On some additive problems of Goldbach’s type
https://doi.org/10.22405/2226-8383-2021-22-3-179-195
Abstract
In this paper, we find an asymptotic formula with power-saving remainder term for the number of solutions of one non-linear ternary problem with primes. The proof is based on the "precise formula"for Chebyshev’s function involving the zeros of Riemann zeta function. In fact, a ternary problem "at each zero"is solved. I. M. Vinogradov’s solution of the ternary Goldbach problem (1937, see [1], [2]) opened the way of solving a wide class of problems of the above type. In 1938, he found a power-saving estimate (with respect to the length of the summation interval) for the mean value of the modulus of the exponential sum with primes (see [2], theorem 3, p.82; theorems 6 and 7, p.86). Starting at 1996, G.I.Arkhipov, K.Buriev and the author have obtained several results concerning the exceptional sets in some binary problems of Goldbach’s type. These results used both the tools of the theory of Diophantine approximations and the "precise formulas"from Riemann’s zeta function theory. At the same time, the method of estimating of linear sums with primes based on the measure theory was derived in the papers of G. L. Watson, D. Bruedern, R. D. Cook and A. Perelli.
About the Authors
Holem Mansour SalibaLebanon
Ph.D. in physics and mathematics
Vladimir Nikolaevich Chubarikov
Russian Federation
doctor of physical and mathematical sciences, professor
References
1. Vinogradov I. M. 1980. The method of trigonometric sums in the theory of numbers. 2nd Edition., correct.and supplement. — Moscow.: Fizmatlit. pp. 144.
2. Vinogradov I. M. 1976. Special variants of the trigonometrical sums method. — M.: Fizmatlit, pp. 144.
3. Vinogradov I. M. 1983. Elements of the number theory. — M.: Fizmatlit, pp. 160.
4. Hua Loo-Keng. 1983. Selected Papers. — N.-Y.,Heidelberg, Berlin, pp.888.
5. Hua Loo-Keng. Some results in the additive prime number theory. Quart. J. Math. Oxford. 1938. V.9. P.68-80.
6. Arkhipov G. I., 2013. Selected papers. — Orjol: Publ.House of the Orjol University, pp. 464.
7. Arkhipov G. I., Buriev K., Chubarikov V. N., 1997. On a cardinality of a exceptional set in the binary additive problem of Goldbach’s type. Proc. of Steklov institute, v.218, p. 28-57.
8. Arkhipov G. I., Chubarikov V. N.,2002. On the exceptional set in the binary problem of the Goldbach’s type. Dokl. RAS, v.387, №3, p. 295-296.
9. Arkhipov G. I., Chubarikov V. N.,2011. On the measure of “ large arcs ” in the Farey tiling. Chebyshev sbornik, v.12, issue. 4, p. 39-42.
10. Br¨udern J., Cook R. J., Perelli A. 1996. The Values of Binary Linear Forms at Prime Arguments. In book: Sieve Methods, Exponential Sums and their Applications in Number Theory.
11. Greaves G. R. H., Harman G., Huxley M. N., Eds. Cambridge University Press, p. 87-100.
12. Br¨udern J. 2000. Some additive problems of Goldbach’s type. Functiones et Approximatio. V. XXVIII, p. 45-73.
13. Watson G. L. 1953. On indefinite quadratic forms in five variables. Proc. London Math. Soc., 3(3), p. 170-181.
14. Arkhipov G. I.„ Karatsuba A. A., Chubarikov V. N. 1987. The theory of multiple trigonometric sums. — Moscow.: Nauka. Fizmatlit. 368 с.
15. Arkhipov G. I., Chubarikov V. N., Karatsuba A. A. 2004. Trigonometric sums in number theory and analysis. De Gruyter expositions in mathematics; 39 — Berlin, New York: Walter de
16. Gruyter, pp. 554.
17. Montgomery H. L., VaughanR. C. 1975. The exceptional set of Goldbach’s problem. Acta arithm. V. 27. P. 353–370.
18. Cheng Jing-run, Liu Jian Min. 1989. The exceptional set of Goldbach-numbers (III). Chinese Quart. J. Math. V.4. No. 1. P. 1–15.
19. Karatsuba A. A. 1983. Foundations of analytic number theory. 2nd Ed. — M.:Nauka. Gl. red. phis. -math. literature, pp. 240 (in Russian).
20. Pan Chengdong, Pan Chenbiao. 1992. Goldbach conjecture. — Bejing (China), Science Press, pp. 240.
21. Cassels J. B. C. 1961. An introduction to Diophantine approximation. — M.: Izd-vo inostr. lit., pp. 213.
22. Prahar K. 1967. Distribution of prime numbers. — M.: Mir, pp.512.
23. Arkhipov G. I.„ Sadovnichii V. A., Chubarikov V. N. 2004. Lecture on mathematical analysis. 4th Ed., corr. — M.: Drofa. pp. 640.
24. Popov O. V. 1995. Arithmetical applicatications of the H.Weyl’s sums estimates from polynomials of a rising degree. Candidate thesis. — M.: MSU.
25. Tyrina O. V. 1989. Mean-values of trigonometric sums. Candidate thesis. — M.: MSU.
26. Chubarikov V. N. 1984. Multiple trigonometric sums with primes. Doklady AN SSSR, 278, № 2, 302–304.
27. Chubarikov V. N. 1985. Estimates of multiple trigonometric sums with primes. Izvestija. AN SSSR, Ser.Matem., 49, № 5, 1031–1067.
Review
For citations:
Saliba H., Chubarikov V.N. On some additive problems of Goldbach’s type. Chebyshevskii Sbornik. 2021;22(3):179-195. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-179-195