Preview

Chebyshevskii Sbornik

Advanced search

On Some arithmetic applications to the theory of symmetric groups

https://doi.org/10.22405/2226-8383-2023-24-4-252-263

Abstract

The work is devoted to some arithmetic applications to the theory of symmetric groups.
Using the properties of congruences and classes of residues from number theory, the existence in the symmetric group 𝑆_𝑛 of degree 𝑛 of cyclic, Abelian and non-Abelian subgroups respectively, of orders is establisned 𝑘, 𝜙(𝑘), and 𝑘𝜙(𝑘), where 𝑘 ≤ 𝑛, 𝜙 – Euler function, those representations jf grups (Z/𝑘Z, +), (Z/𝑘Z)* and theorem product in the form of degree substitutions 𝑘. In this case isomorphic embeddings of these groups are constructed following the proof of Cayley’s theorem,
but along with this, a linear binomial is used Z/𝑘Z residue class rings, where gcd (𝑎, 𝑘) = 1.
In addition, the result concerning the isomorphic embedding of a group (Z/𝑘Z)* in to a group (Z/𝑘Z)* in to a group 𝑆_𝑘 extends to an alternating group 𝐴_𝑘 for odd 𝑘.
The second part of the work examines some applications of prime number theory to cyclic subgroups of the symmetric group 𝑆_𝑛. In particular, applying the Euler-Maclaurin summation formula and bounds for the 𝑘 in prime, a lower bound for maximum number of prime divisors of cyclic orders in the symmetric group 𝑆_𝑛.

About the Authors

Urusbi Mukhamedovich Pachev
Berbekov Kabardino–Balkarian State University; North–Caucasus Federal University
Russian Federation

doctor of physical and mathematical sciences, professor



Rezuan Auesovich Dokhov
North–Caucasus Federal University
Russian Federation

candidate of physical and mathematical sciences, associate professor



Azamat Khasanovich Kodzokov
Berbekov Kabardino–Balkarian State University
Russian Federation


Marina Sefovna Nirova
Berbekov Kabardino–Balkarian State University
Russian Federation

candidate of physical and mathematical sciences, associate professor



References

1. Borevich Z. I., Zhafarevich I. R. 1985, “Number theory”, Nauka, Moscow, 510 p. (Russia).

2. Bertrand. 1845, Journ. de l’Ecole Polyt.

3. Landau E. 1903, “On the maximum substitution order of a given degree” ”, Archives of Mathematics and Physics. Ser. 3,5. pp. 92–103.

4. Shah S. 1939, “An Inequality for the Arithmetical Function 𝑔(𝑥)”, J. Indian Math. Soc., 3, pp. 316–318.

5. Massias I. 1984, (1985), “Majoration explete de l’ordre maximum d’un element du group symetrique”, Ann, Fac. Shi. Toulouse Math., 5(6), no. 3–4, pp. 269–281.

6. Szalay M. 1980, “On the Maximal Order in 𝑆_𝑛 and 𝑆*_𝑛

7. ”, Acta Arith., 37, pp. 321–331.

8. Nicolas I. L. 1969, “Ordre maximal d’un element du group des permutation et highly composite numbers”, Bull. Soc. Math. Franke, 97, pp. 129–191.

9. Nathanson M. B. 1972, “On the Greatest Order of an Element of the Symmetric Group”, this Monthly, 79, pp. 500–501.

10. Miller W. 1987, “The Maximum Order of 𝑎 Finite Symmetric Group”, The American Mathematical Monthly, vol. 94, № 6, pp. 497–506.

11. Pachev U. M., Shokuev V. N. 2001, “On thr application of the theory of congruence to the study of subgroups in symmetric groups”, Jzw. KBNTs RAS, № 1 (6), pp. 68–69.

12. Dokhov R. A., Pachev U. M., 2023, “On the maximum number of primedivisors of orders of cyclic subgroups in 𝑎 symmetris group”, Procceedings of the XXII International Conference “Algebra, number theory, discrete geometry and multiscale modeling: modern problems, applications and prolems of history”. Tula, pp. 173–174.

13. Vinogradov I. M. 1981, “Fundavental of Number Theoury”, M.: Nauka, 186 p.

14. Kargapolov M. I., Merzlyakov Yu. I. 1982, “Fundamentals of group theory”, M.: Nauka. 288 p.

15. Zolotareff G. 1972, “Nouvelle de’monstration de la loi de reciprocite de Legendre”, Nouv. Ann. Math. (2). Vol. 11, pp. 354–362.

16. Gashkov S. B. 2006, “Modern Elementary Algebra in Problems and Exercises”, M.: MCNMO, 328 p.

17. Gecke E. 1940, “Lectures on the theory of algebraic numbers”,M.-L. 260 p.

18. Trost E. 1959, “Prime numbers”, M.: GIFML, 136 p.

19. Buhshtab A. A. 1966, “Number theory”.

20. Rosser B. 1938, “The 𝑛-th Prime is greater than 𝑛 log 𝑛”. Proc. London. Math. Soc. 45, pp. 21– 44.

21. Kr¨atzel E. 1981, “Zahlentheorie. VEB Dentscher Verlag der Wissenschaften”. Berlin.

22. Lidl R., Niederreiter G. 1988, “Finite Fields”, M.: Mir, vol. 2, pp. 437–820.

23. Pachev U. M. 2016, “Selected chapter of number theory”, Nalchik, 186 p.


Review

For citations:


Pachev U.M., Dokhov R.A., Kodzokov A.Kh., Nirova M.S. On Some arithmetic applications to the theory of symmetric groups. Chebyshevskii Sbornik. 2023;24(4):252-263. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-4-252-263

Views: 207


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)