Preview

Chebyshevskii Sbornik

Advanced search

BINARY ADDITIVE PROBLEM WITH NUMBERS OF SPECIAL TYPE

https://doi.org/10.22405/2226-8383-2015-16-3-246-275

Abstract

In this paper we consider binary additive problem of the form n1 +n2 = N with n1 ∈ N(α, I1), N2 ∈ N(β, I2), where N(α, I) = {n ∈ N : {nα} ∈ I}. Main examples of such sets are the sets of natural numbers with specified ending of greedy expansion of the number by linear recurrence sequences associated with Pisot numbers. Besides that, the sets N(α, I) are special cases of quasilattices. Previously additive problems on the sets of this type are considered only for the case α = β. In this case was obtained asymptotic formulaes for the number of solutions of the additive problem with an arbitrary number of terms, and for number of solutions in analogues of ternary Goldbach problem, Hua-Loken problem, Waring problems, and Lagrange problem about the representation number of natural numbers as a sum of four squares. Wherein, Gritsenko and Motkina discovered that in the case of linear problems we have the following nontrivial effect: apprearence of a rather complicated function in the main term of the asymptotics for the number of solutions. For nonlinear problems corrsponding effect is missing and the form of the main term can be obtained by the density considerations. In our problem, we show that the behavior of the main term of the asymptotic formula for the number of solutions significantly depends on the arithmetic of α and β. If 1, α and β are linearly independent over the ring of integers Z, then the main term of the asymptotic has the "density"form, i.e. it is equal to |I1||I2|N. In the case of linear dependence of 1, α and β we have the Gritsenko-Motkina effect, i.e. the main term is ρ({Nβ})N, where ρ is a rather complicated efficiently computable piecewise linear function of the fractional part {Nβ}. we obtain an algorithm for computation of the function ρ, and study basic properties of this function. In particular, we obtain sufficient conditions for its non-vanishing. Also we give a numerical example of the computation of this function for some concrete sets N(α, I1), N(β, I2). In the final part of the paper we discuss some open problems in this area.

 

About the Authors

A. A. Zhukova
Владимирский филиал Российской академии народного хозяйства и государственной службы при Президенте Российской Федерации
Russian Federation


A. V. Shutov
Владимирский государственный университет имени А. Г. и Н. Г. Столетовых
Russian Federation


References

1. Gricenko S. A. & Mot’kina N. N. 2009. "Hua Lo-ken problem involving prime numbers of a special type" , DAN respubliki Tadzhikistan, Vol. 52, no. 7, pp. 497–500. (Russian)

2. Gricenko S. A. & Mot’kina N. N. 2011. "On the computation of some singular series." , Chebyshevskii Sb., Vol. 12, no. 4, pp. 85–92. (Russian)

3. Gricenko S. A. & Mot’kina N. N. 2010. "Additive problems with given numbers." , Nauchnye vedomosti BelGU. Serija Matematika. Fizika, Vol. 18, no. 5(76), pp. 83–87. (Russian)

4. Gricenko S. A. & Mot’kina N. N. 2009. "On a variant of ternary Goldbach problem." , DAN respubliki Tadzhikistan, Vol. 52, no. 6, pp. 413–417 (Russian)

5. Gricenko S. A. & Mot’kina N. N. 2011. "On Chudakov’s theorem involving primes of a special type." , Chebyshevskii Sb., Vol. 12, no. 4, pp. 75–84. (Russian)

6. Gricenko S. A. & Mot’kina N. N. 2014. "Waring’s problem involving natural numbers of a special type." , Chebyshevskii Sb., Vol. 15, no. 3, pp. 31–47. (Russian)

7. Davletyarova E. P., Zhukova A. A., Shutov A. V. 2013. "Geometrization of Fibonacci numeration system and its applications to number theory." , Algebra i analiz, Vol. 25, no. 6, pp. 1–23 (Russian); translation in St. Petersburg Mathematical Journal, 2014. Vol. 25, no. 6, pp. 893–907. doi: 10.1090/S1061- 0022-2014-01321-0.

8. Zhuravlev V. G. 2010. "Hyperbolas over two-dimensional Fibonacci quasilattices." , Fundam. Prikl. Mat., Vol. 16, no.6, pp. 45-62. (Russian). translation in Journal of Mathematical Sciences, 2012, Vol. 182, no. 4, pp. 472–483. doi: 10.1007/s10958-012-0751-1.

9. Zhuravlev V. G. 2008. "Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum ." , Algebra i analiz, Vol. 20, no. 3, pp. 18-46 (Russian). translation in St. Petersburg Mathematical Journal, 2009, Vol.20, no. 3, 339–360. doi:10.1090/S1061-0022-09-01051-6.

10. Zhuravlev V. G. 2007. "One-dimensional Fibonacci quasilattices and their application to the Euclidean algorithm and Diophantine equations" , Algebra i analiz, Vol. 19, no. 3, pp. 151–182 (Russian). translation in St. Petersburg Mathematical Journal, 2008, Vol. 19, no. 3, pp. 431–454. doi: 10.1090/S1061- 0022-08-01005-4.

11. Zhuravlev V. G. 2006. "Sums of squares over the Fibonacci ◦-ring" , Zapiski nauchnogo seminara POMI, Vol. 337, pp. 165–190 (Russian). translation in Journal of Mathematical Sciences, 2007, Vol. 143, no. 3, pp. 3108–3123. doi: 10.1007/s10958-007-0195-1.

12. Zhuravlev V. G. 2005. "Rauzy tilings and bounded remainder sets on the torus" , Zapiski nauchnyh seminarov POMI, Vol. 322, pp. 83–106 (Russian). translation in Journal of Mathematical Sciences, 2006, Vol. 137, no. 2, pp. 4658–4672. doi: 10.1007/s10958-006-0262-z.

13. Zhuravlev V. G. 2007. "The Pell equation over the ◦-Fibonacci ring" , Zapiski nauchnogo seminara POMI, Vol. 350, pp. 139–159 (Russian). translation in Journal of Mathematical Sciences, 2008, Vol. 150, no. 3, pp. 2084–2095. doi: 10.1007/s10958-008-0123-z.

14. Krasil’shchikov V. V., Shutov A. V. & Zhuravlev V. G. 2009. "One-dimensional quasiperiodic tilings admitting progressions enclosure" , Izv. Vyssh. Uchebn. Zaved. Mat., no. 7, pp. 3–9 (Russian). translation in Russian Mathematics (Izvestiya VUZ. Matematika), 2009, Vol. 53, no. 7, pp. 1–6. doi: 10.3103/S1066369X09070019.

15. Krasil’shchikov V. V. & Shutov A. V. 2012. "Distribution of points of onedimensional quasilattices with respect to a variable module" , Izv. Vyssh. Uchebn. Zaved. Mat., no. 3, pp. 17–23 (Russian). translation in Russian Mathematics (Izvestiya VUZ. Matematika), 2012, Vol. 56, no. 3, pp. 14–19. doi:10.3103/S1066369X12030036.

16. Shutov A. V. 2010. "The arithmetic and geometry of one-dimensional quasilattices" , Chebyshevskii Sb., Vol. 11, no. 1, pp. 255–262 (Russian)

17. Shutov A. V. 2013. "On one additive problem with the fractional part function" , Nauchnye vedomosti BelGU. Serija Matematika. Fizika, Vol. 30, no. 5(148), pp. 111–120 (Russian)

18. Shutov A. V. 2006. "Numeration systems and bounded remainder sets" , Chebyshevskii Sb., Vol. 7, no. 3, pp. 110–128. (Russian)

19. Shutov A. V. 2012. "Trigonometric sums over one-dimensional quasilattices" , Chebyshevskii Sb., Vol. 13, no. 2, pp. 136–148. (Russian)

20. Akiyama S. 1999. "Self affine tiling and Pisot numeration system" , Number Theory and its Applications, ed. by K. Gyory and S. Kanemitsu, Kluwer. pp 7–17.

21. Rauzy G. 1982. "Nombres alge′ briques et substitutions" , Bull. Soc. Math. France, Vol. 110, pp. 147–178.

22. Shutov A. V., Maleev A. V. & Zhuravlev V. G. 2010. "Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and similarities" , Acta Crystallogrphica A, Vol. 66., pp. 427–437. doi: 10.1107/ S0108767310006616.

23. Weyl H. 1916. "Ueber die Gleichverteilung von Zahlen mod. Eins" , Math. Ann., Vol. 77, no. 3, pp. 313–352.

24.

25.


Review

For citations:


Zhukova A.A., Shutov A.V. BINARY ADDITIVE PROBLEM WITH NUMBERS OF SPECIAL TYPE. Chebyshevskii Sbornik. 2015;16(3):246-275. https://doi.org/10.22405/2226-8383-2015-16-3-246-275

Views: 447


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)