Preview

Chebyshevskii Sbornik

Advanced search

REDUCED ORDER MULTISCALE ANALYSIS OF MOISTURE DEGRADATION IN COMPOSITE MATERIALS

https://doi.org/10.22405/2226-8383-2017-18-3-279-289

Abstract

There are variety of factors affecting degradation of composite materials due to environmental effects. In the present manuscript, two  sources of degradation are studied. We first consider an accumulation of damage in carbon-fiber/epoxy-resin material system subjected to cyclic  load. A  multiscale-multiphysics approach is developed for degradation  of glassfiber/ Nylon material system due to moisture accumulation. A  multiphysicsmultiscale approach couples diffusion-reaction-mechanical  process at multiple spatial scales.

About the Authors

Zifeng Yuan
Columbia University
Colombia

Postdoctoral Researcher in the City of New York



Jacob Fish
Columbia University
Colombia

The Carleton Professor, City of New York (Civil Engineering and Engineering Mechanics )



References

1. Gerard, B., G. Pijaudier-Cabot, and C. Laborderie, 1998, Coupled diffusiondamage modelling and the implications on failure due to strain localisation. International Journal of Solids and Structures. International Journal of Solids and Structures, 35(31-32): p. 4107-4120.

2. Gerard, B., C. Le Bellego, and O. Bernanrd, 2002, Simplified modelling of calcium leaching of concrete in various environment. Materials and Structures, 35: p. 632-640.

3. Ulm, F.J., E. Lemarchand, and F. Heukamp, H., 2003, Elements of chemomechanics of calcium leaching of cement-based materials at different scales. Engineering Fracture Mechanics, 70: p. 871-889.

4. Terada, K. and M. Kurumatani, 2010, Two-scale diffusion–deformation coupling model for material deterioration involving micro-crack propagation. International Journal for Numerical Methods in Engineering, 83(4): p. 426- 451.

5. Q. Yu and J. Fish, 2002, Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem, International journal of solids and structures 39 (26), 6429-6452,

6. Kuznetsov, S. and J. Fish, 2012, Mathematical homogenization theory for electroactive continuum. International Journal for Numerical Methods in Engineering, 91(11): p. 1199-1226.

7. D. Klepach and T.I. Zohdi. 2014, Modeling and simulation of deformationdependent diffusion in composite media. Composites Part B: Engineering. Volume 56, 413-423,

8. T.I Zohdi and P. Wriggers, 2008, Introduction to computational micromechanics. Second Reprinting. Springer-Verlag.,

9. T.I. Zohdi. An adaptive-recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids. The International Journal of Numerical Methods in Engineering. 53, 1511-1532, 2002.

10. T.I. Zohdi. 2004, Modeling and simulation of a class of coupled thermo-chemomechanical processes in multiphase solids. Computer Methods in Applied Mechanics and Engineering. Vol. 193/6-8 679-699,

11. M. Bailakanavar, J. Fish, V. Aitharaju and W. Rodgers, 2014, Coupling of moisture diffusion and mechanical deformation in polymer matrix composites Volume 98, Issue 12, pages 859–880,

12. R.J. Atkin and R.E. Craine, 1976, Continuum theories of mixtures: basic theory and historical development. Q.J. Mechanics Appl. Math., 29(2), 209–244,

13. R.M. Bowen, 1976, Theory of mixture. Continuum Physics III, 1–127,

14. R. Dunwoody, 1970, A thermomechanical theory of diffusion in solid-fluid mixtures. Arch. Ration. Mech. Anal. 38, 348–371,

15. K. Hutter and K. J¨ohnk, 2004, Continuum Methods of Physical Modeling. Springer, Berlin,

16. S. Lustig, J. Caruthers and N. Peppas, 1992, Continuum thermodynamics and transport theory for polymer-fluid mixtures. Chem. Eng. Sci., 47, 3037–3057,

17. I. M¨uller, 1968, A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1–39,

18. N. Quang, I. Samoh´yl and H. Thoang, 1988, Irreversible (rational) thermodynamics of mixtures of a solid substance with chemical reacting fluids. Collect. Czech. Chem. Commun. 53, 1620–1635

19. I. Samoh´yl and X.N.M. ˇS´ıpek, 1985, Irreversible (rational) thermodynamics of fluid-solid mixtures. Collect. Czech. Chem. Commun. 50, 2346–2363,

20. C. Truesdell, 1962, C. Mechanical basis of diffusion. J. Chem. Phys. Vol. 37, pp. 2336–2344,

21. V. Aitharaju, W. Rodgers, 2010, Internal General Motors Report 22. H. K. Reimschuessel, 1978, “Relationships on the effect of water on glass transition temperature and young’s modulus of nylon 6,” J. Polym. Sci. Polym. Chem. Ed., vol. 16, no. 6, pp. 1229–1236, Jun.

22. J. Fish, 2013, Practical Multiscaling, Wiley

23. Z. Yuan and J. Fish, 2009, Hierarchical model reduction at multiple scales. Hierarchical Model Reduction at Multiple Scales, International Journal for Numerical Methods in Engineering, Vol. 79, Issue 3, pp. 314–339


Review

For citations:


Yuan Z., Fish J. REDUCED ORDER MULTISCALE ANALYSIS OF MOISTURE DEGRADATION IN COMPOSITE MATERIALS. Chebyshevskii Sbornik. 2017;18(3):279-289. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-3-279-289

Views: 511


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)