Preview

Chebyshevskii Sbornik

Advanced search

Measure estimate for 𝑝-adic Diophantine approximation

https://doi.org/10.22405/2226-8383-2022-23-3-19-36

Abstract

A quantitative estimate for the measure of the set of 𝑝-adic numbers for which the inequality |𝑃(𝑥)|𝑝 < 𝑄−𝑤 for 𝑤 > 3𝑛/2 + 2 has a solution in integral polynomials P of degree n and of height 𝐻(𝑃) at most 𝑄 ∈ N, is established.

About the Author

Natalia Viktorovna Budarina
Dundalk Institute of Technology
Ireland

doctor of physical and mathematical sciences



References

1. V. Beresnevich, and E. Kovalevskaya, On Diophantine approximations of dependent quantities

2. in the 𝑝-adic case, Mat. Zametki 73(1) (2003) 22–37.

3. V. Beresnevich, V. Bernik and E. Kovalevskaya, On approximation of 𝑝-adic numbers by 𝑝-adic

4. algebraic numbers, J. Number Theory 111(1) (2005) 33–56.

5. V. Bernik, D. Dickinson and J. Yuan, Inhomogeneous Diophantine approximation on polynomial

6. curves in Q𝑝, Acta Arith. 90 (1999) 37–48.

7. N. Budarina and E. Zorin, Non-homogeneous analogue of Khintchine’s theorem in divergence

8. case for simultaneous approximations in different metrics, Siauliai Math. Semin. 4(2) (2009)

9. –33.

10. N. Budarina, Diophantine approximation on the curves with non-monotonic error function in

11. the 𝑝-adic case, Chebishevskii Sbornik. 11 (1) (2010) 74–80.

12. N. Budarina, V.Bernik and D. Dickinson, Simultaneous Diophantine approximation in the real,

13. complex and 𝑝-adic fields, Math. Proc. Cambridge Philos. Soc. 149 (2) (2010) 193–216.

14. N. Budarina, Simultaneous Diophantine approximation in the real and 𝑝-adic fields with

15. nonmonotonic error function, Lith. Math. J. 51 (4) (2011) 461–471.

16. N. Budarina and F. G¨otze, On regular systems of algebraic 𝑝-adic numbers of arbitrary degree

17. in small cylinders, Dal’nevost. Mat. Zh. 15(2) (2015) 133–155.

18. N. Budarina, On the rate of convergence to zero of the measure of extremal sets in metric

19. theory of transcendental numbers, Math. Z. 293 (2019), 809–824.

20. N. Budarina, An effective estimate for the measure of the set of 𝑝-adic numbers with a given

21. order of approximation, International Journal of Number Theory 16, No. 3 (2020), 651–672.

22. N. Budarina, Quantitative estimate for the measure of the set of real numbers, Glasgow

23. Mathematical Journal 64, No. 2 (2022), 411–433.

24. Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, Vol. 160

25. (Cambridge University Press, Cambridge, 2004), 274 pp.

26. D. Kleibock and G. Tomanov, Flows on S-arithmetic homogeneous spaces and applications to

27. metric Diophantine approximation, Comment. Math. Helv. 82 (2007) 519-–581.

28. A. Mohammadi and A. Salehi-Golsefidy, S-arithmetic Khintchine-Type Theorem, Geom. Funct.

29. Anal. 19(4) (2009) 1147-–1170.

30. A. Mohammadi and A. Salehi-Golsefidy, Simultaneous Diophantine approximation in nondegenerate

31. 𝑝-adic manifolds, Israel J. Math. 188 (2012) 231-–258.

32. V.G. Sprindzuk, Mahler’s problem in metric Number Theory, Transl. Math. Monogr., vol. 25,

33. Amer. Math. Soc., Providenca, R.I. (1969).


Review

For citations:


Budarina N.V. Measure estimate for 𝑝-adic Diophantine approximation. Chebyshevskii Sbornik. 2022;23(3):19-36. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-3-19-36

Views: 240


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)