The Ritz method for solving partial differential equations using number-theoretic grids
https://doi.org/10.22405/2226-8383-2022-23-5-117-129
Abstract
Consider the problem
𝐿𝑢(⃗𝑥) = 𝑓(⃗𝑥),
𝑢(⃗𝑥)⃒⃒𝜕𝐺𝑠= 𝑔(⃗𝑥),
where 𝑓(⃗𝑥), 𝑔(⃗𝑥) ∈ 𝐸𝛼
𝑠 , 𝐿 is a linear differential operator with constant coefficients, 𝐺𝑠 is the
unit cube [0; 1]𝑠.
Its solution is reduced to finding the minimum of the functional
𝑣(𝑢(⃗𝑥)) =∫︁. . .𝐺𝑠∫︁ 𝐹 (⃗𝑥, 𝑢, 𝑢𝑥1 , . . . , 𝑢𝑥𝑠 ) 𝑑𝑥1 𝑙𝑑𝑜𝑡𝑠𝑑𝑥𝑠
under given boundary conditions.
The values of the functional 𝑣(𝑢(⃗𝑥)) in the Ritz method are considered not on the set of all admissible functions 𝑢(⃗𝑥), but on linear combinations 𝑢(⃗𝑥) = 𝑊0(⃗𝑥) + Σ︁(𝑛 𝑘=1) 𝑤𝑘𝑊𝑘(⃗𝑥),
where 𝑊𝑘(⃗𝑥) are some basic functions that we will find using number-theoretic interpolation, and 𝑊0(⃗𝑥) is a function that satisfies the given boundary conditions, and the rest 𝑊𝑘(⃗𝑥) satisfy
homogeneous boundary conditions.
On these polynomials, this functional turns into a function 𝜙( ⃗𝑤) of the coefficients 𝑤1, . . . ,𝑤𝑛. These coefficients are chosen so that the function 𝜙( ⃗𝑤) reaches an extremum.
Under some restrictions on the functional 𝑣(𝑢(⃗𝑥)) and the basis functions 𝑊𝑘(⃗𝑥), we obtain an approximate solution of the boundary value problem.
About the Author
Alexander Valer’evich RodionovRussian Federation
senior lecturer
References
1. Knizhnerman, L. A. “Application of the method of optimal coefficients to the numerical solution
2. of partial differential equations”: Dis. ... cand. physical and mathematical sciences: 01.01.06,
3. 01.07. - M.: RGB, 2006.
4. N. M. Korobov, 1959, “On the approximate calculation of multiple integrals”, DAN SSSR, vol.
5. , no. 6, pp. 1207–1210.
6. N. M. Dobrovolsky, A. R. Yesayan, O. V. Andreeva, N. V. Zaitseva, 2004, “Multidimensional
7. number-theoretic Fourier interpolation”, Chebyshevskii sbornik, vol. 5, iss. 1(9), pp. 122–143.
8. Zhileikin Ya. M. “On the approximate solution of the Dirichlet problem for the Laplace
9. equation”. - Dokl. AN SSSR, 1964, vol. 155, no. 5, p. 999-1002.
10. Zhileikin Ya. M. “On the method of approximate solution of the Dirichlet problem for
11. the Laplace equation in a rectangular parallelepiped”.- Zh. Computational Mathematics and
12. Mathematics. Physics, 1965, vol. 5, no. 2, p. 345-347.
13. N. M. Korobov, 1963, “Number-theoretic methods in approximate analysis”, Moscow: Fizmatgiz.
14. A. V. Rodionov, 2014, “About N. M. Korobov’s method of approximate solution of the Dirichlet
15. problem”, vol. Chebyshevskii sbornik, vol. 15:3, pp. 48–85.
16. V. S. Ryabenky, 1961, “On one method for obtaining difference schemes and on the use of
17. number-theoretic grids for solving the Cauchy problem by the finite difference method”, Tr.
18. matem. V. A. Steklov Institute, vol. 60, p. 232–237.
19. V. T. Stoyantsev, “Solution of the Cauchy problem for a parabolic equation by the quasi Monte
20. Carlo method”, Zh. Computational Mathematics and Mathematics. Physics, 1973, vol. 13, no.
21. , p. 1153-1160.
22. Elsgol’ts L. E. Differential Equations and the Calculus of Variations. M.: Nauka, 1969. 425 p.
23. W. Ritz. “ ¨Uber eine neue Methode zur L¨osung gewisser Variationsprobleme der mathematischen
24. Physik”, Journal f¨ur die Reine und Angewandte Mathematik, 1909, vol. 135, pages 1—61.
Review
For citations:
Rodionov A.V. The Ritz method for solving partial differential equations using number-theoretic grids. Chebyshevskii Sbornik. 2022;23(5):117-129. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-5-117-129