Preview

Chebyshevskii Sbornik

Advanced search

The Ritz method for solving partial differential equations using number-theoretic grids

https://doi.org/10.22405/2226-8383-2022-23-5-117-129

Abstract

Consider the problem
𝐿𝑢(⃗𝑥) = 𝑓(⃗𝑥),
𝑢(⃗𝑥)⃒⃒𝜕𝐺𝑠= 𝑔(⃗𝑥),
where 𝑓(⃗𝑥), 𝑔(⃗𝑥) ∈ 𝐸𝛼
𝑠 , 𝐿 is a linear differential operator with constant coefficients, 𝐺𝑠 is the
unit cube [0; 1]𝑠.
Its solution is reduced to finding the minimum of the functional
𝑣(𝑢(⃗𝑥)) =∫︁. . .𝐺𝑠∫︁ 𝐹 (⃗𝑥, 𝑢, 𝑢𝑥1 , . . . , 𝑢𝑥𝑠 ) 𝑑𝑥1 𝑙𝑑𝑜𝑡𝑠𝑑𝑥𝑠
under given boundary conditions.
The values of the functional 𝑣(𝑢(⃗𝑥)) in the Ritz method are considered not on the set of all admissible functions 𝑢(⃗𝑥), but on linear combinations 𝑢(⃗𝑥) = 𝑊0(⃗𝑥) + Σ︁(𝑛 𝑘=1) 𝑤𝑘𝑊𝑘(⃗𝑥),
where 𝑊𝑘(⃗𝑥) are some basic functions that we will find using number-theoretic interpolation, and 𝑊0(⃗𝑥) is a function that satisfies the given boundary conditions, and the rest 𝑊𝑘(⃗𝑥) satisfy
homogeneous boundary conditions.
On these polynomials, this functional turns into a function 𝜙( ⃗𝑤) of the coefficients 𝑤1, . . . ,𝑤𝑛. These coefficients are chosen so that the function 𝜙( ⃗𝑤) reaches an extremum.
Under some restrictions on the functional 𝑣(𝑢(⃗𝑥)) and the basis functions 𝑊𝑘(⃗𝑥), we obtain an approximate solution of the boundary value problem.

About the Author

Alexander Valer’evich Rodionov
Tula State Lev Tolstoy Pedagogical University
Russian Federation

senior lecturer



References

1. Knizhnerman, L. A. “Application of the method of optimal coefficients to the numerical solution

2. of partial differential equations”: Dis. ... cand. physical and mathematical sciences: 01.01.06,

3. 01.07. - M.: RGB, 2006.

4. N. M. Korobov, 1959, “On the approximate calculation of multiple integrals”, DAN SSSR, vol.

5. , no. 6, pp. 1207–1210.

6. N. M. Dobrovolsky, A. R. Yesayan, O. V. Andreeva, N. V. Zaitseva, 2004, “Multidimensional

7. number-theoretic Fourier interpolation”, Chebyshevskii sbornik, vol. 5, iss. 1(9), pp. 122–143.

8. Zhileikin Ya. M. “On the approximate solution of the Dirichlet problem for the Laplace

9. equation”. - Dokl. AN SSSR, 1964, vol. 155, no. 5, p. 999-1002.

10. Zhileikin Ya. M. “On the method of approximate solution of the Dirichlet problem for

11. the Laplace equation in a rectangular parallelepiped”.- Zh. Computational Mathematics and

12. Mathematics. Physics, 1965, vol. 5, no. 2, p. 345-347.

13. N. M. Korobov, 1963, “Number-theoretic methods in approximate analysis”, Moscow: Fizmatgiz.

14. A. V. Rodionov, 2014, “About N. M. Korobov’s method of approximate solution of the Dirichlet

15. problem”, vol. Chebyshevskii sbornik, vol. 15:3, pp. 48–85.

16. V. S. Ryabenky, 1961, “On one method for obtaining difference schemes and on the use of

17. number-theoretic grids for solving the Cauchy problem by the finite difference method”, Tr.

18. matem. V. A. Steklov Institute, vol. 60, p. 232–237.

19. V. T. Stoyantsev, “Solution of the Cauchy problem for a parabolic equation by the quasi Monte

20. Carlo method”, Zh. Computational Mathematics and Mathematics. Physics, 1973, vol. 13, no.

21. , p. 1153-1160.

22. Elsgol’ts L. E. Differential Equations and the Calculus of Variations. M.: Nauka, 1969. 425 p.

23. W. Ritz. “ ¨Uber eine neue Methode zur L¨osung gewisser Variationsprobleme der mathematischen

24. Physik”, Journal f¨ur die Reine und Angewandte Mathematik, 1909, vol. 135, pages 1—61.


Review

For citations:


Rodionov A.V. The Ritz method for solving partial differential equations using number-theoretic grids. Chebyshevskii Sbornik. 2022;23(5):117-129. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-5-117-129

Views: 284


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)