Preview

Chebyshevskii Sbornik

Advanced search

О разбиениях усечённого икосаэдра на паркетогранники

https://doi.org/10.22405/2226-8383-2018-19-2-452-480

Abstract

Изучение паркетогранников началось сразу после завершения классификации выпуклых многогранников с правильными гранями полвека назад. Паркетогранником назовём выпуклый многогранник, обладающий правильными или паркетными гранями. Напомним, паркетным называется выпуклый многоугольник, составленный из конечного и большего единицы числа равноугольных многоугольников. Паркетные многоугольники классифицированы: существует 23 их типа. Четыре из них могут быть представлены правильными многоугольниками, а ещё пять имеют равносторонние представители, составленные так из правильных многоугольников, что каждая вершина такого правильного многоугольника служит и вершиной паркетного. Около десяти  лет назад стали известны с точностью до подобия все паркетогранники, которые кроме правильных могут обладать и указанными пятью паркетными гранями. Выдвинута гипотеза, приводящая нахождению всех равнорёберных паркетогранников.  Без рассмотрения соединений по однотипным граням невозможно получить все типы паркетогранников, т.е. закрыть основную проблему: ''Каковы все типы паркетогранников?''  В настоящей работе рассмотрена часть требуемых для решения этой проблемы соединений правильногранной пятиугольной пирамиды $M_3$ с единичными рёбрами, усечённой по средним линиям боковых треугольных граней пирамиды $M_{3a}$, тел $M_{19a}$ и $M_{19b}$, полученных из усечённого икосаэдра $M_{19}$ отсечением двух и трёх семигранников $M_{3a}$ соответственно. Рёбра трёх последних тел и рёбра соединений имеют длины один и два. В настоящее время этот результат может представлять самостоятельный интерес для квазикристаллографии. В частности, архимедово тело $M_{19}$ с правильными пятиугольником и двумя шестиугольниками в каждой вершине является представителем фуллеренов. Кроме того, объём уже сделанных вычислений показывает необходимость привлечения в существенно больших масштабах программирования и компьютерной графики, для которых выполненная работа послужит хорошим тестом.

About the Authors

Е. С. Карпова

Russian Federation


Алексей Тимофеенко
Красноярский государственный педагогический университет
Russian Federation


Review

For citations:


 ,   . Chebyshevskii Sbornik. 2018;19(2):446-474. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-2-452-480

Views: 610


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)