Cauchy’s research on substitutions
https://doi.org/10.22405/2226-8383-2022-23-4-198-210
Abstract
The article is devoted to the introduction and formation of the term and the action symbol "substitution". In mathematical research before Lagrange, it was never practiced to rearrange independent variables contained in a given function. For the first time this technique is found
in Lagrange’s work of 1771, devoted to the algebraic solution of equations.
Vandermond, who had published his work in the same year 1771, has expressed the idea of the need to introduce notations that simplify calculations and the perception of operations on root functions. However, the introduced designations were not easy to understand and became more complicated with increasing the degree of the equation.
Ruffini’s works, published from 1799 to 1813, aimed to prove the impossibility of solving the equation of the 5th degree and are, in fact, a study of the symmetric group represented by the values of the root function in the form of all possible permutations of these roots. During
these researches, he proves that the group 𝑆5 does not contain subgroups of the index 3, 4 or 8. However, just like Lagrange, Ruffini uses complex cumbersome expressions.
Cauchy, dealing with issues of combinatorial analysis, tried to generalize the result obtained by Ruffini to equations of arbitrary degree. Working on the determination of the limits that a
function of 𝑛 variables can take, Cauchy has invented a new research tool, which later became an independent theory. This was the the substitution group theory.
References
1. Cauchy A. L. Oeuvres compl`etes, 2-e s´erie, T1. Paris, Gauthiers-Villars, 1905, p. 64-90.
2. Cauchy A. L. Memoire sur les fonctions qui ne peuvent obtenir que deux valeures ´egales et
3. de signes contraires par suite des transpositions op´er´ees entre les valeures qu’elles renferment.
4. Oeuvres compl`etes, 2-e s´erie, T1. Paris, Gauthiers-Villars, 1905, p. 91-169.
5. Cauchy A.L., Memoire sur les arrangements que on peut former avec les letters donnes. Oeuvres
6. compl`etes, 2-e s´erie, T. XIII. Paris, Gauthiers-Villars, 1844, p. 171-282.
7. Cauchy A. L. Exercices d’analyse et de physique math´ematiques, v. III, 1844, p. 183-185.
8. Abr´eg´e d’histoire des math´ematiques 1700-1900. Sous la direction de Jean Dieudonn´e Herman,
9.
10. Oeuvres de Lagrange, T.3, Serret J.A., Paris 1771.
11. Vandermonde A. T., Memoires de l’Academie Royale des Sciences, T.9, 1771, p. 365-416
12. Postnikov M. M. Teoriya Galua. Moskva, Faktorial Press, 2003
13. Jordan C. , Triate de substitutions et des equations algebriques, Paris, 1870.
14. Valson S.A., La vie et les travaux de baron Cauchy, Paris, 1868.
15. Dahan A. Les travaux de Cauchy sur les substitutions. Etude de son approche du concept de
16. groupe, Archive for History of Exact Sciences, v 23,4 by Springer-Verlag,1980, p. 279-316.
17. Meo M., The mathematical life of Cauchys group-theoreme, Historia mathematica, 31(2004),
18. Portland Or, USA, p.196-221.
19. Kolmogorov A.N., Yushkevich A.P., Matematika XIX v., M., Nauka, 1978.
20. Burbaki N., Ocherki po istorii matematiki. Moskva 1963
21. Wussing H., Des genesis des abstracten grouppen begriffes, Berlin, 1969.
22. Burkhard H., die Anfange der Grouppentheorie und Paolo Ruffini. Abhandlugen zur Geschichte
23. der Mahtematik, Heft V, Leipzig 1892, p.119-159.
Review
For citations:
Ingtem N.V. Cauchy’s research on substitutions. Chebyshevskii Sbornik. 2022;23(4):198-210. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-198-210