Inversion formula for Dirichlet series and its application
https://doi.org/10.22405/2226-8383-2021-22-3-57-76
Abstract
A contour integration method, used to study the asymptotic of the sums of coefficients of Dirichlet series, is based on the Inversion formula. It allows you to express the sum of the
coefficients in terms of the sum of the series. This approach gives effective estimates if the abscissa of absolute convergence 𝜎𝑎 > 1. In some cases, when studying arithmetical functions in
generating Dirichlet series, this value is less than 1. As a rule, in this case, the Tauberian Delange theorem, which gives only the main term of asymptotic, is applied. However, generating Dirichlet series have better analytical properties than we need for the Delange theorem application. The contour integration method allows to count on precise results, but it need the inversion formula which is effective for series with 𝜎𝑎 < 1.
In this paper the such inversion formula is presented and is proved to be an effective tool on examining the distribution of d(n) function values in the residue classes coprim with a module.
W. Narkievicz used Delange theorem to obtain the main term of the asymptotic for frequency of hits of the values of function d(n) in residue classes. Application of the inversion formula allowed us to obtain more precise results.
About the Authors
Larisa Aleksandrovna GromakovskayaRussian Federation
higher instructor
Boris Mikhailovich Shirokov
Russian Federation
candidate of physical and mathematical sciences
References
1. Prachar, K., 1967, Raspredelenie prostykh chisel. (russian) [Distribution of prime numbers] Translated from Deutsch by A. A. Karacuba. Edited by A. I. Vinogradov. With two supplements
2. by M. B. Barban and A. I. Vinogradov, and N. M. Korobov, Mir, M., 512 p.
3. Karatsuba, A. A., 1975, Bases of the Analytical number theory, (russian)[Osnovy analiticheskoi teorii chisel], Nauka, M., 184 p.
4. Narckiewicz W., 1967) On distribution of values of multiplicative functions in residue classes, Acta Arithm., V. 12, No 3, pp. 269 – 279 .
5. Changa, I. E., 2019, On numbers for which the number of the prime divisors bilong to given residue classes, [O chislakh, kolichestvo prostykh deliteley kotorykh prinadlejat zadannomu
6. klassu vychetov], Izv. RAN, Seriya. Matem, V. 83, No 1, pp. 192 –202 .
7. Changa, I. E., 2013, Methodes of the Analytical number theory, [Metody analiticheskoi teorii chisel], НИЦ "Regularnaya i chaoticheskaya dinamika Mir, Igevsc, 228 p.
8. Fomenko, O. M. 1980, Distribution of values of the multiplicative fubctions prime modulo [Raspredeleniye znacheny multiplikativnych funktsy po prostomu modulyu], Zapisky nauch.
9. sem. LOMI, V. 93, pp. 218 – 224.
10. Titchmarsh, E., 1980, The theory of functions. Trans from Eng. 2nd ed. [Toriya funktsiy. Per. s angl. 2-e izd.], Nauka, Moscow, 464 p.
11. Delange, H., 1954, G´en´eralisation du th´eor`eme de Ikeara, Ann. Sci. Ecole norm. super. V. 71, pp. 213 – 242 .
12. Gromakovskaya, L. A., Shirokov, B. M., 2020, Distribution of a number of square-free divisors in residue classes, [Raspredelenie chisla beskvadratnykh delitelei v klassakh vychetov], Izv. Vuzov, Mathematics, No 3, с. 3 – 11
13. Borevich Z. I., Shapharevich I. R. 1972, Number Theory, (russian) [Teoriya chisel], Nauka, M., 568 p.
14. Van der Varden B. L. 1976, Algebra, (russian), [Algebra] Translated from Deutsch by A. A. Belskii. Edited by Yu. I. Merzlyakov, Nauka, M., 648 p.
15. Leng, S., 1968, Algebra, (russian), [Algebra] Translated from English by E. S. Golod. Edited by A. I. Kostrikin, Mir, M., 564 p.
16. Lavrentyev M. A., Shabat B. V., 1958, Methodes of the Function Theory of the coplex variable, (russian) [Metody teorii funktsyi kompleksnogo peremennogo], FISMATGIS, M., 680 p.
Review
For citations:
Gromakovskaya L.A., Shirokov B.M. Inversion formula for Dirichlet series and its application. Chebyshevskii Sbornik. 2021;22(3):57-76. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-3-57-76