Note on a theorem of Davenport
https://doi.org/10.22405/2226-8383-2021-22-2-484-489
Abstract
Let Λ be a 𝑛-dimensional lattice, and 𝑐1, . . . , 𝑐𝑛−1 be any 𝑛 − 1 vectors in 𝑛-dimensional real Euclidean space. We show that there exists a basis 𝛼1, . . . ,𝛼𝑛 of Λ such that
$$|𝛼𝑖 − 𝑁𝑐𝑖| = 𝑂(log^2 𝑁), (1 <= 𝑖 <= 𝑛 − 1)$$
holds for any real number 𝑁 > 2, where the constant implied by the 𝑂 symbol depends only on Λ and 𝑐1, . . . , 𝑐𝑛−1.
References
1. J. W. S. Cassels, An Introduction to the Geometry of Numbers. Springer-Verlag, Berlin, 1959.
2. H. Davenport, On a theorem of Furtw¨angler. J. London Math. Soc. 30 (1955), 186–195.
3. P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers. Second Edition, North-Holland, Amsterdam, 1987.
4. H. Iwaniec, On the problem of Jacobsthal. Demonstratio Math. 11 (1978), 225–231.
5. C. G. Lekkerkerker, A theorem on the distribution of lattices. Indag. Math. 23 (1961), 197–210.
6. C. G. Lekkerkerker, Homogeneous simultaneous approximations. Indag. Math. 25 (1963), 578– 586.
7. G. Martin, The least prime primitive root and the shifted sieve. Acta Arith. 80 (1997), 277–288.
8. K. Prachar, Primzahlverteilung. Springer-Verlag, Berlin, 1957.
9. Y. Wang, Remarks on a theorem of Davenport. Acta Math. Sinica 18 (1975), 286–289 (in Chinese); English transl. in Selected Papers of Wang Yuan, pp. 180–184, World Scientific,
10. Hackensack, NJ, 2005.
11. Z. H. Yang, An improvement for a theorem of Davenport. J. China Univ. Sci. Tech. 15 (1985), 1–5.
12. Q. Yao, An approximation theorem for an 𝑛-dimensional lattice. J. Shanghai Univ. Sci. Tech. 8 (1985), 12–15. (in Chinese)
13. Y. C. Zhu, A note on Lekkerkerker’s theorem concerning lattices. Acta Math. Sinica 23 (1980), 720–729.
14. Y. C. Zhu, An Introduction to the Geometry of Numbers. University of Science and Technology of China Press, Hefei, 2019. (in Chinese)
Review
For citations:
Gong K. Note on a theorem of Davenport. Chebyshevskii Sbornik. 2021;22(2):484-489. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-2-484-489