Arithmetic properties of the values some hypergeometric 𝐹-series
https://doi.org/10.22405/2226-8383-2021-22-2-519-527
Abstract
Generalized hypergeometric series are of the form
$$𝑓(𝑧) =∞Σ︁𝑛=0((𝑎1)𝑛 . . . (𝑎𝑙)𝑛)/((𝑏1)𝑛 . . . (𝑏𝑚)𝑛)𝑧𝑛$$
If 𝑙 < 𝑚 and if the parameters are rational, they are closely related to Siegel’s 𝐸-functions. If 𝑙 = 𝑚 and if the parameters are rational, they are 𝐺-functions. For 𝑙 > 𝑚 and if the parameters
are rational, they are 𝐹-series.
The arithmetic properties values of generalized hypergeometric series is an actual problem with a long history. We shall only mention Siegel C. L., Shidlovskii A. B., Salikhov V. Kh.,
Beukers F., Brownawell W. D., Heckman G., Galochkin A. I., Oleinikov V. A., Ivankov P. L., Gorelov V. A., Chirskii V. G., Zudilin W., Matala–Aho T. etc. We consider the so–called 𝐹-series. Chirskii V.G. proved the infinitу algebraic independence
of the corresponding values.
Here we obtain lower estimates of polynomials and linear forms in the values of these series and their derivatives in a concrete 𝑝-adic field.
About the Author
Vaskes Ankhel Khorkheevich MunosRussian Federation
graduate student
References
1. Andr´e, Y. “S´eries Gevrey de type arithm´etique“, Inst. Math., Jussieu.
2. Bertrand, D., Chirskii, V. G. & Yebbou, Y. 2004. “Effective estimates for global relations on Euler – type series“, Ann. Fac. Sci. Toulouse, Vol. XIII, №2. pp. 241–260.
3. Bombieri, E. 1981, “On 𝐺-functions“, Recent Progress in Analytic Number Theory. Vol.2. London: Academic Press, pp. 1–68.
4. Chirskii, V. G. 2020, “Arithmetic properties of Generalized Hypergeometric Series“, Russian Journal of Mathematical Physics, Maik Nauka/Interperiodica Publishing (Russian Federation), Vol 27, №2, pp. 175–184.
5. Chirskii, V. G. 2019, “Product formula, global relations and polyadic integers“, Russian Journal of Mathematical Physics, Maik Nauka/Interperiodica Publishing (Russian Federation), Vol. 26, №3, pp. 286–305.
6. Chirskii, V. G. 2018, “Arithmetic properties of generalized hypergeometric F-series“, Doklady Mathematics, Maik Nauka/Interperiodica Publishing (Russian Federation). Vol. 98, №3. pp.589–591.
7. Chirskii, V. G. 2017, “Arithmetic properties of polyadic series with periodic coefficients“, Izvestiya Mathematics, American Mathematical Society (United States), Vol. 81,№2. pp. 444–
8.
9. Chirskii, V. G. 2015, “Arithmetic properties of Euler series“, Moscow University Mathematics Bulletin, Allerton Press Inc.(United States), Vol. 70, №1, pp.41–43.
10. Chirskii, V. G. 2015, “Arithmetic properties of polyadic integers”, Chebyshevskii Sb., 16:1, pp.254–264.
11. Chirskii, V. G. 2014, “Arithmetic properties of polyadic series with periodic coefficients“, Doklady Mathematics, Maik Nauka/Interperiodica Publishing (Russian Federation), Vol. 90, №3, pp. 766–768.
12. Chirskii, V. G. 2014, “On the arithmetic properties of generalized hypergeometric series with irrational parameters“, Izvestiya Mathematics, American Mathematical Society (United States). Vol. 78, №6. pp. 1244–1260.
13. Chirskii, V. G. 1999, “Linear independence of the 𝑝 – adic values of certain 𝑞 – basic hypergeometric series“, Fundam. Prikl. Mat., 5:2 , pp.619–625.
14. Chirskii, V. G. 1990, “Global relations“, Mat. Zametki, 48:2, 123–127; Math. Notes, 48:2 (1990), pp.795–798.
15. Galochkin,A. I. 1984, “On estimates, unimprovable with respect to height, of some linear forms“, Mat. Sb. (N.S.), 124(166):3(7), 416–430; Math. USSR-Sb., 52:2 (1985), 407–421
16. Galochkin, A. I. 1974, “Estimates from below of polynomials in the values of analytic functions of a certain class“, Mat. Sb. (N.S.), 95(137):3(11), 396–417; Math. USSR-Sb., 24:3 (1974), 385–407
17. Matala–Aho T. & Zudilin W. 2018, “Euler factorial series and global relations“, J. Number Theory, 186, pp.202–210.
18. Munos Vaskes, A. Kh. 2020, “Lower estimates of polynomials and linear forms in the values of 𝐹 – series“, Chebyshevskii sbornik, vol. 21, no. 3
19. Nesterenko Yu. V. 1969, “On the Algebraic Independence of the Values of E-Functions Satisfying Nonhomogeneous Linear Differential Equations“ Mat. Zametki 5 (5), 587–599 [Math. Notes 5 (5), 352–358 (1969)].
20. Oleinikov, V. A. 1968, “On the transcendence and algebraic independence of the values of certain entire functions“, Izv. Akad. Nauk SSSR Ser. Mat., 32:1, 63–92; Math. USSR-Izv., 2:1 (1968), 61–87
21. Salikhov, V. Kh. 1990, “A criterion for the algebraic independence of values of a class of hypergeometric 𝐸 – functions“, Mat. Sb., 181:2, 189–211; Math. USSR-Sb., 69:1 (1991), 203–226
22. Salikhov V. Kh. 1990, “Irreducibility of hypergeometric equations and algebraic independence of values of 𝐸 – functions“, Acta Arith., Vol. 53. p. 453–471.
23. Salikhov, V. Kh. 1989, “Algebraic independence of values of hypergeometric 𝐸 – functions“, Dokl. Akad. Nauk SSSR, 307:2, 284–287; Dokl. Math., 40:1 (1990), 71–74
24. Salikhov, V. Kh. 1988, “Formal solutions of linear differential equations and their application in the theory of transcendental numbers“, Tr. Mosk. Mat. Obs., 51, MSU, M., 223–256
25. Shidlovskii, A. B. 1989, “Transcendental numbers“ [Transtsendentnye chisla] / Andrei Borisovich Shidlovskii; translated from the Russian by Neal Koblitz.
Review
For citations:
Munos V.A. Arithmetic properties of the values some hypergeometric 𝐹-series. Chebyshevskii Sbornik. 2021;22(2):519-527. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-2-519-527