НЕКОТОРЫЕ ЗАМЕЧАНИЯ О ДИСТАНЦИЯХ В ПРОСТРАНСТВАХ АНАЛИТИЧЕСКИХ ФУНКЦИЙ В ОГРАНИЧЕННЫХ ОБЛАСТЯХ С ГРАНИЦЕЙ ИЗ C2 И В ДОПУСТИМЫХ ОБЛАСТЯХ1 2
https://doi.org/10.22405/2226-8383-2014-15-3-114-130
Аннотация
Ключевые слова
Список литературы
1. H. R. Cho, E. G. Kwon, Growth rate of the functions in the Bergman type spaces // J. Math. Anal Appl, 285, 2003, no1. P. 275–281.
2. Cho H. R., Kwon E. G. Embedding of Hardy spaces in bounded domains with C2 boundary // Illinois J.Math, 48, 2004, no 3, P. 747–757.
3. H. R. Cho, J. Lee, Inequalities for integral means for holomorphic functions in the strictly pseudoconvex domains // Communication of Korean Mathematical. Society, 20, 2005, 2, 339–350.
4. H. R. Cho, Estimate on the mean growth of Hp functions in convex domains of finite type // Proc. Amer. Math. Society, 131, 8, 2393–2398.
5. W. Cohn, Weighted Bergman projections and tangential area integrals // Studia Mathematica 1993. 106.1 P. 59–76.
6. S. Krantz, S. Y. Li ,Duality theorems for Hardy and Bergman spaces on convex domains of finite type in Cn // Annales de I"nstitute Fourier 1995. Vol. 45, №5. P. 1305–1327.
7. L. Lanzani, E. Stein, The Bergman projection in Lp for domains with minimal smoothness, preprint, arxiv, 2011.
8. W. Cohn, Tangential characterizations of BMOA on strictly pseudoconvex domains, Mathematica Scandinavica 1993. 73.2 P. 259–273.
9. M. Arsenovic; R. Shamoyan On an extremal problem in Bergman spaces // Communication of Korean Mathematical Society, 2012.
10. J. Ortega, J. Fabrega, Mixed norm spaces and interpolation // Studia Math., 1995. Vol. 109, (3), P. 234–254.
11. S.-Y.Li, W. Luo, Analysis on Besov spaces II Embedding and Duality theorems, 2007, preprint
12. S. Krantz, S. Li ,A note on Hardy space and functions of Bounded Mean Oscillation on Domains of Cn // Michigan Math. Journal, 41, 1994
13. S. Krants and S. Li, On decomposition theorems for Hardy spaces on domains in Cn and applications // The Journal Functional analysis and applications 1995. Vol. 2 N. 1,
14. F. Beatrous, Jr. Lp estimates for extensions of holomorphic functions // Michigan Math. Jour. 1985 Vol. 32, P. 361–380.
15. R. Shamoyan, O. Mihi´c, On new estimates for distances in analytic function spaces in higher dimension // Siberian Electronic Mathematical Reports 2009. №6. P. 514–517.
16. R. Shamoyan, O. Mihi´c, On new estimates for distances in analytic function spaces in the unit disk, polydisk and unit ball // Bolletin Asociacion Mathematica Venezolana, 2010. Vol. 17, (2), 89–103.
17. R. Shamoyan, On extremal problems in Bergman spaces in tubular domains over symmetric cones, 2012, preprint
18. R. Shamoyan, On extremal problems in analytic spaces in two Siegel domains // ROMAI Journal, 2012. Vol. 2, 167–180.
19. S. Yamaji, Essential norm estimates for positive Toeplitz operators on the weighted Bergman space of a minimal bounded homogeneous domain, preprint, arxiv, 2011.
20. S. Yamaji, Some estimates of Bergman kernel in minimal bounded homogeneous domains, arxiv, 2012, preprint.
21. P. Jakobczak, The boundary regularity of the solution of the df equation in the products of strictly pseudoconevx domains // Pacific Journal of Mathematics 1986. Vol. 121, 2,
22. T. Jimb, A. Sakai, Interpolation manifolds for products of strictly pseudoconvex domains, Complex Variables 1987. Vol. 8. P. 222–341.
Рецензия
Для цитирования:
Шамоян Р.Ф., Куриленко С.М. НЕКОТОРЫЕ ЗАМЕЧАНИЯ О ДИСТАНЦИЯХ В ПРОСТРАНСТВАХ АНАЛИТИЧЕСКИХ ФУНКЦИЙ В ОГРАНИЧЕННЫХ ОБЛАСТЯХ С ГРАНИЦЕЙ ИЗ C2 И В ДОПУСТИМЫХ ОБЛАСТЯХ1 2. Чебышевский сборник. 2014;15(3):114-130. https://doi.org/10.22405/2226-8383-2014-15-3-114-130
For citation:
Shamoyan R., Kurilenko S. SOME REMARKS ON DISTANCES IN SPACES OF ANALYTIC FUNCTIONS IN BOUNDED DOMAINS WITH C2 BOUNDARY AND ADMISSIBLE DOMAINS. Chebyshevskii Sbornik. 2014;15(3):114-130. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-3-114-130