Measure estimate for 𝑝-adic Diophantine approximation
https://doi.org/10.22405/2226-8383-2022-23-3-19-36
Abstract
A quantitative estimate for the measure of the set of 𝑝-adic numbers for which the inequality |𝑃(𝑥)|𝑝 < 𝑄−𝑤 for 𝑤 > 3𝑛/2 + 2 has a solution in integral polynomials P of degree n and of height 𝐻(𝑃) at most 𝑄 ∈ N, is established.
About the Author
Natalia Viktorovna BudarinaIreland
doctor of physical and mathematical sciences
References
1. V. Beresnevich, and E. Kovalevskaya, On Diophantine approximations of dependent quantities
2. in the 𝑝-adic case, Mat. Zametki 73(1) (2003) 22–37.
3. V. Beresnevich, V. Bernik and E. Kovalevskaya, On approximation of 𝑝-adic numbers by 𝑝-adic
4. algebraic numbers, J. Number Theory 111(1) (2005) 33–56.
5. V. Bernik, D. Dickinson and J. Yuan, Inhomogeneous Diophantine approximation on polynomial
6. curves in Q𝑝, Acta Arith. 90 (1999) 37–48.
7. N. Budarina and E. Zorin, Non-homogeneous analogue of Khintchine’s theorem in divergence
8. case for simultaneous approximations in different metrics, Siauliai Math. Semin. 4(2) (2009)
9. –33.
10. N. Budarina, Diophantine approximation on the curves with non-monotonic error function in
11. the 𝑝-adic case, Chebishevskii Sbornik. 11 (1) (2010) 74–80.
12. N. Budarina, V.Bernik and D. Dickinson, Simultaneous Diophantine approximation in the real,
13. complex and 𝑝-adic fields, Math. Proc. Cambridge Philos. Soc. 149 (2) (2010) 193–216.
14. N. Budarina, Simultaneous Diophantine approximation in the real and 𝑝-adic fields with
15. nonmonotonic error function, Lith. Math. J. 51 (4) (2011) 461–471.
16. N. Budarina and F. G¨otze, On regular systems of algebraic 𝑝-adic numbers of arbitrary degree
17. in small cylinders, Dal’nevost. Mat. Zh. 15(2) (2015) 133–155.
18. N. Budarina, On the rate of convergence to zero of the measure of extremal sets in metric
19. theory of transcendental numbers, Math. Z. 293 (2019), 809–824.
20. N. Budarina, An effective estimate for the measure of the set of 𝑝-adic numbers with a given
21. order of approximation, International Journal of Number Theory 16, No. 3 (2020), 651–672.
22. N. Budarina, Quantitative estimate for the measure of the set of real numbers, Glasgow
23. Mathematical Journal 64, No. 2 (2022), 411–433.
24. Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, Vol. 160
25. (Cambridge University Press, Cambridge, 2004), 274 pp.
26. D. Kleibock and G. Tomanov, Flows on S-arithmetic homogeneous spaces and applications to
27. metric Diophantine approximation, Comment. Math. Helv. 82 (2007) 519-–581.
28. A. Mohammadi and A. Salehi-Golsefidy, S-arithmetic Khintchine-Type Theorem, Geom. Funct.
29. Anal. 19(4) (2009) 1147-–1170.
30. A. Mohammadi and A. Salehi-Golsefidy, Simultaneous Diophantine approximation in nondegenerate
31. 𝑝-adic manifolds, Israel J. Math. 188 (2012) 231-–258.
32. V.G. Sprindzuk, Mahler’s problem in metric Number Theory, Transl. Math. Monogr., vol. 25,
33. Amer. Math. Soc., Providenca, R.I. (1969).
Review
For citations:
Budarina N.V. Measure estimate for 𝑝-adic Diophantine approximation. Chebyshevskii Sbornik. 2022;23(3):19-36. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-3-19-36