Preview

Chebyshevskii Sbornik

Advanced search

Generalizations of some integral inequalities for Riemann–Liouville operator

https://doi.org/10.22405/2226-8383-2022-23-2-161-169

Abstract

The Chebyshev inquality is one of important inequalities in mathematics. It’s a necessary tool in probability theory. The item of Chebyshev’s inequality may also refer to Markov’s
inequality in the context of analysis.
In[6, 7], using the usual Riemann–Liouville fractional integral operator 𝐼𝛼, were established and proved some new integral inequalities for the Chebyshev fonctional

$$𝑇(𝑓, 𝑔) :=1/(𝑏 − 𝑎)∫︁𝑎𝑏 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 −1/(𝑏 − 𝑎)∫︁𝑎𝑏 𝑓(𝑥)𝑑𝑥 1/(𝑏 − 𝑎)∫︁ 𝑎𝑏 𝑔(𝑥)𝑑𝑥.$$

In this work, we give some generalizations of Chebyshev-type integral inequalities by using Riemann—Liouville fractional integrals of function with respect to another function.

About the Authors

Mohammed Sofrani
University of Tiaret
Algeria

Laboratory of informatics and mathematics



Abdelkader Senouci
University of Tiaret
Algeria

professor, laboratory of informatics and mathematics



References

1. Kacar E., Kacar Z., Yildirim H. Inequalities for Riemann–Liouville Fractional Integrals of a Function with respect to Another Function, IJMSI. 2018. Vol. 13, no. 1. P. 1-13.

2. www.ijmsi.ir/article-1-696-en.pdf.

3. Halim B., Senouci A., E. Some generalizations involving open problems of F.Qi // Int. J. Open Problems Compt. Math. 2019. Vol. 12, no. 1. www.ijopcm.org/Vol/2019/1.2.pdf.

4. Killbas A.A., Srivastava H.M., Trujillo J.J. Theory and application of fractional differential equations. Elsevier. Amsterdam. 2006. https://books.google.com/; https://www.elsevier.com/books/theory-and-applications-of-fractional-differential-equations/kilbas/978-0-444-51832-3.

5. Chebyshev P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites. Proc. Math. Soc. Charkov. 1882. P. 93-98.

6. Gorenflo R., Mainardi F. Fractional calculus integral and differential equations of fractional order. Springer Verlag, Wien. 1997. P. 223-276. www.fracalmo.org.

7. Dahmani Z. 2012 About some integral inequalities using Riemann–Liouville integrals.// General Mathematics. 2012. Vol. 20, no. 4. P. 63-69. http://depmath.ulbsibiu.ro/genmath/index.html.

8. Dahmani Z., Belarbi S. On some new fractional integral inequalities. J.I.P.A.M. 2009. Vol. 10, no. 3, article 86. https://www.emis.de/journals/JIPAM/article1142.html?sid=1142.

9. Samko S.G., Kilbas A.A., Marichev, O.I, Integrals and derivatives: theory and applications. 1993. Gorbon and Breach Science publishers, Switzerland. https://www.twirpx.com/file/

10. /.


Review

For citations:


Sofrani M., Senouci A. Generalizations of some integral inequalities for Riemann–Liouville operator. Chebyshevskii Sbornik. 2022;23(2):161-169. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-2-161-169

Views: 317


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)