Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics
https://doi.org/10.22405/2226-8383-2021-22-3-143-153
Abstract
For a positive integer 𝑄 > 0, let 𝐼 ⊂ R denote an interval of length 𝜇1𝐼 = 𝑄−𝛾1 (where 𝜇1 is the Lebesgue measure) and 𝜇2𝐾 = 𝑄−𝛾2 , 𝛾2 > 0 (where 𝜇2 is the Haar measure of a measurable cylinder 𝐾 ⊂ Q𝑝). Let us denote the set of polynomials of degree ≤ 𝑛 and height 𝐻 (𝑃) ≤ 𝑄 as 𝒫𝑛 (𝑄) = {𝑃 ∈ Z[𝑥] : deg 𝑃 ≥ 𝑛, 𝐻 (𝑃) ≤ 𝑄} .
Let 𝒜(𝑛,𝑄) denote the set of real and 𝑝-adic roots of such polynomials 𝑃 (𝑥) lying in the space 𝑉 = 𝐼 ×𝐾. In this paper it is proved that the following inequality holds for a suitable constant
𝑐1 = 𝑐1 (𝑛) and 0 ≤ 𝑣1, 𝑣2 6 1 2 : #𝒜(𝑛,𝑄) > 𝑐1𝑄𝑛+1−𝛾1−𝛾2 .
The proof relies on methods of metric theory of Diophantine approximation developed by V.G. Sprindzuk to prove Mahler’s conjecture and by V.I. Bernik to prove A. Baker’s conjecture.
About the Authors
Artyom Vadimovich LunevichBelarus
candidate of physical and mathematical sciences, researcher
Natalya Valentinovna Shamukova
Belarus
candidate of physical and mathematical sciences
References
1. V. I. Bernik. 1983, “An application of Haudorff dimension in the theory of Diophantine approximation“, Acta. Arith., Vol. 42, P. 219-253.
2. V. I. Bernik. N. Kalosha. 2004, “Approximation of zero by values ol integral polvnomials in space R × C × Q𝑝“, Vesti NAN of Belarus Ser. fiz-mat nauk, Vol. 1. P. 121-123.
3. Bernik, V. I., Gotze, F. 2015, “Distribution of real algebraic numbers of arbitrary degree in short intervals“, Izvestiya: Mathematics., Vol. 79, №. 1. P. 18-39.
4. Sprindzuk, V. G. 1965, “Dokazatelstvo gipotezi malera o mere mnozesstva S-chisel“, Izv. AN SSSR, ser. mat., Vol. 29, № 2. P. 379-436.
5. Sprindzuk, V. G. 1967, “Problema malera v metricheskoi teorii chisel“, Minsk: Nauka i tehnika, P. 181.
6. Schmidt, W. M. 1980, “Diophantine Approximation“, Springer, P. 312.
7. Baker, A. 1996, “Linear Forms in the Logarithms of Algebraic Numbers“, I, Mathematika, Vol. 12. P.204–216.
8. Beresnevich, V. V. 1999, “On approximation of real numbers bv real algebraic numbers“, Acta Arith., Vol. 90. P. 97-112.
9. Bernik, V. I. 1989, “The exact order of approximating zero by values of integral polynomials“, Acta Arith., Vol. 53, №. 1. P. 17-28.
10. Bernik, V. I., Dodson, M. M. 1999, “Metric Diophantine Approximation on Manifolds“, Cambridge University Press.
11. Bernik, V. Budarina, N. & Dickinson, H. 2008, “A divergent Khintchine theorem in the real, complex and p-adic fields“, Lith. Math. J., Vol. 48. № 2., P. 158-173.
12. Bernik., V„ Budarina., N. & Dickinson, H.2010, “Simultaneous Diophantine approximation in the real, complex and p-adic fields“, Math. Proc. Cambridge Philos. Soc., Vol. 149. № 2. P. 193-216.
13. Khintchine, A. Ya. 1924, “Einige Satze uber Kcttenbriiche mit Anwvndungen auf die Theorie dear Diophan-tischen Approximationeii“, Math. Ann., Vol. 92. P. 115-125.
14. Mahler, K. 1932, “Uber das MaB der Menge aller S-Zahlen“, Math. Ann. Vol. 106. P. 131-139.
15. Volkmann, B. 1963, “Zur metrischen Theorie der S-Zahlen“, J. reine und angew. Math., Vol. 213, №. 1-2. P. 58-65.
Review
For citations:
Lunevich A.V., Shamukova N.V. Polynomials with small values in the neighborhoods of zeros in Archimedean and non-Archimedean metrics. Chebyshevskii Sbornik. 2021;22(3):143-153. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-143-153