Preview

Chebyshevskii Sbornik

Advanced search

On Bijective Functions of Fixed Variables in the Galois Field of 𝑝^𝑘 Elements and on the Ring of 𝑝-Adic Integers for an Odd Prime Number 𝑝

https://doi.org/10.22405/2226-8383-2023-24-4-191-205

Abstract

In this paper there are given necessary and sufficient conditions under which a function of fixed variables 𝜓: F^(𝑖+1)_𝑞 → F_𝑞 is bijective, where 𝑖 ∈ N ∪ {0}, F(𝑖+1)_𝑞 is the (𝑖 + 1)-ary Cartesian power of the Galois field F_𝑞 of 𝑞 = 𝑝^𝑘 elements, 𝑝 is an odd prime number and 𝑘 ∈ N. In addition, such conditions of the bijective functions 𝜓 of fixed variables are used to write a criterion for the preserving Haar measure of functions from the important class of 1-Lipschitz functions in terms of its coordinate functions on the ring of 𝑝-adic integers Z_𝑝, 𝑝 ̸= 2. In particular, the representation of 1-Lipschitz functions in terms of its coordinate functions on the ring of 2-adic integers Z_2 turned out to be a general and useful tool for obtaining mathematical results applied in cryptography. In this work, the research of such representation of 1-Lipschitz functions on the ring of 𝑝-adic integers Z_𝑝, 𝑝 ̸= 2 is being continued, with special attention to the representation of bijective 1-Lipschitz functions in terms of its coordinate functions on Z_𝑝, 𝑝 ̸= 2.

About the Authors

Perez Aniel’ Lopez
Central University “Marta Abreu” of Las Villas (Kyba, Santa Clara); Faculty of Computational Mathematics and Cybernetics; Lomonosov Moscow State University
Cuba

Master’s degree in Telematics, Information Security specialist



Justiz Oristela Cuellar
Tula State Lev Tolstoy Pedagogical Institute; University of Informatics Sciences (Kuba, Havana).
Cuba

graduate student of the Faculty of Mathematics of the Tula State
Lev Tolstoy Pedagogical Institute, master’s degree in Applied Mathematics, doctor of mathematical sciences, professor



References

1. Lausch H. & N¨obauer W., 1973, “Algebra of Polynomials”, North-Holl. Publ. Co, American Elsevier Publ. Co.

2. Mahler, K., 1981, “𝑝-Adic Numbers and Their Functions”, Cambridge University Press, Cambridge, 2nd.

3. Koblitz, N., 1984, “𝑝-adic numbers, 𝑝-adic analysis, and zeta-functions”, Springer, Berlin, vol. 58, 2nd.

4. Schiknof, W. H., 1984, “Ultrametric Calculus”, Cambridge University Press, Cambridge.

5. Lidl R., & Niederreiter H., 1988, “Finite Fields”, Mir, Moscow.

6. Anashin, V. S., 1994, “Uniformly Distribueted Sequences of 𝑝-Adic Integers”, Matematicheskie Zametki, vol. 55, no. 2, pp. 3-46.

7. Anashin V. & Khrennikov A., 2009, “Applied Algebraic Dynamics”, De Gruyter Expositions in Mathematics, vol. 49, Berlin, New York: Walter de Gruyter.

8. Durand, F. & Paccaut, F., 2009, “Minimal polynomial dynamics on the set of 3-adic integers”, Bull. London Math. Soc., vol. 42, no. 2, pp. 302-314.

9. Shafarevich I. R. & Remizov A. O. “Linear Algebra and Geometry”//Fizmatlit. 2009.

10. Khrennikov A. & Yurova E., 2014, “Criteria of ergodicity for 𝑝-adic dynamical systems in terms of coordinate functions”, Chaos, Solitons and Fractals, vol. 60, pp. 11–30.

11. Yurova, E. A. & Khrennikov, A. Y., 2016, “Generalization of Hensel lemma: finding the roots of p-adic Lipschitz functions”, J. Number Theory, vol. 158, pp. 217–233.

12. Memic, N., 2016, “Ergodicity conditions on the group of 3-adic integers”, Colloquium Mathematicum.

13. Memic, N., 2016, “Ergodic Polynomials on Subsets of 𝑝-Adic Integers”, 𝑝-Adic Numbers, Ultrametric Analysis and Applications, vol. 8, no. 2, pp. 149-159.

14. Yurova, E. A. & Khrennikov, A. Y., 2018, “Subcoordinate representation of 𝑝-adic functions and generalization of Hensel lemma”, Izvestiya RAN : Ser. Mat., vol. 82, no. 3, pp. 192-206.

15. Wang, S., Hu, B. & Liu, Y., 2018, “The autocorrelation properties of single cycle polynomial 𝑇-function”, Des. Codes Cryptogr, vol. 86, pp. 1527-1540.

16. Sangtae, J., 2018, “Measure-preservation and the existence of a root of p-adic 1-Lipschitz functions in Mahlers expansion”, 𝑝-Adic Numbers, Ultrametric Analysis and Applications, vol. 10, no. 3, pp. 192-208.

17. da Silva, D. W., de Araujo, C. P., Chow, E. & Barillas, B. S., 2019, “A new approach towards fully homomorphic encryption over geometric algebra”, IEEE/10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 0241-0249.

18. Khrennikov, A. Y. & Yurova, E. A., 2019, “Description of (fully) homomorphic cryptographic primitives within the 𝑝-adic model of encryption”, Springer, pp. 241-148.

19. Khrennikov A. Y. & Yurova E. A., 2019, “Description of (fully) homomorphic cryptographic primitives within the p-adic model of encryption. In Analysis, Probability, Applications, and Computation, pages”, Springer, pp. 241–248.

20. Furno, J., 2019, “Natural extensions for 𝑝-adic 𝛽-shifts and other scaling maps”, Indagationes Mathematicae, vol. 30, pp. 1099-1108.

21. Kim D., Kwon Y., K. Song K., 2020, “Minimality of 5-adic polynomial dynamical systems”, Dynamical Systems: An International Journal. vol. 35, no. 4, pp. 584-596.

22. da Silva, D. W., 2020, “A Mathematical Framework Towards Efficient Clifford-Based Homomorphic Cryptosystems Using p-Adic Numbers”, University of Colorado Colorado Springs.

23. Memi´c, N., 2020, “Mahler coefficients of uniformly differentiable functions modulo 𝑝”, International Journal of Number Theory.

24. Gouvˆea, F. Q., 2020, “𝑝-adic Numbers An Introduction”, Springer, 3rd.

25. da Silva D. W., Harmon L., Delavignette G. & Araujo C., 2021, “Leveled Fully Homomorphic Encryption Schemes with Hensel Codes”, Cryptology ePrint Archive.

26. Anashin, V. S., 2021, “The 𝑝-adic Theory of Automata Functions”, Springer, pp. 9-113.

27. Memic, N., 2021, “Mahler Coefficients of Some 3-adic Ergodic Functions”, Acta Mathematica Vietnamica.

28. Z´u˜niga-Galindo, W. & Bourama, T., 2021, “Advances in Non-Archimedean Analysis and Applications: The 𝑝-adic Methodology in STEAM-H”, Springer Nature.

29. L´opez, A. P. 2022, “Measuring Preservation and Ergodicity of 1-Lipschitz Functions on the Ring of 3-Adic Integers in Terms of Coordinate Functions”, Vestnik Moskovskogo Universiteta, Seriya 15, vol. 46, no. 2, pp. 30-33.


Review

For citations:


Lopez P.A., Cuellar J.O. On Bijective Functions of Fixed Variables in the Galois Field of 𝑝^𝑘 Elements and on the Ring of 𝑝-Adic Integers for an Odd Prime Number 𝑝. Chebyshevskii Sbornik. 2023;24(4):191-205. https://doi.org/10.22405/2226-8383-2023-24-4-191-205

Views: 231


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)