Preview

Chebyshevskii Sbornik

Advanced search

From the history of the concept of structural stability

https://doi.org/10.22405/2226-8383-2021-22-2-417-436

Abstract

Aim. The aim of the work is to study the history of ideas about coarseness (structural stability), which is not only one of the most important concepts of the theory of nonlinear systems, but lies at the heart of our worldview. To nowаdays, structural stability has been considered in historical terms only fragmentarily (mainly in connection with the Andronov school) and has not been the subject of a consistent historical study. Method. The study is
based on an analysis of original works, historical and scientific literature with the involvement of the memories of participants in the events described. Results. In Andronov’s school, in the
context of applied problems, two-dimensional systems for which structural stability is a typical property have been exhaustively studied. Since the late 1950s there is a shift in research on
structural stability in the context of applied problems towards the theory of dynamical systems.
M. Peixoto studied structural stability on closed two-dimensional manifolds and proved the density of such systems. S. Smale hypothesized the existence of structurally stable systems in
the multidimensional case (𝑛 > 3) . Such systems exist (Morse-Smale systems), but he himself established their atypicality, they do not constitute a dense set. Multidimensional systems are
characterized by complex behavior; an example of such a system (Smale’s horseshoe) was built. The study of systems with complex behavior stimulated the development of hyperbolic theory.
Discussion. Structural stability was an important factor in the discovery of the complex behavior of dynamical systems already in the three-dimensional case; it continues to play a
significant role in the modern theory of dynamical systems. Structural stability is of general scientific importance, played a key role in the construction of catastrophe theory, it went beyond the framework of the theory of dynamical systems and mathematics itself, penetrates into other areas of science, including the humanitarian sphere.

About the Author

Ravil’ Rafkatovich Mukhin
Ugarov Stary Oskol Technological Institute (branch) National University of Science and Technology «MISiS»
Russian Federation

doctor of physical and mathematical sciences



References

1. Thom, R. 1972, Stabilit´e structurelle et morphogen`ese, W.A. Bendjamin, Paris, 288 p.

2. Galileo, Galilei. 2017, Il Saggiatore, Independent Publishing Platform, Rome, 270 p.

3. Arnold, V.I. 2000, Geometric methods in the theory of ordinary differential equations, RHD, Izhevsk, 400 p.

4. Laplace, P.S. 1902, A Philosophical Essay on Probabilities, J. Wiley, N.Y., 230 p.

5. Molodshiy, V.N. 1978, ”A.-L. Cauchy and the revolution in the mathematical analysis of the first quarter of the 19th century“, Histor.Mat. Researches, Issue 23, pp. 32-55.

6. Liouville, J. 1841,”Remarques nouvelles sur l’´equation de Riccat“, J. Math. Pures et Appl., Vol. 36, pp. 1-13.

7. Bour, J. 1855, ”Sur l’integration des ´equations diff´erentielles de la M´ecanique Analytic“, J. Math. Pure et Appl., Vol. 20, pp. 185-200.

8. Liouville, J. 1855, ”Note `a l’occasion du memoire pr´ecident de M. Edmond Bour“, J. Math. Pure et Appl., Vol. 20, pp. 201-202.

9. Poincar´e, H. 1881; 1882; 1885; 1886, "Memoire sur les courbes d´efinies par une ´equations differentielle“, J. Мath. Рures et Аppl., S´er. 3, Vol. 7, pp. 375-422; Vol. 8, pp. 251-296; S´er. 4, Vol. 1, pp. 167-244; Vol. 2, pp. 151-217.

10. Poincar´e, H. 1947, Sur les courbes d´efinies par des ´equations diff´erentielles, GITTL, Moscow, 392 p. (in Russian).

11. Bohl, P. 1913, ” ¨Uber Differentialungleichugen“, J. f¨ur reine und angewandte Math. , Bd. 144, s. 284-313.

12. Myshkis, A.D., Rabinovich, I.M. 1965, Mathematician Pierce Bohl, Zinatne Publishing House, Riga, 100 p. (in Russian).

13. Anosov, D.V., 1985, ”Rough systems“, Proceedings of the Steklov Mathematical Institute of the USSR, Vol. 169, pp. 59-93 (in Russian).

14. Andronov, A.A., Pontryagin, L.S. 1937, ”Syst`emes grossiers “, Comp. Rend. de l’Acad. Sci. de URSS, Vol. 14, P. 247-250.

15. Poincar´e , H. 1908, ”L’avenir des math´ematiques“, Bull. des Sci. Math., 2e s´er., Vol. 32, part I, pp. 168-190.

16. Kneser, H., 1924, ”Regul¨are Karvenscharen auf den Ringfl¨achen“, Math. Ann., Vol. 91, S. 135- 154.

17. Peixoto, M. M. 1989, ”Acceptance speech for the TWAS 1986 award in mathematics“, The future of science in China and the third world, World Sci., Singapore , pp. 600-614.

18. Andronov, A.A. 1929, ”Les cycles limites de Poincar´e et la th´eorie des oscillations autoentretenues“, Comp. Rend., Vol. 189, Iss.15, pp. 559-561.

19. Boyko, E.S. 1991, Alexander Alexandrovich Andronov, Nauka, Moscow, 256 p. (in Russian).

20. Nemytsky, V.V. 1936, ”Moscow Topological Circle for 10 years“, Russian Math. Survey, Issue 2, pp. 279-285 (in Russian).

21. Andronov, A.A. 1956, ”Mathematical problems in self-oscillation theory“, Collected Works, Acad. Sci. USSR, Moscow, pp. 32-71 (in Russian).

22. Andronov, A.A., Khaikin, S.E. 1937, Theory of oscillations, ONTI, Moscow-Leningrad, 519 p. (in Russian).

23. Minorsky, N. 1958, Introduction to Nonlinear Mechanics, J.W. Edvards, Ann-Arbor, 476 p.

24. Andronov, A.A., Khaikin, S.E. 1949, Theory of Oscillations, Princeton Univ. Press, Princeton, NJ, 358 p.

25. Aubin, D. 1998, Cultural History of Catastrophe and Chaos, Universit´e de Princeton, D´epartement d’Histoire, 782 p.

26. Lefschetz, S. 1959, Nonlinear Differential Equations and Nonlinear Oscillations, US Office of Naval Research (August 15, 1946 – Sept. 30, 1959), Final Report.

27. Griffiths, P., Spencer, D., Whitehead, G. 1992, Solomon Lefschetz. A biographical memoir, National Acad. Sci., Washington D.C., 313 p.

28. De Baggis, G.F. 1952, ”Dynamical systems with stable structure“, Contribution to the Theory of Nonlinear Oscillations, Ed. Lefschetz S., Vol. 2, pp. 37-59.

29. Dahan Dalmedico, A. 1994, ”La renaissance des syst`emes dynamiques aux Etats-Unis apr`es la deuxieme guerre mondiale“, Suppl. Rendiconti dei circolo math. Palermo, Ser. II, Vol. 34, pp. 133-166.

30. Arnold, V.I. 1990, Catastrophe theory, Nauka, Moscow, 128 p. (in Russian).

31. Whiney, H. 1955, ”Singularities of mappings of Euclidean spaces“, Ann. Math., Vol. 62, pp. 374-410.

32. Kolmogorov, A.N. 1954, ”The general theory of dynamical systems and classical mechanics“, Proc. Intern. Congr. Math. Amsterdam, Vol. 1, pp. 315-333.

33. Hunt, B., Kaloshin, V. 2010, ”Prevalence“, Handbook of Dynamical Systems. Vol. 3. Ed. By H. Broer, F. Takens and B. Hasselblatt, Elseiver, Amsterdam, pp. 43-88.

34. Anosov, D.V. 1985, ”Transversality“, Math. encyclopedia, Vol. 5, Sov. Encyclopedia, Moscow, pp. 415-416 (in Russian).

35. Thom, R. 1954, ”Quelques proprieties globales des varites differentiables“, Comm. Math. Helv., Vol. 28, pp. 17-86.

36. Thom, R. 1956, ”Un lemme sur les applications differentiables“, Boletin de la Sociedad Math. Mexicana, Vol. 1, Ser. 2, pp. 59-71.

37. Levine, G. 1971, ”Singularities of differentiable mappings“, Lecture notes of math., Vol. 192, pp. 1-89.

38. Peixoto, M.M. 1993, ”Some Recollections of the Early Work of Steve Smale“, From Topology to Computation: Proceedings of the Smalefest. Ed. by M.W. Hirsh, J.E. Marsden, M. Shub,

39. Springer-Verlag, N.Y., pp. 73-75.

40. Sotomayor, J. 1952, ”Introduction: A few words about Mauricio M. Peixoto on his 80th birthday II. S. Lefschetz, ed.“, Princeton Univ. Press, Princeton, N.Y., pp. 37-59.

41. Lefschetz, S. 1957, Differential equations: geometric theory, Interscience Publshers, N.Y., 400 p.

42. Peixoto, M. 1959, ”On structural stability“, Ann. Math., Vol. 69, No 1, pp. 199-222.

43. Anosov, D.V. 2000, ”On the development of the theory of dynamical systems over the past quarter century“, Student Readings of MK NMU. V. 1., MCCNMO, Moscow, pp. 74-192 (in

44. Russian).

45. Smale, S. 1980, ”On how I can get started in dynamical systems“, Smale S. The mathematics of time, Springer Verlag, N.Y., pp. 147-151.

46. Peixoto, M. 1962, ”Structural stability on two-dimensional manifolds“, Topology, Vol. 1, No 2, pp. 101-120.

47. Mayer, A.G. 1939, "Rough transformation of a circle into a circle“, Sci. notes of Gorky State Univ., Issue 12, pp. 215-229 (in Russian).

48. Pliss, V.A. 1960, ”On the roughness of differential equations given on a torus“, Bull. of Leningrad State Univ., Vol. 13, Issue. 3, pp. 15-23 (in Russian).

49. Arnold, V.I. 1961, ”Small denominators. I. The mapping of a circle onto itself“, Proc. of the USSR Acad. of Sci. Ser. Math., Vol. 25. No. 1. pp 21-86 (in Russian).

50. Palis, J., Di Melo, V. 1998, Geometric theory of dynamical systems, University of Beijing, Beijing, 198 p.

51. Peixoto, M. 1963, "Structural stability on two-dimensional manifolds – a further remarks“, Topology, Vol. 2, No 2, pp. 179-180.

52. Nemytskii, V.V., Stepanov, V.V. 1960, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, NJ, 523 p.

53. Smale, S. 1961, ”On gradient dynamical systems“, Ann. Math., Vol. 74, pp. 199-206.

54. Smale, S. 1963, ”A structurally stable differential homomorphysm with an infinite number of periodic points“, Proc. Int. Congress on non-linear oscillations in Кiev, 1961, Ukranian Acad. Sci., Кiev, pp. 365-366.

55. Smale, S. 1966, ”Structurally stable systems are not dense“, Am. J. Math., Vol. 73, pp. 747-817.

56. Smale, S. 2000, ”Finding a Horseshoe on the Beaches of Rio“, Chaos Avant-Garde, World Sci., Singapore, pp. 7-22.

57. Cartwright, M., Littlewood, J.E. 1945, ”On non-linear differential equations of the second order: I. The equation 𝑦 − 𝑘(1 − 𝑦2)𝑦 + 𝑦 = 𝑏𝜆𝑘𝑐𝑜𝑠(𝜆𝑡 + 𝛼), k large“, J. London Math. Soc., Vol. 20, Part 3, No 79, pp. 180-189.

58. Cartwright, M., Littlewood, J.E. 1947;1949, ”On non-linear differential equations of the second order: II. The equation 𝑦 + 𝑘𝑓(𝑦, 𝑦) + 𝑔(𝑦, 𝑘) = 𝑝(𝑡) = 𝑝1(𝑡) + 𝑘𝑝2(𝑡); 𝑘 > 0, 𝑓(𝑦) > 1“, Ann.

59. Math., Vol. 48. No 2. P. 472-494; Vol. 50, pp. 504-505.

60. Littlewood, J.E. 1957, ”On non-linear differential equations of the second order: III. The equation 𝑦 − 𝑘(1 − 𝑦2)𝑦 + 𝑦 = 𝑏𝜆𝑘𝑐𝑜𝑠(𝜆𝑡 + 𝛼), for large 𝑘, and its generalization“, Acta Math.,

61. Vol. 97, No 3-4, pp. 267-308.

62. Littlwood, J.E. 1957, ”On the non-linear differential equations of the second order: IV. The general equation 𝑦+𝑘𝑓(𝑦)𝑦+𝑔(𝑦) = 𝑏𝑘𝑝(𝜙), 𝜙 = 𝑡+𝛼“, Acta Math., Vol. 98, No 1-2, pp. 1-110.

63. Littlwood, J.E. 1960, ”On the number of stable periods of a differential equation of the Van der Pol type“, JRE Trans. Circuit Theory, Vol. 7, No 4, pp. 535-542.

64. Levinson, N. 1949, ”A second order differential equation with singular solutions“, Ann. Math., Vol. 50, No 1, pp. 126-153.

65. Smale, S. 1966, ”Structurally stable systems are not dense“, Am. J. Math., Vol. 73, pp. 747-817.

66. Anosov, D.V. 2006, ”Dynamical systems in the 60s: hyperbolic revolution“, Mathematical events of the twentieth century, Springer, Berlin, pp. 1-18.

67. Anosov, D.V. 1962, ”Coarseness of geodesic flows on compact Riemannian manifolds of negative

68. curvature Rep. of Acad. Sci. USSR, Vol. 145, № 4, pp. 707-709.

69. Anosov, D.V. 1967, ”Geodesic flows on compact Riemannian manifolds of negative curvature“, Proceedings of MIAN, Nauka, Moscow, pp. 3-209.

70. Ilyashenko, Yu.S. 2006, ”Attractors of dynamical systems and philosophy of generic position“, Images de Mathematique, CNRS, France, p. 58–63.

71. Ruelle, D., Takens, F. 1971, ”On the Nature of Turbulence“, Comm. Math. Phys., Vol. 20, pp. 167-192.

72. Arnold, V.I.1986, ”Catastrophe Theory“, Modern problems of mathematics. Fundamental directions. V. 5., VINITI, Moscow, pp. 219-277 (in Russian).

73. Hadamard, J. 1923, Lectures on Cauchy’s Problem in Linear Differential Equations, New Haven, 316 p.

74. Mira, C. 1997, ”Some historical aspects of nonlinear dynamics: possible trends for the future“, Int. J. Bifurcation and Chaos, Vol. 7, No 9, pp. 2145-2173.

75. Tikhonov, A.N. 1943, "On the stability of inverse problems“, Rep. of Acad. Sci. USSR, Vol. 39, No. 5, pp. 195-198 (in Russian).

76. Thom, R. 1969, ”Topological models in biology“, Topology, Vol. 8, No 3, pp. 313-335.

77. Thom, R. 1974, ”Catastrophe theory: Its present state and future perspectives“, Dynamical systems, Springer-Verlag, Berlin, pp. 366-372.

78. Aubin D. 2001, ”From catastrophe to chaos: the modelling practices of applied topologists“, Changing images of math. Ed. by U. Bottazzini and A. Dahan Dalmedico, Routledge, N.Y., pp.

79. -279.

80. Aleskerov, F.T. et al. 2007, Influence and structural stability in the Russian parliament (1905- 1917 and 1993-2005), Fizmatlit, Moscow, 309 p. (in Russian).


Review

For citations:


Mukhin R.R. From the history of the concept of structural stability. Chebyshevskii Sbornik. 2021;22(2):417-436. (In Russ.) https://doi.org/10.22405/2226-8383-2021-22-2-417-436

Views: 504


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)