Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights
https://doi.org/10.22405/2226-8383-2021-22-3-166-178
Abstract
The paper continues the authors ’ research on the evaluation of trigonometric sums of an algebraic grid with weights. The case of an arbitrary weight function of infinite order is considered.
For the parameter ⃗𝑚 of the trigonometric sum 𝑆𝑀(𝑡),⃗𝜌∞(⃗𝑚), three cases are highlighted. If ⃗𝑚 belongs to the algebraic lattice Λ(𝑡·𝑇(⃗𝑎)), then for any natural 𝑟 the asymptotic formula
is valid 𝑆𝑀(𝑡),⃗𝜌∞(𝑡(𝑚, . . . ,𝑚)) = 1 + 𝑂 (︂ ln𝑠−1 det Λ(𝑡) (detΛ(𝑡))𝑟+1)︂.
If ⃗𝑚 does not belong to the algebraic lattice Λ(𝑡·𝑇(⃗𝑎)), then two vectors are defined ⃗𝑛Λ(⃗𝑚) =(𝑛1, . . . , 𝑛𝑠) and ⃗𝑘Λ(⃗𝑚) from the conditions ⃗𝑘Λ(⃗𝑚) ∈ Λ, ⃗𝑚 = ⃗𝑛Λ( ⃗𝑀)+ ⃗𝐾𝜆(⃗𝑚) and the product𝑞(⃗𝑛𝜆(⃗𝑚)) = 𝑛1 · . . . · 𝑛𝑠 is minimal. Asymptotic estimation is proved|𝑆𝑀(𝑡),⃗𝜌∞(⃗𝑚)| 6 𝐵(𝑟,∞)(︃1 − 𝛿(⃗𝑘Λ(⃗𝑚))(𝑞(⃗𝑛Λ(⃗𝑚)))𝑟+1 + 𝑂(︂𝑞(⃗𝑛Λ(⃗𝑚))𝑟+1 ln𝑠−1 det Λ(𝑡)(det Λ(𝑡))𝑟+1)︂)︃.
About the Authors
Elena Mikhailovna RarovaRussian Federation
Nikolai Nikolaevich Dobrovol’skii
Russian Federation
candidate of physical and mathematical sciences
Irina Yuryevna Rebrova
Russian Federation
candidate of physical and mathematical sciences, associate professor
Nikolai Mihailovich Dobrovol’skii
Russian Federation
doctor of physical and mathematical sciences, professor
References
1. Dobrovol’skii, N. M. 1984, “On quadrature formulas in classes 𝐸𝛼 𝑠 and 𝐻𝛼 𝑠 ”, Dep. v VINITI, no. 6091–84.
2. Dobrovol’skii, N. M. 1984, “Number-theoretic meshes and their applications”, Ph.D. Thesis, Tula, Russia.
3. Dobrovol’skii, N. M. 2015, “On modern problems of the theory of hyperbolic Zeta function of lattices”, Chebyshevskij sbornik, vol. 16, no. 1, pp. 176–190.
4. N. N. Dobrovol’skii, 2018, "On two asymptotic formulas in the theory of hyperbolic Zeta function of lattices" , Chebyshevskii sbornik, vol. 22, no. 3, pp. 109–134.
5. Korobov, N. M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.
6. Rarova E. M., 2014, "Decomposition of the trigonometric sum of a grid with weights in a series by lattice points" , Proceedings of Tula state University. Natural science, vol. 1, part 1, pp. 37–49.
7. Rarova E. M., 2014, "Trigonometric grid sums with weights for integer lattice" , Proceedings of Tula state University. Natural science, № 3, pp. 34–39.
8. Rarova E. M., 2015, "Trigonometric sums of algebraic nets" , In the collection: Algebra, number theory and discrete geometry: modern problems and applications Proceedings of the
9. XIII International conference dedicated to the eighty-fifth anniversary of the birth of Professor Sergei Sergeevich Ryshkov. Tula state pedagogical University. L. N. Tolstoy, pp. 356–359.
10. Rarova E. M., 2018, "Weighted number of points of algebraic net" , Chebyshevskii sbornik, vol. 19, no. 1, pp. 200–219.
11. E. M. Rarova, 2019, "Trigonometric sums of nets of algebraic lattices" , Chebyshevskii sbornik, vol. 20, no. 2, pp. 399–405.
12. E. M. Rarova, N. N. Dobrovol’skii, I. Yu. Rebrova, 2020, "Asymptotic estimation for trigonometric sums of algebraic grids", Chebyshevskii sbornik, vol. 21, no. 3, pp. 232–240.
13. Rebrov Е. D. 2012, "Quadrature formulas with modified algebraic grids" , Chebyshevskii sbornik, vol. 13, no. 3(43), pp. 53 — 90.
14. Rebrova I. Yu., Dobrovolsky N. M., Dobrovolsky N. N., Balaba I. N., Yesayan A. R., Basalov Yu. A. numerical Theoretic method in approximate analysis and its implementation
15. in POIVS "TMK": Monogr. In Under 2 hours. ed. — Tula: Publishing house of Tula. state PED. UN-TA im. L. N. Tolstoy, 2016. – Part I. – 232 p.
16. Frolov, K.K. 1976, “Upper bounds on the error of quadrature formulas on classes of functions”, Doklady Аkademii nauk SSSR, vol. 231, no.4, pp. 818–821.
17. Frolov, K. K. 1979, Quadrature formulas on classes of functions, Ph.D. Thesis, Vychislitel’nyj tsentr Аkademii Nauk SSSR, Moscow, USSR.
Review
For citations:
Rarova E.M., Dobrovol’skii N.N., Rebrova I.Yu., Dobrovol’skii N.M. Trigonometric sums of grids of algebraic lattices with infinitely differentiable weights. Chebyshevskii Sbornik. 2021;22(3):166-178. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-166-178