About three-dimensional nets of Smolyak II
https://doi.org/10.22405/2226-8383-2021-22-3-100-121
Abstract
This is the second article in a series dedicated to Smolyak grids. The paper relates to analytical number theory and it deals with the application of number theory to problems of approximate analysis.
In this paper, it was shown that for an arbitrary Smolyak grid, the trigonometric sum of the Smolyak grid is 𝑆𝑞(⃗0) = 1. It follows that the norm of the linear functional of approximate integration on the class 𝐸𝛼 𝑠 is equal to the value of the hyperbolic zeta function 𝜁(𝛼|𝑆𝑚(𝑞, 𝑠)) of the resin grid. It is shown that the hyperbolic zeta function 𝜁(𝛼|𝑆𝑚(𝑞, 𝑠)) of the Smolyak grid
is a Dirichlet series. This raises the question of the analytic continuation of the hyperbolic zeta function 𝜁(𝛼|𝑆𝑚(𝑞, 𝑠)) of the Smolyak grid as a function of an arbitrary complex 𝛼 = 𝜎 + 𝑖𝑡.
Since the Smolyak grid belongs to the number of rational grids, it turns out that it has an analytical continuation of the hyperbolic zeta function 𝜁(𝛼|𝑆𝑚(𝑞, 𝑠)) of the Smolyak grid on the entire complex plane except for the point 𝛼 = 1, in which it has a pole of order 𝑠.
It follows from the work that the following questions remain open:
1. is the linear operator 𝐴𝑞 of weighted grid averages over the Smolyak grid at dimension 𝑠 > 3 normal?
2. what are the true values of the trigonometric sums 𝑆𝑞(𝑚1, . . . ,𝑚𝑠) Smolyak grids with dimension 𝑠 > 3?
About the Authors
Nikolai Nikolaevich Dobrovol’skiiRussian Federation
candidate of physical and mathematical sciences
Dmitry Viktorovich Gorbachev
Russian Federation
doctor of physical and mathematical sciences
Valerii Ivanovich Ivanov
Russian Federation
doctor of physical and mathematical sciences, professor
References
1. Bakhvalov, N.S. 1959, “On approximate computation of multiple integrals” , Vestnik Moskovskogo
2. universiteta, no. 4, pp. 3–18.
3. Vronskaya, G.T. & Dobrovol’skii, N. N. 2012, Otklonenie ploskikh setok [Standard deviation of a flat mesh], Izdatel’stvo TGPU im. L.N.Tolstogo, Tula, Russia.
4. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Dobrovol’skii, N. N. 2012, Mnogomernye teoretiko-chislovye setki i reshyotki i algoritmy poiska optimal’nykh
5. koehffitsientov [Multidimensional number-theoretic grids and lattices and algorithms for finding optimal coefficients], Izdatel’stvo Tul’skogo gosudarstvennogo pedagogicheskogo universiteta im. L.N. Tolstogo, Tula, Russia. 284 p.
6. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Dobrovol’skii, N. N. 2012, “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients” ,
7. Chebyshevskij sbornik, vol. 13, no. 4(44), pp. 4–107.
8. Dobrovol’skaya, L. P., Dobrovol’skii, N. M., Dobrovol’skii, N. N., Ogorodnichuk, N. K., Rebrov, E. D. & Rebrova, I. YU. 2012, “Some questions of the number-theoretic method
9. in the approximate analysis” , Trudy X mezhdunarodnoj konferentsii “Аlgebra i teoriya chisel: sovremennye problemy i prilozheniya” Uchenye zapiski Orlovskogo gosudarstvennogo
10. universiteta [Proceedings of the X international conference "Algebra and number theory: modern problems and applications"scientific notes of Orel state University], no. 6, part 2, pp. 90-98.
11. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M., Dobrovol’skii, N. N., & Rebrova, I. YU. 2013, “Some questions of the number-theoretic method in the approximate
12. analysis” , Izvestie Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, vol.13, no. 4(2), pp. 47-52.
13. Dobrovol’skaya, L. P., Dobrovol’skii, N. M. & Simonov, А.S. 2008, “On the error of approximate integration over modified grids” , Chebyshevskij sbornik, vol. 9, no. 1(25), pp. 185–223.
14. Dobrovol’skii, M. N. 2003, “Estimates of sums over a hyperbolic cross” , Izvestie Tul’skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Informatika, vol.9, no. 1, pp. 82-90.
15. Dobrovol’skii, N. M. 1984, “The hyperbolic Zeta function of lattices” , Dep. v VINITI, no. 6090–84.
16. Dobrovol’skii, N. M. 1984, “Evaluation of generalized variance parallelepipedal grids” , Dep. v VINITI, no. 6089–84.
17. Dobrovol’skii, N. M. 1984, “On quadrature formulas in classes 𝐸𝛼 𝑠 (𝑐) and 𝐻𝛼 𝑠 (𝑐)” , Dep. v VINITI, no. 6091–84
18. Dobrovol’skii, N. M., Dobrovol’skii, N. N., Sobolev, D.K., Soboleva, V.N., Dobrovol’skaya, L. P. & Bocharova, O. E. 2016, “On the hyperbolic Hurwitz Zeta function ”, Chebyshevskij
19. sbornik, vol. 17, no. 3, pp. 72–105.
20. Dobrovol’skii, N. M., Dobrovol’skii, N. N., Soboleva, V.N., Sobolev, D.K. & Yushina, E.I. 2015, “Hyperbolic dzeta-function of lattices of quadratic fields”, Chebyshevskij sbornik, vol. 16, no.
21. , pp. 100–149.
22. Dobrovol’skii, N. M., Esayan, А.R. & Yafaeva, R. R. 2002, “On grids of Smolyak S. A.” , Sovremennye problemy matematiki, mekhaniki, informatiki: Tezisy dokladov Vserossijskoj nauchnoj konferentsii, Tula, Russia, pp. 18–20.
23. Dobrovol’skii, N. M. & Manokhin, E.V. 1998, “Banach spaces of periodic functions” , Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 4, no. 3, pp. 56–67.
24. Dobrovol’skii, N. M., Manokhin, E.V., Rebrova, I. YU. & Roshhenya, А. L., 2001, "On the continuity of the Zeta function of a grid with weights" , Izvestiya TulGU. Seriya Matematika.
25. Mekhanika. Informatika, vol. 7, no. 1., pp. 82–86.
26. Dobrovol’skii, N. N. 2003, “On the number of integer points in a hyperbolic cross at the values of 1 6 𝑡 < 21” , Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 9, no. 1,
27. pp. 91–95.
28. Dobrovol’skii, N. N. 2007, “Deviation of two-dimensional Smolyak grids” , Chebyshevskij sbornik, vol. 8, no. 1(21), pp. 110–152.
29. Dobrovol’skii, N. N. 2007, “A trigonometric polynomial on a grid of Smolyak”, Materialy mezhdunarodnoj nauchnoj konferentsii “Sovremennye problemy matematiki, mekhaniki, informatiki” [Proceedings of the international scientific conference “Modern problems of mathematics,
30. mechanics, computer science”], Tula, Russia, pp. 34–36.
31. Dobrovol’skii, N. N., 2013, "О гиперболическом параметре сетки" , Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 2. P. 1. P. 6–18.
32. Dobrovol’skii, N. N., 2014, Hyperbolic parameter of meshes with weights and its application, Ph.D. Thesis, Moscow State University, Moscow, Russia.
33. N. N. Dobrovol’skii, D. V. Gorbachev, V. I. Ivanov, 2019, "About three-dimensional nets of Smolyak II" , Chebyshevskii sbornik, vol. 20, no. 3, pp. 193–219.
34. Kiseleva O. V., 2007, "On the Korobov problem for modified resin grids" , Chebyshevskij sbornik, vol. 8, no. 4(24), pp. 50–104.
35. Korobov, N. M., 1957, “Approximate evaluation of multiple integrals by using methods of the theory of numbers”, Doklady Аkademii nauk SSSR, vol. 115, no. 6, pp. 1062–1065.
36. Korobov, N. M., 1959, “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, no. 4, pp. 19–25.
37. Korobov, N. M., 1959, “On approximate computation of multiple integrals”, Doklady Аkademii nauk SSSR, vol. 124, no. 6, pp. 1207–1210.
38. Korobov, N. M., 1960, “Properties and calculation of optimal coefficients”, Doklady Аkademii nauk SSSR, vol. 132, no. 5, pp. 1009–1012.
39. Korobov, N. M., 1963, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], Fizmat-giz, Moscow, Russia.
40. Korobov, N.M. 1994, “Quadrature formulas with combined grids”, Matematicheskie zametki, vol. 55, no. 2, pp. 83–90.
41. Korobov, N.M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.
42. I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovol’skii, M. N. Dobrovol’skii, N. M. Dobrovol’skii, 2018, "On classical number-theoretic nets" , Chebyshevskii sbornik, vol. 22, no. 3, pp. 118–176.
43. Smolyak, S. А., 1963, “Quadrature and interpolation formulas on tensor products of some classes of functions”, Doklady Аkademii nauk SSSR, vol. 148, no. 5, pp. 1042–1045.
44. Sobol’, I. M., 1969, Mnogomernye kvadraturnye formuly i funktsii Khaara [Multidimensional quadrature formulas and Haar functions], Nauka, Moscow, USSR.
45. Titchmarsh E. K. 1952, “The Theory of the Riemann Zeta Function”, M.: IL, 407 p.
46. Frolov, K. K., 1976, “Upper bounds on the error of quadrature formulas on classes of functions”, Doklady Аkademii nauk SSSR, vol. 231, no.4, pp. 818–821.
47. Frolov, K. K., 1979, Quadrature formulas on classes of functions, Ph.D. Thesis, Vychislitel’nyj tsentr Аkademii Nauk SSSR, Moscow, USSR.
48. Chandrasekharan K., 1974, Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, Moskva, 188 p.
49. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Dobrovol’skii, N. N., 2014, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, vol. 211, pp. 23–62.
50. http://dx.doi.org/10.1007/978-3-319-03146-0_2
51. Faure, H., 1982, “Discrepance de suites associees a un systeme denumeration (en dimention s)”, Acta Arith, vol. 41, pp. 337–351.
52. Halton, J. H., 1960, “On the efficiency of certain quasirandom sequences of points in evaluating
53. multidimensional integrals”, Numerische Math, vol. 27, no. 2, pp. 84–90.
54. Hammersley, J. M., 1960, “Monte-Carlo methods for sobving multivariable problems”, Ann. New York Acad. Sci., vol. 86, 844–874.
55. Weyl H., 1916, “On the uniform distribution of Numbers mod. one”, Math. Ann., vol. 77, pp. 313–352.
Review
For citations:
Dobrovol’skii N.N., Gorbachev D.V., Ivanov V.I. About three-dimensional nets of Smolyak II. Chebyshevskii Sbornik. 2021;22(3):100-121. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-100-121