The Fermat–Torricelli problem in the case of three-point sets in normed planes
https://doi.org/10.22405/2226-8383-2022-23-5-72-86
Abstract
In the paper the Fermat–Torricelli problem is considered. The problem asks a point minimizing the sum of distances to arbitrarily given points in d-dimensional real normed spaces.
Various generalizations of this problem are outlined, current methods of solving and some recent results in this area are presented. The aim of the article is to find an answer to the following question: in what norms on the plane is the solution of the Fermat–Torricelli problem unique for any three points. The uniqueness criterion is formulated and proved in the work, in addition, the application of the criterion on the norms set by regular polygons, the so-called lambda planes, is shown.
About the Author
Daniil Alexandrovich IlyukhinRussian Federation
student
References
1. Bajaj C. 1988, “The algebraic degree of geometric optimization problems.“, Discr. Comput.
2. Geom., 3, 177–191.
3. Bannikova A. G., Ilyutko D.P., Nikonov I. M. 2016, “The Length of an Extremal Network in a
4. Normed Space: Maxwell Formula“, Journal of Mathematical Sciences, 214:5, 593–608.
5. Boltyanski V., Martini H., Soltan V. 1999, “Geometric methods and optimization problems.“,
6. Kluwer Acad. Publ.
7. Brazil M., Graham R. L., Thomas D. A., Zachariasen M. 2013, “On the History of the Euclidean
8. Steiner Tree Problem.“
9. Cieslik D. 1988, “The Fermat-Steiner-Weber-problem in Minkowski spaces.“, Optimization 19,
10. –489.
11. Cockayne E. J., Melzak Z. A. 1969, “Euclidean constructibility in graph-minimization problems“,
12. Math. Mag., 42, 206–208.
13. Courant R., Robbins H. 1941, “What Is Mathematics?“, Oxford University Press.
14. Durier R., Michelot C. 1985, “Geometrical properties of the Fermat-Weber problem.“, Europ.
15. J. Oper. Res. 20, 332–343.
16. Hwang F. K., Richards D., Winter P. 1992, “The Steiners Tree Problem“, Elsevier Science
17. Publishers.
18. Ilyutko D.P. 2006, “Branching extremals of the functional of 𝜆-normed length“, Sb. Math.,
19. :5, 705–726.
20. Ilyutko D.P., Nikonov I. M. 2017, “Extremal networks in 𝜆-geometry, where 𝜆=3,4,6“, Sb. Math.,
21. :4 (2017), 479–509.
22. Ivanov A. O., Tuzhilin A. A. 2002, “Branching geodesics in normed spaces“, Izvestiya: Mathematics,
23. , 66:5, 905–948.
24. Ivanov A. O., Tuzhilin A. A. 2003, “Extreme Networks Theory“, Moscow-Izhevsk: Institute of
25. Computer Investigations.
26. Ivanov A. O., Tuzhilin A. A. 1994, “Minimal Networks. Steiner Problem and Its Generalizations“,
27. CRC Press.
28. Jarn´ık V., K¨ossler M. 1934, “O minim´aln´ıch grafech obsahuj´ıc´ıch n dan´ych bodu“, ˆCas, Pˆestov´an´ı
29. Mat. (Essen) Т. 63: 223—235.
30. Kupitz Y. S., Martini H. 1997, “Geometric aspects of the generalized Fermat–Torricelli
31. problem.“, Bolyai Society Mathematical Studies 6, 55-127.
32. Laut I. L., Ovsyannikov Z. N. 2014, “The Type of Minimal Branching Geodesics Defines the
33. Norm in a Normed Space.“, Fundamentalnaya i prikladnaya matematika, vol. 18, no. 2, pp.
34. —77.
35. Martini H., Swanepoel K. J., Weis G. 2002, “The Fermat–Torricelli problem in normed planes
36. and spaces.“, Journal of Optimization Theory and Applications 115, 283-314.
37. Nguyen S. D. 2018, “Constrained Fermat-Torricelli-Weber Problem in real Hilbert Spaces“,
38. ArXiv e-prints, arXiv:1806.04296.
39. Torricelli E. 1919, “De maximis et minimis.“ Opere di Evangelista Torricelli, Faenza, Italy.
40. Uteshev A. Y. 2014, “Analytical solution for the generalized Fermat–Torricelli problem“, The
41. American Mathematical Monthly 121(4), 318–331.
42. Zachos A. N. 2014, “An analytical solution of the weighted Fermat-Torricelli problem on the
43. unit sphere“, ArXiv e-prints, arXiv:1408.6495.
Review
For citations:
Ilyukhin D.A. The Fermat–Torricelli problem in the case of three-point sets in normed planes. Chebyshevskii Sbornik. 2022;23(5):72-86. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-5-72-86