Preview

Chebyshevskii Sbornik

Advanced search

Diffraction of sound on an elastic sphere with a nonhomogeneous coating and cavity in semi-space

https://doi.org/10.22405/2226-8383-2018-19-4-177-193

Abstract

The problem for diffraction a plane harmonic sound wave on an elastic sphere T with cavity near ideal plane Π is considered. The outer ball layer is nonhomogeneous. Решение проводится путем расширения области задачи до полного пространства The solution is carried out by expanding the scope of the problem to the full space. При этом вводится дополнительное препятствие, которое является копией T, расположенной зеркально по отношению к плоскости Π. In this case, an additional obstacle is introduced, which is a copy of T, which is located mirror with respect to the Π. A second incident plane wave is also added. This wave ensures the fulfillment of that condition at the points of the plane Π, which corresponds to the type of the half-space boundary in the initial formulation of the problem. Thus, the problem is transformed into the problem of scattering of two plane sound waves on two inhomogeneous spheres in unbounded space. The solution is based on the linear theory of elasticity and the model of propagation of small vibrations in an ideal fluid. In the outer part of the liquid, the solution is sought analytically in the form of an expansion in spherical harmonics and Bessel functions. In the spherical region, which includes two elastic balls and an adjacent layer of liquid, the finite element method (FEM) is used. The results of the calculation of the directivity patterns of the scattered sound field in the far zone are presented. These dependencies show the influence of the geometric and material parameters of the obstacle on the diffraction of sound.

About the Authors

S. A. Skobel’tsyn
Tula State University
Russian Federation

Skobel’tsyn Sergey Alekseevich — candidate of physical and mathematical sciences, department of applied mathematics and computer science



I. S. Fedotov
Tula State University
Russian Federation

Fedotov Ivan Sergeevich — postgraduate, department of applied mathematics and computer science



A. S. Titova
Tula State University
Russian Federation

Titova Angelina Sergeevna — postgraduate, department of applied mathematics and computer science



References

1. Gvishiani, A.D., Zhizhin, M.N., Mostinskii, A.Z. & Tumarkin, A.G. 1986, "Classifikatciia sil‘ny‘kh dvizhenii‘ algoritmami raspoznavaniia", Matematicheskie metody‘ obrabotki geofizicheskoi‘ informatcii, M.: IFZ AN USSR, pp. 136-156.

2. Bonnin, J., Bottard, S., Gvishiani, A., Mohammadioun B. & Zhizhin, M. 1992, "Classification of strong motion waveforms from different geological regions using syntactic pattern recognition scheme", Cahiers du Centre Europeen de Geodynamique et de Seismologie, vol. 6, pp. 33-42.

3. Gvishiani A. & Dubois J. 2002, "Artificial intelligence and dynamic systems for geophysical applications", Springer-Verlag, Paris, 350 p.

4. Faran J.J. 1951, "Sound scattering by solid cylinders and spheres", J. Acoust. Soc. Amer., vol. 23, no 4, pp. 405-420.

5. Junger M.C. 1952, "Sound scattering by thin elastic shells", J. Acoust. Soc. Amer., vol. 24, no 4, pp. 226-373.

6. Hasegawa, T. & Yosioka, K. 1969, "Acoustic-radiation force on a solid elastic sphere", J. Acoust. Soc. Amer., vol. 46, no 5, part 2, pp. 1139-1143.

7. Plahov, D.D. & Savolai‘nen, G.Y. 1975, "Difraktciia sfericheskoi‘ zvukovoi‘ volny‘ na uprugoi‘ sfericheskoi‘ obolochke", Akust. Zhurnal, vol. 21, no 5, pp. 789-796.

8. Tolokonnikov, L.A. & Filatova, U.M. 2010, "Difraktciia ploskoi‘ zvukovoi‘ volny‘ na uprugom share s proizvol‘no raspolozhennoi‘ sfericheskoi‘ polost‘iu", Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, no 1, pp. 115-123.

9. Tolokonnikov, L.A. & Filatova, U.M. 2010, "O difraktcii tcilindricheskoi‘ zvukovoi‘ volny‘ na uprugom share s proizvol‘no raspolozhennoi‘ polost‘iu", Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, no 2, pp. 134-141.

10. Filatova, U.M. 2009, "O rasseianii zvukovy‘kh voln uprugim sharom s nekoncentricheskoi‘ polost‘iu", Materialy‘ mezhdunar. nauchn. konf. "Sovremenny‘e problemy‘ matematiki, mehaniki, informatiki", Tul. Gos. Univ., Tula, pp. 295-296.

11. Filatova, U.M. 2010, "Рассеяние сферической звуковой волны упругим шаром с полостью", Vestnik Tul. Gos. Univ., Ser. Differentcial‘ny‘e uravneniia i pricladny‘e zadachi., no 1, pp. 8792.

12. Harari, I. & Hughes, T.J.R. 1991, "Finite element method for the Helmholtz equation in an exterior domain: model problems", Comp. Methods Appl. Mech. Eng. vol. 87, pp. 59-96.

13. Gan, H., Levin, P.L. & Ludwig, R. 1993, "Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain", J. Acoust. Soc. Am., vol. 94, no 3, pt. 1, pp. 1651-1662.

14. Ihlenburg, F. 2013, "Finite element analysis of acoustic scattering", Springer Publishing Company Inc., New York, 226 p.

15. Skobel’tsyn, S.A. 2004, "Approach to solving problems on the scattering of elastic waves using FEM", Tez. doc. Intern. scientific. Conf. “Modern problems of mathematics, mechanics, computer science”, Tul. Gos. Univ., Tula, pp. 135-136.

16. Ivanov, V.I. & Skobel’tsyn, S.A. 2008, "Modeling solutions to acoustics using FEM", Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, no 2, pp. 132-145.

17. Ivanov, E.A. 1968, "Diffraction of electromagnetic waves by two bodies", Nauka i tekhnika, Minsk, 584 p.

18. Kleshchev, А.А. 1977, "Scattering of sound by spheroidal bodies located at the interface between media" Akust. Zhurnal, vol. 23, no. 3, pp. 404-410.

19. Gaunaurd, J.C. & Huang, H. 1994, "Acoustic scattering by a spherical body near a plane boundary", J. Acoust. Soc. Amer., vol. 96, no 6, pp. 2526-2536.

20. Tolokonnikov, L.A. & Logvinova, A.L. 2015, "Diffraction of a plane sound wave on two nonuniform cylinders with rigid inserts", Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, no 1, pp. 54-66.

21. Skobel’tsyn, S.A. & Tolokonnikov, L.A. 2015, "Diffraction of a plane sound wave on an elastic spheroid with an inhomogeneous coating in the presence of an underlying surface", Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, no 2, pp. 64-75.

22. Isakovich, M.A. 1973, "General acoustics", Nauka, Мoscow, 496 p.

23. Skudryzk, E.F. 1971, "The Foundations Acoustic", Springer-Verlag, New York, 542 p.

24. Nowacki, W. 1975, "Teoria sprezystosci", Mir, Мoscow, 872 p.


Review

For citations:


Skobel’tsyn S.A., Fedotov I.S., Titova A.S. Diffraction of sound on an elastic sphere with a nonhomogeneous coating and cavity in semi-space. Chebyshevskii Sbornik. 2018;19(4):177-193. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-4-177-193

Views: 733


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)