𝜆) =∞Σ︁𝑛=0(𝜆 + 1)𝑛𝜆𝑛,
where 𝜆 is a certain polyadic Liouville number. The series considered converge in any field Q𝑝 . Here (𝛾)𝑛 denotes Pochhammer symbol, i.e. (𝛾)0 = 1 , and for 𝑛 ≥ 1 we have(𝛾)𝑛 =
𝛾(𝛾 + 1)...(𝛾 + 𝑛 − 1). The values of these series were also calculated at polyadic Liouville number. The canonic expansion of a polyadic number 𝜆 is of the form 𝜆 =∞Σ︁𝑛=0𝑎𝑛𝑛!, 𝑎𝑛 ∈ Z, 0 ≤ 𝑎𝑛 ≤ 𝑛.
This series converges in any field of 𝑝-adic numbers Q𝑝.
We call a polyadic number 𝜆 a polyadic Liouville number, if for any 𝑛 and 𝑃 there exists a positive integer 𝐴 such that for all primes 𝑝 ,satisfying 𝑝 ≤ 𝑃 the inequality |𝜆 − 𝐴|𝑝 < 𝐴−𝑛
holds.
The paper gives a simple proof that the Liouville polyadic number is transcendental in any field Q𝑝. In other words,the Liouville polyadic number is globally transcendental. We prove
here a theorem on approximations of a set of 𝑝−adic numbers and it’s corollary — a sufficient condition of the algebraic independence of a set of 𝑝−adic numbers. We also present a theorem on global algebraic independence of polyadic numbers.

About the Author

Vladimir Grirorevich Chirskii
Lomonosov Moscow State University, RANEPA
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Shidlovskii, A. B. 1989.“Transcendental Numbers“, W.de Gruyter.-Berlin.-New York.467pp.

2. Adams. W. 1990.“On the algebraic independence of certain Liouville numbers”,J.Pure and Appl.Algebra., Vol, 13, pp. 41-47.

3. Waldschmidt. M. 1990.“Independance algebrique de nombres de Liouville.”,Lect.Notes Math., Vol, 1415, pp. 225-235.

4. Chirskii V. G., 2020. “Arithmetic Properties of Euler-Type Series with a Liouvillean Polyadic Parameter”, Dokl. Math., Vol.102,no.2. pp. 412-413.

5. Chirskii V. G., 2021.“Arithmetic properties of values at polyadic Liouvillean point of Euler-type series with polyadic Liouvillean parameter”, Chebyshevsky sbornik, Vol. 22, no.2, pp. 304-312.

6. Chirskii V. G., 2006. “Generalization of the Notion of a Global Relation”, ( J. Math. Sci(N.Y)), Vol. 137, no. 2,pp. 4744-4754.

7. Chirskii V. G. 1994. “Qn series which are algebraically independent in all local fields”, (Vestn. Mosc. univ. Ser. 1.,Math., mech.), no. 3, pp. 93-95

8. Chirskii V. G. 2019. “Product Formula, Global Relations and Polyadic Integers”, Russ. J. Math. Phys., Vol.26, no.3, pp. 286-305.

9. Chirskii V. G. 2020. “Arithmetic properties of generalized hypergeometric F- series”, Russ. J. Math. Phys., Vol.27, no.2, pp. 175-184.

10. Yudenkova E.Yu. 2021 “Arithmetic properties of series of certain classes at polyadic Liouvillean point”, Chebyshevsky sbornik, Vol. 22, no.2, pp. 536-542

11. Yudenkova E.Yu. 2021. “Infinite linear and algebraic independence pf values of F-series at polyadic Liouvillean point”, Chebyshevsky sbornik, Vol. 22, no.2, pp. 334-346.

12. Matveev V.Yu. 2016. “Algebraic independence of certain almost polyadic series”, Chebyshevsky sbornik, Vol. 17, no.3, pp. 156-167.

13. Matveev V.Yu. 2019. “Properties of elements of direct products of fields”, Chebyshevsky sbornik, Vol. 20, no.2, pp. 383-390.

14. Krupitsin E. S. 2019. “Arithmetic properties of series of certain classes”, Chebyshevsky sbornik, Vol. 20, no.2, pp. 374-382.

15. Samsonov A. S. 2021. “Arithmetic properties of elements of direct products of p-adic fields. II”, Chebyshevsky sbornik, Vol. 22, no.2, pp. 236-256.

16. Munjos Vaskes A. H. 2021. “Arithmetic properties of certain hypergeometric F-series”, Chebyshevsky sbornik, Vol. 22, no.2, pp. 5 19-527.


Review

For citations:


Chirskii V.G. Polyadic Liouville numbers. Chebyshevskii Sbornik. 2021;22(3):245-255. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-245-255

Views: 428


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)