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Аннотация

Дискретный математический анализ (ДМА) — новый подход к анализу данных, ориен-
тированный на исследователя и занимающий промежуточное положение между жесткими
математическими методами и мягкими нечеткими.

Важную роль в ДМА играют нечеткие множества (НМ), часть из которых является мо-
делями дискретных аналогов фундаментальных математических свойств (близости, пре-
дельности, тренда, связности, . . .), а также нечеткая логика (НЛ), позволяющая соединить
нечеткие модели в алгоритмы анализа данных, в частности, по сценариям классической
математики.

В ДМА принят регрессионный подход к пределу и производной: они являются соответ-
ственно значением и угловым коэффициентом линейной регрессии, построенной по функ-
ции и нечеткой структуре на исходном конечном пространстве, моделирующей предельный
переход в его точке. Таким образом, регрессионный предел и регрессионная производная
существуют всегда. Возникает вопрос об их качестве, в частности, о способности увидеть
дискретную гладкость. Это требует более глубокого, чем традиционный, анализа регрес-
сии, чему и посвящена настоящая работа.

Ключевые слова: ДМА, дискретная гладкость, регрессионное дифференцирование, Φ-
параметр.

Библиография: 5 названий.

Для цитирования:

Агаян С. М., Богоутдинов Ш. Р., Добровольский М. Н., Камаев Д. А. К вопросу о дискретной
гладкости // Чебышевcкий сборник, 2025, т. 26, вып. 5, с. 6–16.

1Работа выполнена в рамках государственного задания Геофизического центра РАН, утвержденного Мино-
брнауки России.
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Abstract

Discrete Mathematical Analysis (DMA) is a new approach to data analysis, focused on the
researcher and occupying an intermediate position between hard mathematical methods and
soft fuzzy methods.

Fuzzy Sets (FS) play an important role in DMA, some of which are models of discrete
analogs of fundamental mathematical properties (proximity, limit, trend, connectivity, . . .), as
well as Fuzzy Logic (FL), which allows combining fuzzy models into data analysis algorithms,
in particular, according to classical mathematical scenarios.

In DMA, a regression approach to the limit and derivative is adopted: they are, respectively,
the value and slope of a linear regression, constructed based on a function and fuzzy structure
on the initial finite space, modeling the limit transition at its point.

Thus, the regression limit and regression derivative always exist. The question arises about
their quality, in particular, the ability to detect discrete smoothness. This requires a more
in-depth regression analysis than traditional methods, which is the focus of this paper.

Keywords: DMA, discrete smoothness, regression differentiation, Φ-parameter.

Bibliography: 5 titles.

For citation:

Agayan, S. M., Bogoutdinov, Sh. R., Dobrovolsky, M. N., Kamaev, D. A. 2025, “On the issue of
discrete smoothness” , Chebyshevskii sbornik, vol. 26, no. 5, pp. 6–16.

1. Введение

В «Дискретном Математическом Анализе (ДМА)» [1]–[3] принят регрессионный подход
к пределу и производной функции на конечном пространстве. Сначала в каждой точке про-
странства с помощью нормированной системы весов (нечеткой меры) на нем моделируется
предельный переход в точке. Далее функция и мера соединяются для построения линейной
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регрессии. Ее значение считается пределом функции в точке, а угловой коэффициент — про-
изводной.

Таким образом, регрессионный предел и регрессионная производная существуют всегда.
Исследование показывает, что они очень эффективны в анализе данных. Тем не менее, более
глубокий анализ функций на конечных пространствах, в частности, временных рядов требует
дополнительного изучения этих понятий. Именно этому посвящена настоящая работа.

2. Φ-параметр конечного неотрицательного ряда

Через R(ℎ) = {𝑖ℎ, 𝑖 ∈ Z} обозначим дискретную прямую с шагом ℎ. Предполагается, что
на отрезке 𝑇 (𝑁) ⊂ R(ℎ)

𝑇 (𝑁) = {𝑡} = {𝑡1 = ℎ, . . . , 𝑡𝑁 = 𝑁ℎ} (1)

задан неотрицательный ряд 𝑥 = {𝑥𝑡} = {𝑥𝑖 = 𝑥(𝑡𝑖) ⩾ 0} и взгляд на 𝑇 (𝑁) из нуля в виде весов
𝛿 = {𝛿𝑡} = {𝛿𝑖 = 𝛿(𝑡𝑖)}.

Положим ∑︁
𝛿 =

∑︁
𝛿𝑡 : 𝑡 ∈ 𝑇 (𝑁)

𝑎𝑡 = 𝛿𝑡/
∑︁

𝛿, 𝑡 ∈ 𝑇 (𝑁), 𝑎𝑖 = 𝑎𝑡𝑖 (2)

𝑀(𝑥) =
∑︁

𝑎𝑡𝑥𝑡 ↔ 𝛿-среднее 𝑥 на 𝑇 (𝑁)

Определение 1. Отношение 𝑀(𝑡𝑥) к 𝑀(𝑥) называется Φ-параметром ряда 𝑥 и обозна-
чается через Φ(𝑥):

Φ(𝑥) =
∑︁

𝑎𝑖𝑡𝑖𝑥𝑖/
∑︁

𝑎𝑖𝑥𝑖 (3)

Благодаря неотрицательности 𝑥𝑖 параметр Φ(𝑥) допускает прозрачную интерпретацию:
положим 𝐴𝑖 = 𝑎𝑖𝑥𝑖/𝑀(𝑥), тогда

Φ(𝑥) =
∑︁

𝐴𝑖𝑡𝑖, 𝐴𝑖 ⩾ 0 и
∑︁

𝐴𝑖 = 1

Вывод: параметр Φ(𝑥) лежит в классическом отрезке [𝑡1, 𝑡2] и может считаться «горизон-
тальным центром тяжести ряда 𝑥» (вертикальным является 𝑀(𝑥)).

Из однородности и аддитивности усреднения 𝑥 → 𝑀(𝑥) следует инвариантность относи-
тельно растяжения параметра Φ(𝑥) и его квазилинейность:

� для 𝜆 > 0→ Φ(𝜆𝑥) = Φ(𝑥)

� если 𝑥 ⩾ 0, 𝑦 ⩾ 0, то

Φ(𝑥+ 𝑦) =
𝑀(𝑥)

𝑀(𝑥) +𝑀(𝑦)
Φ(𝑥) +

𝑀(𝑦)

𝑀(𝑥) +𝑀(𝑦)
Φ(𝑦)

Переходим к основному свойству параметра Φ(𝑥), а именно к его монотонности.

Утверждение 1. Отношение

Φ(𝑥)(𝛼) = Φ(𝑥𝑡𝛼) = 𝑀(𝑥𝑡𝛼+1)/𝑀(𝑥𝑡𝛼) (4)

возрастает по 𝛼.
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Доказательство. С помощью дифференцирования по 𝛼 путем анализа числителя
𝑀(𝑥𝑡𝛼+1)′𝑀(𝑥𝑡𝛼)−𝑀(𝑥𝑡𝛼+1)𝑀(𝑥𝑡𝛼)′ производной Φ(𝑥𝑡𝛼)′:

первое слагаемое:

𝑀(𝑥𝑡𝛼+1)′𝑀(𝑥𝑡𝛼) =
(︁∑︁

𝑎𝑖𝑥𝑖𝑡
𝛼+1
𝑖 ln 𝑡𝑖

)︁(︁∑︁
𝑎𝑖̄𝑥𝑖̄𝑡

𝛼
𝑖̄

)︁
=
∑︁
(𝑖,̄𝑖)

𝑎𝑖𝑥𝑖𝑡
𝛼+1
𝑖 ln 𝑡𝑖𝑎𝑖̄𝑥𝑖̄𝑡

𝛼
𝑖̄ =

=
∑︁

(𝑖,̄𝑖)+(̄𝑖,𝑖):𝑖 ̸=𝑖̄

(︀
𝑎𝑖𝑥𝑖𝑡

𝛼+1
𝑖 ln 𝑡𝑖𝑎𝑖̄𝑥𝑖̄𝑡

𝛼
𝑖̄ + 𝑎𝑖̄𝑥𝑖̄𝑡

𝛼+1
𝑖̄

ln 𝑡𝑖𝑎𝑖𝑥𝑖𝑡
𝛼
𝑖

)︀
+
∑︁
(𝑖,𝑖)

𝑎2𝑖𝑥
2
𝑖 𝑡

2𝛼+1
𝑖 ln 𝑡𝑖 =

=
∑︁

(𝑖,̄𝑖)+(̄𝑖,𝑖):𝑖 ̸=𝑖̄

𝑎𝑖𝑎𝑖̄𝑥𝑖𝑥𝑖̄𝑡
𝛼
𝑖 𝑡

𝛼
𝑖̄ (𝑡𝑖 ln 𝑡𝑖 + 𝑡𝑖 ln 𝑡𝑖) +

∑︁
(𝑖,𝑖)

𝑎2𝑖𝑥
2
𝑖 𝑡

2𝛼+1
𝑖 ln 𝑡𝑖

второе слагаемое:

𝑀(𝑥𝑡𝛼+1)𝑀(𝑥𝑡𝛼)′ =
(︁∑︁

𝑎𝑖𝑥𝑖𝑡
𝛼+1
𝑖

)︁(︁∑︁
𝑎𝑖̄𝑥𝑖̄𝑡

𝛼
𝑖̄ ln 𝑡𝑖

)︁
=
∑︁
(𝑖,̄𝑖)

𝑎𝑖𝑥𝑖𝑡
𝛼+1
𝑖 𝑎𝑖̄𝑥𝑖̄𝑡

𝛼
𝑖̄ ln 𝑡𝑖 =

=
∑︁

(𝑖,̄𝑖)+(̄𝑖,𝑖):𝑖 ̸=𝑖̄

(︀
𝑎𝑖𝑥𝑖𝑡

𝛼+1
𝑖 𝑎𝑖̄𝑥𝑖̄𝑡

𝛼
𝑖̄ ln 𝑡𝑖 + 𝑎𝑖̄𝑥𝑖̄𝑡

𝛼+1
𝑖̄

𝑎𝑖𝑥𝑖𝑡
𝛼
𝑖 ln 𝑡𝑖

)︀
+
∑︁
(𝑖,𝑖)

𝑎2𝑖𝑥
2
𝑖 𝑡

2𝛼+1
𝑖 ln 𝑡𝑖 =

=
∑︁

(𝑖,̄𝑖)+(̄𝑖,𝑖):𝑖 ̸=𝑖̄

𝑎𝑖𝑎𝑖̄𝑥𝑖𝑥𝑖̄𝑡
𝛼
𝑖 𝑡

𝛼
𝑖̄ (𝑡𝑖 ln 𝑡𝑖 + 𝑡𝑖 ln 𝑡𝑖) +

∑︁
(𝑖,𝑖)

𝑎2𝑖𝑥
2
𝑖 𝑡

2𝛼+1
𝑖 ln 𝑡𝑖

разность:

𝑀(𝑥𝑡𝛼+1)′𝑀(𝑥𝑡𝛼)−𝑀(𝑥𝑡𝛼+1)𝑀(𝑥𝑡𝛼)′ =
∑︁

(𝑖,̄𝑖)+(̄𝑖,𝑖):𝑖 ̸=𝑖̄

𝑎𝑖𝑎𝑖̄𝑥𝑖𝑥𝑖̄𝑡
𝛼
𝑖 𝑡

𝛼
𝑖̄ (𝑡𝑖 ln 𝑡𝑖 + 𝑡𝑖 ln 𝑡𝑖 − 𝑡𝑖 ln 𝑡𝑖 − 𝑡𝑖 ln 𝑡𝑖)

отдельно:

𝑡𝑖 ln 𝑡𝑖 + 𝑡𝑖 ln 𝑡𝑖 − 𝑡𝑖 ln 𝑡𝑖 − 𝑡𝑖 ln 𝑡𝑖 = 𝑡𝑖(ln 𝑡𝑖 − ln 𝑡𝑖)− 𝑡𝑖(ln 𝑡𝑖 − ln 𝑡𝑖) = (𝑡𝑖 − 𝑡𝑖)(ln 𝑡𝑖 − ln 𝑡𝑖) > 0

в силу положительной монотонности логарифма ln 𝑡.
Числитель производной, а потому и сама производная дроби 𝑀(𝑡𝛼+1𝑥)/𝑀(𝑡𝛼𝑥) положи-

тельна. Следовательно функция Φ(𝑥)(𝛼) всегда возрастает на прямой R(𝛼). Доказательство
окончено. 2

Определим носитель Supp𝑥 ряда 𝑥: он поможет понять поведение Φ(𝑥)(𝛼) при 𝛼 = ±∞:

Supp𝑥 = {𝑡𝑖 : 𝑥𝑖 > 0} = {𝑡*(𝑥) = 𝑡𝑖* < . . . < 𝑡𝑖** = 𝑡**(𝑥)} (5)

В этих обозначениях

Φ(𝑥)(𝛼) =
𝑎𝑖*𝑥𝑖*𝑡

𝛼+1
𝑖* + . . .+ 𝑎𝑖**𝑥𝑖**𝑡

𝛼+1
𝑖**

𝑎𝑖*𝑥𝑖*𝑡𝛼𝑖* + . . .+ 𝑎𝑖**𝑥𝑖**𝑡𝛼𝑖**
(6)

Это рациональное представление дает возможность понять поведение функции Φ(𝑥)(𝛼) на бес-
конечностях:

lim
𝛼→−∞

Φ(𝑥)(𝛼) =
𝑡𝛼+1
𝑖* (𝑎𝑖*𝑥𝑖* + . . .+ 𝑎𝑖**𝑥𝑖**(𝑡𝑖**/𝑡𝑖*)𝛼+1)

𝑡𝛼𝑖*(𝑎𝑖*𝑥𝑖* + . . .+ 𝑎𝑖**𝑥𝑖**(𝑡𝑖**/𝑡𝑖*)𝛼)
=
𝑡𝛼+1
𝑖* (𝑎𝑖*𝑥𝑖* + 𝑜(𝛼))

𝑡𝛼𝑖*(𝑎𝑖*𝑥𝑖* + 𝑜(𝛼))
= 𝑡𝑖* = 𝑡*(𝑥)

Аналогично

lim
𝛼→+∞

Φ(𝑥)(𝛼) =
𝑡𝛼+1
𝑖** (𝑎𝑖**𝑥𝑖** + . . .+ 𝑎𝑖*𝑥𝑖*(𝑡𝑖*/𝑡𝑖**)𝛼+1)

𝑡𝛼𝑖**(𝑎𝑖**𝑥𝑖** + . . .+ 𝑎𝑖*𝑥𝑖*(𝑡𝑖*/𝑡𝑖**)𝛼)
=
𝑡𝛼+1
𝑖** (𝑎𝑖**𝑥𝑖** + 𝑜(𝛼))

𝑡𝛼𝑖**(𝑎𝑖**𝑥𝑖** + 𝑜(𝛼))
= 𝑡𝑖** = 𝑡**(𝑥)

Вывод: Φ(𝑥)(𝛼) — непрерывная, возрастающая на R(𝛼) функция с образом [𝑡*(𝑥), 𝑡**(𝑥)].
Дальнейшее тесно связано с примером, в котором функция 𝑥 является тождественной

единицей.
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Пример 1. 𝑥 ≡ 1. В этом случае все действующие лица выглядят так:

Φ(1)(𝛼) = 𝑀(𝑡𝛼+1)/𝑀(𝑡𝛼); 𝑡*(1) = 𝑡1, 𝑡
**(1) = 𝑡𝑁

Поскольку Φ(1)(𝛼) = Φ(𝑡𝛼), то функция Φ(1)(𝛼) является Φ-параметризацией на 𝑇 (𝑁)
важнейшего степенного семейства T = {𝑡𝛼, 𝛼 ∈ R}. Это обстоятельство вместе с установ-
ленной монотонностью Φ(1)(𝛼) дает возможность определить для любого неотрицательного
на 𝑇 (𝑁) ряда его порядок в нуле.

Действительно, параметр Φ(𝑥), являясь «горизонтальным центром тяжести» для 𝑥, лежит
в [𝑡1, 𝑡𝑁 ], а образ функций Φ(1)(𝛼) совпадает с отрезком [𝑡1, 𝑡𝑁 ]. Поэтому в силу монотонности
Φ(1)(𝛼) существует единственный показатель 𝛼(𝑥), для которого Φ(𝑡𝛼(𝑥)) = Φ(𝑥). Его будем
считать порядком 𝑥 и обозначать через ord𝑥. Порядком ряда, тождественно равного нулю,
будем считать бесконечность: ord 0 =∞.

Если 𝐶(𝑥) = 𝑀(𝑥)/𝑀(𝑡ord𝑥), то функция 𝐶(𝑥)𝑡ord𝑥 имеет одинаковые с 𝑥 параметры𝑀(𝑥)
и Φ(𝑥). Этого оказывается достаточно для регрессионного равенства 𝑥 и 𝐶(𝑥)𝑡ord𝑥 на 𝑇 (𝑁) в
нуле. Неформально последнее означает, что у них одна 𝛿-регрессия на 𝑇 (𝑁), вокруг которой
они, колеблясь, приближаются к нулю по горизонтали (рис. 1).

Рис. 1: Синий ряд — 𝑥, черный — 𝐶(𝑥)𝑡ord𝑥, красный — их общая 𝛿-регрессия.

Теорема 1. Для любого неотрицательного на 𝑇 (𝑁) ряда 𝑥 существует единственная
степенная модель 𝐶(𝑥)𝑡ord𝑥, имеющая одинаковую с 𝑥 линейную 𝛿-регрессию на 𝑇 (𝑁).

Доказательство. Осталась только регрессионная часть. Обозначим через 𝑙𝛿𝑥 линейную
регрессию для 𝑥 на 𝑇 (𝑁) относительно весов 𝛿:

𝑙𝛿𝑥↔ 𝑙𝛿𝑥(𝑡) = 𝑎(𝑥)𝑡+ 𝑏(𝑥) (7)

По модулю стандартных рассуждений, касающихся регрессии, коэффициенты 𝑎(𝑥) и 𝑏(𝑥)
определяются из системы {︃

𝑀(𝑡2)𝑎(𝑥) +𝑀(𝑡)𝑏(𝑥) = 𝑀(𝑡𝑥)

𝑀(𝑡)𝑎(𝑥) + 𝑏(𝑥) = 𝑀(𝑥)
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Из нее ⎧⎪⎨⎪⎩𝑎(𝑥) =
𝑀(𝑡𝑥)−𝑀(𝑡)𝑀(𝑥)

𝑀(𝑡2)−𝑀2(𝑡)
= 𝑀(𝑥)

(︂
Φ(𝑥)−𝑀(𝑡)

𝑀(𝑡2)−𝑀2(𝑡)

)︂
𝑏(𝑥) = 𝑀(𝑥)−𝑀(𝑡)𝑎(𝑥)

Таким образом, пара (𝑀(𝑥),Φ(𝑥)) однозначно определяет регрессию 𝑙𝛿𝑥. Доказательство окон-
чено. 2

Замечание 1. Стандартная степенная модель для 𝑥 в анализе данных основана на ре-
грессии 𝑥 в двойном логарифмическом масштабе [4]. Степенная модель для 𝑥, построенная
по параметру Φ(𝑥), связана с 𝑥 непосредственно. Их сравнение приведено на рис. 2.

Рис. 2: Синий — исходный ряд 𝑥, зеленый — стандартная степенная модель для 𝑥, черный —
степенная модель для 𝑥, построенная по параметру Φ(𝑥).

3. Приложение к произвольным рядам

В дальнейшем 𝑇 произвольный отрезок на дискретной прямой R(ℎ) с концами 𝑎 и 𝑏, 𝑓 ряд
на 𝑇 , 𝑅 = 𝑁ℎ≪ 𝑏− 𝑎 радиус локального обзора 𝑓 в узле 𝑡 ∈ 𝑇 с весом 𝛿.

Обозначим через 𝑥+𝑓 (𝑡) и 𝑥−𝑓 (𝑡) неотрицательные ряды на 𝑇 (𝑁):

𝑥+𝑓 (𝑡)(𝑖ℎ) = |𝑓(𝑡+ 𝑖ℎ)− 𝑓(𝑡)|
𝑥−𝑓 (𝑡)(𝑖ℎ) = |𝑓(𝑡− 𝑖ℎ)− 𝑓(𝑡)|

; 𝑖 = 1, . . . , 𝑁 (8)

Определение 2. Ряд 𝑓 в узле 𝑡 будем считать справа (слева):

� гладким, если ord𝑥+𝑓 (𝑡) ⩾ 1(ord𝑥−𝑓 (𝑡) ⩾ 1)

� липшицевым, если ord𝑥+𝑓 (𝑡) ∈ (0, 1)(ord𝑥−𝑓 (𝑡) ∈ (0, 1))

� разрывным, если ord𝑥+𝑓 (𝑡) ⩽ 0(ord𝑥−𝑓 (𝑡) ⩽ 0)
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Механизм ord𝑥±𝑓 (𝑡) инвариантен. С одной стороны, это, безусловно, достоинство, посколь-
ку дает возможность проникать глубоко во внутрь устройства 𝑓 около 𝑡. С другой стороны, в
анализе данных решающее слово за исследователем и такая строгость часто обременительна:
на рис. 3 механизм ord𝑥+𝑓 (𝑡) выделяет три аномалии, в то время как для исследователя есть
только одна — правая. Таким образом, нужным является более мягкое отношение к механизму
ord𝑥±𝑓 (𝑡), обратно зависящее от средних 𝑀(𝑥±𝑓 (𝑡)): чем они меньше, тем отношение мягче.

Рис. 3: Вверху — порядок ord𝑥+𝑓 (𝑡), внизу — ряд 𝑓 .

Авторы строят его в рамках ДМА, используя нечеткую логику. Сначала определяются
нечеткие меры 𝜇𝑀 (𝑥) и 𝜇Φ(𝑥), выражающие восприятие исследователем параметров 𝑀(𝑥)
и Φ(𝑥). Далее меры 𝜇𝑀 (𝑥) и 𝜇Φ(𝑥) соединяются в рамках нечеткой логики в меру 𝜇(𝑥), пред-
ставляющую собой итоговое понимание исследователем свойств гладкости, липшицевости и
разрывности, причем в разных, зависящих от исследователя, пропорциях. Вариантов много,
поскольку в их создании активное участие должен принимать исследователь. Эффективность
таких конструкций нужно оценивать в рамках анализа данных, т.е. с практической точки
зрения. Вариант, принятый в статье, представлен ниже формулами (10). Общая мера 𝜇𝑓 (𝑡)
получается из меры 𝜇(𝑥) и механизма 𝑥±𝑓 (𝑡) с помощью нечеткой конъюнкции min:

𝜇𝑓 (𝑡) = min
(︁
𝜇(𝑥+𝑓 (𝑡)), 𝜇(𝑥−𝑓 (𝑡))

)︁
(9)

На рис. 4 мера 𝜇𝑓 (𝑡) решает вопрос разрывности для лестницы 𝑓 (рис. 3) в пользу ис-
следователя. Далее: на рис. 5 приведен дискретный след кусочно-гладкой функции. При его
анализе на первый план выходит свойство гладкости, требующее более пристального к ней
внимания. Соответствующий вариант меры 𝜇𝑓 (𝑡) учитывает это, деля липшицевость на силь-
ную и слабую. Первая трактуется как переход от гладкости к негладкости (зеленое), а вторая
как негладкость (красное).
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Рис. 4: Вверху — мера гладкости 𝜇𝑓 (𝑡), внизу — классификация точек ряда 𝑓(𝑡) относительно
меры 𝜇𝑓 (𝑡) (непрерывные — синие, промежуточные — зеленые, разрывные — красные).

Рис. 5: Вверху — мера гладкости 𝜇𝑓 (𝑡), посередине — ряд 𝑓(𝑡), внизу — классификация точек
ряда 𝑓(𝑡) относительно меры 𝜇𝑓 (𝑡) (гладкие — синие, промежуточные — зеленые,

негладкие — красные).
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В заключение возвратимся к мере 𝜇(𝑥) и приведем ее вариант, участвующий в работе:

𝜇(𝑥) = (1− 𝜇Φ(𝑥))𝜇𝑀 (𝑥) + 𝜇Φ(𝑥),

где

𝜇Φ(𝑥) =

⎧⎪⎨⎪⎩
1, если ord𝑥 > 1

ord𝑥, если ord𝑥 ∈ [0, 1]

0, если ord𝑥 < 0

𝜇𝑀 (𝑥) =

(︂
1− min(𝑀(𝑥), 𝐵)

𝐵

)︂𝑝

(10)

Параметр 𝑝 определяется работой на степенном семействе T = {𝑡𝛼, 𝛼 ∈ R}. В настоящей
работе 𝑝 = 6.75 и выбирается из соображения гладкости в нуле |𝑡𝛼| при 𝛼 ⩾ 1, переходной
гладкости при 𝛼 ∈ [0.5, 1) и ее отсутствия при 𝛼 < 0.5 (рис. 6–8).

Параметр 𝐵 является нижней гранью больших, по мнению исследователя, чисел. В насто-
ящей работе:

𝐵 = 𝐵(𝑓) =

∑︀
𝑓(𝑡) : 𝑡 ∈ 𝑇
|𝑇 |

−min
𝑡∈𝑇

𝑓(𝑡).

Рис. 6: Пример 𝑓 = |𝑡2|, вверху — мера гладкости 𝜇𝑓 (𝑡), посередине — ряд 𝑓(𝑡), внизу —
классификация точек ряда 𝑓(𝑡) относительно меры 𝜇𝑓 (𝑡) (гладкие — синие,

промежуточные — зеленые, негладкие — красные).
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Рис. 7: Пример 𝑓 = |𝑡0.5|, вверху — мера гладкости 𝜇𝑓 (𝑡), посередине — ряд 𝑓(𝑡), внизу —
классификация точек ряда 𝑓(𝑡) относительно меры 𝜇𝑓 (𝑡) (гладкие — синие,

промежуточные — зеленые, негладкие — красные).

Рис. 8: Пример 𝑓 = |𝑡0.1|, вверху — мера гладкости 𝜇𝑓 (𝑡), посередине — ряд 𝑓(𝑡), внизу —
классификация точек ряда 𝑓(𝑡) относительно меры 𝜇𝑓 (𝑡) (гладкие — синие,

промежуточные — зеленые, негладкие — красные).

4. Заключение

В классическом анализе равномерные показатели Липшица дают глобальное измере-
ние гладкости: если функция 𝑓 удовлетворяет равномерному показателю Липшица 𝛼 > 𝑚
в окрестности [𝑡 − ℎ, 𝑡 + ℎ] с многочленом 𝑝𝑡, то, во-первых, функция 𝑓 обязательно 𝑚 раз
непрерывно дифференцируема в [𝑡−ℎ, 𝑡+ℎ], а, во-вторых, 𝑝𝑡 есть многочлен Тейлора порядка
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𝑚 для 𝑓 в 𝑡 [5].
Отсюда подход к𝑚-гладкости в дискретном случае: регрессионные производные существу-

ют всегда [1]–[3], поэтому у любого ряда 𝑓 в любом узле 𝑡 существует многочлен Тейлора 𝑝𝑚𝑡
любого порядка 𝑚. Дальше поступаем как выше в механизме 𝑥±𝑓 (𝑡).

Обозначим через 𝑥+,𝑚
𝑓 (𝑡) и 𝑥−,𝑚

𝑓 (𝑡) неотрицательные ряды на 𝑇 (𝑁), подобно (8) представ-
ляющие отклонение 𝑓 от 𝑝𝑚𝑡 соответственно справа и слева. И назовем 𝑓 𝑚-гладкой в 𝑡 справа
(слева), если ord+,𝑚

𝑓 (𝑡) > 𝑚 (ord−,𝑚
𝑓 (𝑡) > 𝑚).

Эффективность механизма ord±,𝑚
𝑓 (𝑡) предполагается изучить в будущем.
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Аннотация

Для системы линейных алгебраических уравнений (СЛАУ) 𝐴𝑥 = 𝑏 в конечномерном
евклидовом пространстве 𝐸 с помощью ортогонализации Грама-Шмидта получено кон-
структивное описание многообразия ее решений Φ(𝐴, 𝑏), состоящее в ее безусловной ли-
нейной параметризации.

Это обстоятельство открывает совершенно новые возможности в использовании СЛАУ,
поскольку позволяет теоретически учесть априорную информацию о свойствах истинного
решения 𝑥и в его поиске на многообразии Φ(𝐴, 𝑏). Технически это выглядит так: экспертная
точка зрения на решение 𝑥и формализуется неотрицательным функционалом 𝐹 на Φ(𝐴, 𝑏),
а решение 𝑥и его минимизирует. Благодаря линейной параметризации Φ(𝐴, 𝑏) минимизация
𝐹 является безусловной.

Особое внимание в работе уделено случаю, когда экспертная информация о решении
𝑥и формально предстает нечеткой структурой 𝜇 весов координат пространства 𝐸, выра-
жающих их роль в СЛАУ 𝐴𝑥 = 𝑏. Пару (𝐴𝑥 = 𝑏, 𝜇) мы называем нечеткой СЛАУ. Форми-
рование ее решений Φ(𝐴, 𝑏, 𝜇) ⊆ Φ(𝐴, 𝑏) связано с нелинейной оптимизацией, для которой
в работе разработаны алгоритмы полиномиального спуска.

Результаты исследований иллюстрируются примерами.

Ключевые слова: проекционный метод, пространство решений, полиномиальный спуск,
нечеткие линейные системы.
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Abstract

For a system of linear algebraic equations (SLAE) 𝐴𝑥 = 𝑏 in a finite-dimensional Euclidean
space 𝐸, a constructive description of the manifold of its solutions Φ(𝐴, 𝑏) is obtained using
the Gram-Schmidt orthogonalization. This description consists of an unconditional linear
parameterization.

This circumstance opens up entirely new possibilities for using SLAEs, as it allows one to
theoretically take into account a priori information about the properties of the true solution
𝑥и in its search on the manifold Φ(𝐴, 𝑏). Technically, this looks like this: the expert opinion
on the solution 𝑥и is formalized by a non-negative functional 𝐹 on Φ(𝐴, 𝑏), and the solution
𝑥и minimizes it. Thanks to the linear parameterization of Φ(𝐴, 𝑏), the minimization of 𝐹 is
unconditional.

The paper pays special attention to the case where expert information about the solution 𝑥и

is formally represented by a fuzzy structure 𝜇 of coordinate weights in the space 𝐸, expressing
their role in the SLAE 𝐴𝑥 = 𝑏. We call the pair (𝐴𝑥 = 𝑏, 𝜇) a fuzzy SLAE. The formation of its
solutions Φ(𝐴, 𝑏, 𝜇) ⊆ Φ(𝐴, 𝑏) is associated with nonlinear optimization, for which polynomial
descent algorithms are developed in the paper.

The research results are illustrated with examples.
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1. Введение

Конструктивное описание многообразия решений Φ(𝐴, 𝑏) линейной системы (СЛАУ)
𝐴𝑥 = 𝑏 в конечномерном евклидовом пространстве 𝐸 позволяет учесть априорную информа-
цию о свойствах нужного (истинного) решения 𝑥и путем его поиска на многообразии Φ(𝐴, 𝑏).
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Технически это выглядит так: экспертная точка зрения на решение 𝑥и формализуется
неотрицательным функционалом 𝐹 на Φ(𝐴, 𝑏), а решение 𝑥и его минимизирует. Если точек
зрения на 𝑥и несколько и за них отвечает система функционалов ℱ = (𝐹1, . . . , 𝐹𝑘), то поиск
𝑥и сводится к многокритериальному выбору 𝐵(Φ(𝐴, 𝑏),ℱ) относительно ℱ на Φ(𝐴, 𝑏).

Сказанное выше графически передает схема

𝐴𝑥 = 𝑏→ Φ(𝐴, 𝑏)→ ℱ → 𝐵(ℱ ,Φ(𝐴, 𝑏))→ 𝑥и (1)

Первый переход в (1) полностью относится к линейной алгебре и в настоящей работе будет
выполнен с помощью ортогонализации Грама-Шмидта.

Второй переход в (1) формализует априорную информацию об истинном решении 𝑥и в си-
стему функционалов ℱ на многообразии Φ(𝐴, 𝑏) и потому требует широкого спектра методов.
Мы будем иметь дело с высказываниями двух типов 𝐸𝑦 и 𝐸𝜇:

𝐸𝑦: решение 𝑥
и похоже на известный вектор 𝑦 ∈ 𝐸

𝐸𝜇: 𝜇 – неотрицательный вектор весов координат пространства 𝐸, выражающих их роль в
СЛАУ 𝐴𝑥 = 𝑏. Модули координат решения 𝑥и похожи на веса 𝜇.

При условии нечеткости 𝜇 (‖𝜇‖∞ = 1) пару (𝐴𝑥 = 𝑏, 𝜇) считаем нечеткой СЛАУ, так
что высказывание 𝐸𝜇 связано с формированием ее решения Φ(𝐴, 𝑏, 𝜇) ⊆ Φ(𝐴, 𝑏). Будут
рассмотрены и проанализированы три варианта 𝐸𝑦 и два варианта 𝐸𝜇.

Третий переход в (1) представляет собой оптимизацию функционалов из ℱ на многообра-
зии Φ(𝐴, 𝑏) в широком смысле. В работе она выполнена как аналитическими методами (явное
определение экстремальных точек через градиенты), так и новыми, полиномиальными вер-
сиями градиентного и покоординатного спусков. Их результатом будут те или иные версии
истинного решения 𝑥и. Изложение иллюстрируется примерами из магнитометрии, поскольку
настоящая работы выполнена в рамках связанного с ней гранта РНФ.

2. Проекционный метод

Исходное пространство 𝐸 предполагается 𝑛-мерным Евклидовым относительно скалярного
произведения ( , ). В линейной системе

𝐴𝑥 = 𝑏 = (𝑎𝑖, 𝑥) = 𝑏𝑖; 𝑖 = 1, . . . ,𝑚; 𝑥 ∈ 𝐸 (2)

под 𝐴 одновременно понимается как совокупность векторов 𝑎𝑖 из 𝐸, так и матрица 𝑚 × 𝑛 с
векторами 𝑎𝑖 в качестве строк, 𝑏 = (𝑏𝑖|𝑚1 ).

Проекционный метод (ПМ) применительно к системе (2) состоит в эффективном постро-
ении многообразия ее решений Φ(𝐴, 𝑏). Эта задача была решена авторами в работах [1, 2, 3]
на основе систематического использования ортопроектора 𝐻(𝑎) перпендикулярно к 𝑎 ∈ 𝐸:

𝐻(𝑎) = 1− 𝑎𝑎⊤

𝑎⊤𝑎
, если 𝑎 ̸= 0 и 𝐻(0) = 1.

В настоящей работе в изложении ПМ главную роль будет играть ортогонализация Грама-
Шмидта (ГШ) [4] в 𝐸.

Однородные системы. Для однородной системы 𝐴𝑥 = 0 пространство решений Φ(𝐴, 0) в
точности совпадает с ортогональным дополнением в 𝐸 к подпространству 𝐿(𝐴), порожденно-
му 𝐴: Φ(𝐴, 0) = 𝐿(𝐴)⊤. Поэтому для решения системы 𝐴𝑥 = 0 нужно построить ортопроектор

𝐻 = 𝐻(𝐴) : 𝐸 −→ 𝐿(𝐴)⊤.
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Сделаем это с помощью ортогонализации ГШ: если 𝒢 = {𝑔𝑖|𝑁1 }, 𝑁 = rang𝐴 результат ее
применения к совокупности 𝐴: 𝒢 = ГШ(𝐴), то

𝐻𝑥 = 𝑥−
𝑁∑︁
𝑖=1

(𝑥, 𝑔𝑖)

(𝑔𝑖, 𝑔𝑖)
𝑔𝑖 ∀𝑥 ∈ 𝐸. (3)

Неоднородные системы. Произвольное решение неоднородной системы 𝐴𝑥 = 𝑏 есть сумма
частного 𝑥* и однородного, так что Φ(𝐴, 𝑏) = 𝑥* + Φ(𝐴, 0). Воспользуемся в поиске 𝑥* приво-
димой ниже эквивалентностью и реализацией ее правой части с помощью ортогонализации
ГШ:

𝑥 ∈ Φ(𝐴, 𝑏) ≡ 𝑥 вектор в 𝐸, чей образ 𝐴𝑥 является
проекцией 𝑏 на образ Im𝐴 в R𝑚 .

Если {𝑒𝑗 |𝑛1} базис 𝐸, то система 𝑃 = {𝐴𝑒𝑗 |𝑛1} порождает образ Im𝐴 в R𝑚. Применим к
𝑃 ортоганилизацию ГШ и получим ортогональную систему 𝐺 = ГШ(𝑃 ) в R𝑚: 𝐺 = {𝑔𝑖

⃒⃒
𝑁
1 },

𝑁 = rang𝑃 .

Нам нужны прообразы 𝑦𝑖 векторов 𝑔𝑖 при отображении 𝐴: 𝐴𝑦𝑖 = 𝑔𝑖. Если они известны, то

𝑏 =
𝑁∑︁
𝑖=1

(𝑏, 𝑔𝑖)

(𝑔𝑖, 𝑔𝑖)
𝑔𝑖 =

𝑁∑︁
𝑖=1

(𝑏, 𝑔𝑖)

(𝑔𝑖, 𝑔𝑖)
𝐴𝑦𝑖 = 𝐴

(︃
𝑁∑︁
𝑖=1

(𝑏, 𝑔𝑖)

(𝑔𝑖, 𝑔𝑖)
𝑦𝑖

)︃

Таким образом, вектор

𝑥* =
𝑁∑︁
𝑖=1

(𝑏, 𝑔𝑖)

(𝑔𝑖, 𝑔𝑖)
𝑦𝑖 (4)

является частным решением системы 𝐴𝑥 = 𝑏.

Вектора 𝑔𝑖 и 𝑦𝑖 строим итеративно. Сначала рассуждения относительно 𝑔𝑖: если известны
вектора 𝑔1, . . . , 𝑔𝑖−1, 𝑖 ⩾ 2, то согласно ГШ

𝑔𝑖 = 𝐴𝑒𝑖 −
𝑖−1∑︁
𝑘=1

(𝐴𝑒𝑖, 𝑔𝑘)

(𝑔𝑘, 𝑔𝑘)
𝑔𝑘. (5)

Начало: 𝑔1 = 𝐴𝑒1. Теперь рассуждения для 𝑦𝑖: если известны вектора 𝑦1, . . . , 𝑦𝑖−1, 𝑖 ⩾ 2, то
с учетом (5)

𝑔𝑖 = 𝐴𝑒𝑖 −
𝑖−1∑︁
𝑘=1

(𝐴𝑒𝑖, 𝑔𝑘)

(𝑔𝑘, 𝑔𝑘)
𝐴𝑦𝑘 = 𝐴

(︃
𝑒𝑖 −

𝑖−1∑︁
𝑘=1

(𝐴𝑒𝑖, 𝑔𝑘)

(𝑔𝑘, 𝑔𝑘)
𝑦𝑘

)︃
.

Таким образом,

𝑦𝑖 = 𝑒𝑖 −
𝑖−1∑︁
𝑘=1

(𝐴𝑒𝑖, 𝑔𝑘)

(𝑔𝑘, 𝑔𝑘)
𝑦𝑘.

Начало: 𝑦1 = 𝑒1.

Подведем итог: эффективная параметризация многообразия решений Φ(𝐴, 𝑏) СЛАУ𝐴𝑥 = 𝑏
с помощью ортогонализации ГШ представляет собой зависимость

𝑥 = 𝑥* +𝐻𝑠, 𝑠 ∈ 𝐸 (6)

где 𝐻 и 𝑥* определяются формулами (3) и (4).
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3. Суждение 𝐸𝑦

Многообразие Φ(𝐴, 𝑏) служит областью определения произвольного суждения об истинном
решении 𝑥и. Обратимся к одному из самых естественных из них, а именно: к суждению 𝐸𝑦

о схожести 𝑥и с известным вектором 𝑦 ∈ 𝐸. В работах [1, 2, 3] разобраны две его трактовки.
Приведем их.

Трактовка первая 𝐸1
𝑦 . Схожесть 𝑥и и 𝑦 понимается метрически, как близость в 𝐸: «𝑥и = 𝑥и1

ближайшая к 𝑦 точка на многообразии Φ(𝐴, 𝑏)». Поиск варианта 𝑥и1 = 𝑥* +𝐻𝑠и1 истинного ре-
шения согласно 𝐸1

𝑦 сводится к безусловной минимизации по 𝑠 на 𝐸 первой версии функционала
𝐹 1
𝑦 :

𝐹 1
𝑦 (𝑠) = ||𝑥* +𝐻𝑠− 𝑦||2, grad𝐹 1

𝑦 (𝑠) = 𝐻⊤𝐻𝑠−𝐻⊤(𝑦 − 𝑥*), (7)

что приводит к СЛАУ на параметр 𝑠и1

𝐻⊤𝐻𝑠и1 = 𝐻⊤(𝑦 − 𝑥*), (7′)

которую можно решить ПМ.

Трактовка вторая 𝐸2
𝑦 . Сходство 𝑥и и 𝑦 более инвариантно относительно 𝑦 и, в известном

смысле, полукорреляционно: «𝑥и2 ближайшая точка на Φ(𝐴, 𝑏) к прямой 𝐿(𝑦) = 𝑦𝑡, порожден-
ной вектором 𝑦». В этом случае поиск 𝑥и2 = 𝑥* + 𝐻𝑠и2 связан с безусловной минимизацией по
𝑠 и 𝑡 на произведении 𝐸(𝑠)× R(𝑡) второй версии функционала 𝐹 2

𝑦 :

𝐹 2
𝑦 (𝑠) = ||𝑥* +𝐻𝑠− 𝑦𝑡||2. (8)

Нужная пара параметров (𝑠*2, 𝑡
*) получается, как решение СЛАУ(︂

𝐻⊤𝐻 −𝐻⊤𝑦
−𝑦⊤𝐻 ||𝑦||2

)︂(︂
𝑠*2
𝑡*

)︂
=

(︂
−𝐻⊤𝑥*

(𝑥*, 𝑦)

)︂
. (8′)

Полиномиальный спуск. В (7′) и (8′) функционалы 𝐹 1
𝑦 и 𝐹 2

𝑦 зависят от 𝑠 квадратично,
поэтому оптимизация для них на пространстве 𝐸(𝑠) сводится к решению СЛАУ (7′) и (8′),
порожденных их градиентами. В оставшихся случаях 𝐸3

𝑦 и 𝐸𝑖
𝜇 (𝑖 = 1, 2) функционалы 𝐹 (𝑠)

алгебраические, но не квадратичные, поэтому для их оптимизации нужны нелинейные мето-
ды.

В работе предлагается глобальный вариант оптимизации по направлениям, который на-
зывается Полиномиальным Спуском (ПС). Опишем общую ситуация для его работы: пусть
𝐹 (𝑥) – функционал на многообразии решений Φ(𝐴, 𝑏) СЛАУ 𝐴𝑥 = 𝑏. Благодаря параметриза-
ции (6), он становится функционалом 𝐹 (𝑠) на всем пространстве параметров 𝐸(𝑠).

Скажем, что к 𝐹 применим ПС, если критические точки ограничения 𝐹𝑠*,𝑑*(𝑡) = 𝐹 (𝑠*+𝑡𝑑*)
на любую прямую 𝑠(𝑡) = 𝑠* + 𝑡𝑑* в 𝐸(𝑠) можно найти с помощью решения полиномиальных
уравнений в радикалах.

Применительно к 𝐹 алгоритм ПС действует итеративно: находясь в точке 𝑠*, он анализи-
рует поведение 𝐹𝑠*,𝑑*(𝑡) вдоль «правильных» направлений 𝑑, выходящих из 𝑠*, и выбирает в
этом множестве 𝐷(𝑠*) направление 𝑑*, вдоль которого минимизация 𝐹𝑠*,𝑑(𝑡) наилучшая. Если
𝑡* ее результат, то следующей за 𝑠* будет точка 𝑠* + 𝑡*𝑑*. Начинается алгоритм ПС в нуле
𝑠 = 0, поскольку в начале на многообразии Φ(𝐴, 𝑏) нам известна только одна точка 𝑥*.

Варианты 𝐷(𝑠*) определяют варианты ПС. Их будет два – Полиномиальный Градиентный
Спуск (ПГС) и Полиномиальный Покоординатный Спуск (ППС):

ПГС↔ 𝐷(𝑠*) = grad𝐹 (𝑠*)

ППС↔ 𝐷(𝑠*) =

{︂
Координатные оси

𝑒𝑘 в 𝐸(𝑠); 𝑘 = 1, . . . , 𝑛

}︂
(9)
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С учетом сказанного изложение оставшихся суждений 𝐸 будет носить технический харак-
тер и состоять в вычислении grad𝐹 (𝑠*) и 𝐹 ′

𝑠*,𝑑 для соответствующего 𝐸 функционала 𝐹 .

Трактовка третья 𝐸3
𝑦 . Сходство 𝑥и и 𝑦 состоит в их полной cos-корреляции: «𝑥и3 точка

на Φ(𝐴, 𝑏) с максимальной корреляцией cos(𝑥и3 , 𝑦)». С учетом параметризации (6) поиск 𝑥и3
сводится к безусловной максимизации по 𝑠 функционала 𝐹 3

𝑦

𝐽(𝑠) = 𝐹 3
𝑦 (𝑠) =

(𝑥* +𝐻𝑠, 𝑦)

‖𝑥* +𝐻𝑠‖ ‖𝑦‖
. (10)

Покажем, что ее можно выполнить с помощью ПС. Для этого найдем градиент grad 𝐽(𝑠)
с помощью представления 𝐽(𝑠) как суперпозиции cos(𝑥, 𝑦) и параметризации 𝑥 = 𝑥* +𝐻𝑠:

𝐽 ′(𝑠) = cos(𝑥, 𝑦)𝑥(𝑥* +𝐻𝑠)𝑠.

Прямые вычисления дадут равенства

cos(𝑥, 𝑦)𝑥 =

(︂
‖𝑥‖2𝑦 − (𝑥, 𝑦)𝑥

‖𝑥‖3‖𝑦‖

)︂⊤
,

(𝑥* +𝐻𝑠)𝑠 = 𝐻,

так что

𝐽 ′(𝑠) =

(︂
‖𝑥* +𝐻𝑠‖2𝑦 − (𝑥* +𝐻𝑠, 𝑦)(𝑥* +𝐻𝑠)

‖𝑥* +𝐻𝑠‖3‖𝑦‖

)︂⊤
𝐻

и

grad 𝐽(𝑠) = 𝐻⊤
(︂
‖𝑥* +𝐻𝑠‖2𝑦 − (𝑥* +𝐻𝑠, 𝑦)(𝑥* +𝐻𝑠)

‖𝑥* +𝐻𝑠‖3‖𝑦‖

)︂
. (11)

Для ПС нужно изучить ограничение функции 𝐽(𝑠) на любую прямую 𝑠(𝑡) = 𝑐𝑡 + 𝑑 в
пространстве параметров 𝐸(𝑠). Положим 𝐽(𝑡) = 𝐽𝑐,𝑑(𝑡) = 𝐽(𝑐𝑡+ 𝑑) и найдем 𝐽 ′(𝑡):

𝐽 ′(𝑡) = 𝐽 ′
𝑐,𝑑(𝑡) = (grad𝐽(𝑐𝑡+ 𝑑), 𝑐) =

=

(︂
𝐻⊤ ‖𝑥* +𝐻(𝑐𝑡+ 𝑑)‖2𝑦 − (𝑥* +𝐻(𝑐𝑡+ 𝑑), 𝑦)(𝑥* +𝐻(𝑐𝑡+ 𝑑))

‖𝑥* +𝐻(𝑐𝑡+ 𝑑)‖3‖𝑦‖
, 𝑐

)︂
=

=

(︂
‖𝑥* +𝐻(𝑐𝑡+ 𝑑)‖2𝑦 − (𝑥* +𝐻(𝑐𝑡+ 𝑑), 𝑦)(𝑥* +𝐻(𝑐𝑡+ 𝑑))

‖𝑥* +𝐻(𝑐𝑡+ 𝑑)‖3‖𝑦‖
, 𝐻𝑐

)︂
.

Положим 𝐶 = 𝐻𝑐, 𝐷 = 𝑥* +𝐻𝑑 и запишем в этих обозначениях 𝐽(𝑡) и 𝐽 ′(𝑡):

𝐽(𝑡) =
(𝐶𝑡+𝐷, 𝑦)

‖𝐶𝑡+𝐷‖‖𝑦‖
,

𝐽 ′(𝑠) =
‖𝐶𝑡+𝐷‖2(𝑦, 𝐶)− (𝐶𝑡+𝐷, 𝑦)(𝐶𝑡+𝐷,𝐶)

‖𝐶𝑡+𝐷‖3‖𝑦‖
.

(12)

Проанализируем 𝐽(𝑡). Во-первых, она ограничена: 𝐽(𝑡) ⩽ 1, во-вторых, имеет пределы на
бесконечности

lim
𝑡→±∞

𝐽(𝑡) =
𝑡(𝐶, 𝑦) + (𝐷, 𝑦)

‖𝐶𝑡+𝐷‖‖𝑦‖
=

𝑡

|𝑡|
(𝐶, 𝑦) + 𝑡−1(𝐷, 𝑦)

‖𝐶 + 𝑡−1𝐷‖‖𝑦‖
=

=

{︂
± cos(𝐶, 𝑦), если 𝐶 ̸= 0,
cos(𝐷, 𝑦), если 𝐶 = 0.

(13)

Следствие 1. Если 𝐶 ̸= 0, то 𝐽(−∞) = −𝐽(∞). Если 𝐶 = 0, то 𝐽(𝑡) ≡ cos(𝐷,𝜇).
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Далее: преобразуем производную 𝐽 ′(𝑡) с помощью замены ‖𝐷 + 𝑡𝐶‖2 = (𝐷 + 𝑡𝐶,𝐷 + 𝑡𝐶)

𝐽 ′(𝑡) =
(𝐷 + 𝑡𝐶,𝐷 + 𝑡𝐶)(𝑦, 𝐶)− (𝐷 + 𝑡𝐶, 𝑦)(𝐷 + 𝑡𝐶,𝐶)

‖𝐷 + 𝑡𝐶‖3‖𝑦‖
=

=
𝑡2(𝐶,𝐶)(𝑦, 𝐶) + 2𝑡(𝐷,𝐶)(𝑦, 𝐶) + (𝐷,𝐷)(𝑦, 𝐶)

‖𝐷 + 𝑡𝐶‖3‖𝑦‖
−

− (𝑡(𝑦, 𝐶) + (𝜇,𝐷))(𝑡(𝐶,𝐶) + (𝐷,𝐶))

‖𝐷 + 𝑡𝐶‖3‖𝑦‖
=

=
2𝑡(𝐷,𝐶)(𝑦, 𝐶) + (𝐷,𝐷)(𝑦, 𝐶)− 𝑡(𝐷,𝐶)(𝑦, 𝐶)− 𝑡(𝐶,𝐶)(𝑦,𝐷)− (𝑦,𝐷)(𝐷,𝐶)

‖𝐷 + 𝑡𝐶‖3‖𝑦‖
=

=
−𝑡((𝐷,𝐶)(𝑦, 𝐶)− (𝐶,𝐶)(𝑦,𝐷)) + (𝐷,𝐷)(𝑦, 𝐶)− (𝐷,𝐶)(𝑦,𝐷)

‖𝐷 + 𝑡𝐶‖3‖𝑦‖

Таким образом,

(𝐹 3
𝑦 )′(𝑡) =

𝑃𝑡+𝑄

‖𝐷 + 𝑡𝐶‖3‖𝑦‖
, (14)

где

𝑃 = (𝐷,𝐶)(𝑦, 𝐶)− (𝐶,𝐶)(𝑦,𝐷)

𝑄 = (𝐷,𝐷)(𝑦, 𝐶)− (𝐷,𝐶)(𝑦,𝐷)
.

Приведенные вычисления вместе с классическим одномерным математическим анализом
дают возможность полностью понять устройство ограничения функционала 𝐹 3

𝑦 на прямые в
𝐸(𝑠) и, как следствие, обосновать ПС для оптимизации 𝐹 3

𝑦 : попадая в точку с направлением,
можно сделать нужный шаг вдоль всей прямой, через неё проходящую.

Устройство 𝐹 3
𝑦 (𝑡) через 𝐶,𝐷, 𝑃,𝑄, 𝑦:

� Если 𝑃 = 0 и 𝐶 ̸= 0, то ограничение 𝐹 3
𝑦 (𝑡) монотонно, причем 𝐹 3

𝑦 (𝑡) строго возрастает
(убывает), если cos(𝐶, 𝑦) > 0 (cos(𝐶, 𝑦) < 0).

Доказательство. Монотонность следует из (14), а ее характер определяется поведением
на бесконечности (13).

� Если 𝑃 = 0 и 𝐶 = 0, то 𝐹 3
𝑦 (𝑡) ≡ cos(𝐷,𝜇).

� Если 𝑃 ̸= 0, то у 𝐹 3
𝑦 (𝑡) есть одна критическая точка 𝑡* = −𝑄/𝑃 (14), причем

𝑡* = −𝑄
𝑃
− максимум, если 𝑃 < 0

минимум, если 𝑃 > 0
. (15)

Доказательство. Знак производной (𝐹 3
𝑦 )′(𝑡) совпадает со знаком ее числителя 𝑃𝑡+𝑄 (14):

при 𝑃 < 0 переход через ноль в 𝑡* будет сверху вниз (максимум), при 𝑃 > 0 – наоборот,
снизу вверх (минимум).

Помощь в оптимизации 𝐹 3
𝑦 . Аналитическое выражение (11) для grad𝐹 3

𝑦 нелинейно в от-
личие от выражений (7′) и (8′) для grad𝐹 1

𝑦 и grad𝐹 2
𝑦 . Поэтому прямое определение экстре-

мумов 𝐹 3
𝑦 , подобно 𝐹

1
𝑦 и 𝐹 2

𝑦 , невозможно: необходима итеративная численная оптимизация.
Если в ее процессе в какой-то момент мы находимся в точке 𝑑 пространства параметров 𝐸(𝑠),
и алгоритм оптимизации принимает решение о направлении движения по вектору 𝑐, то такое
движение, благодаря проделанному выше анализу, возможно глобальное, а следующая точка
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в такой оптимизации будет глобальным максимумом 𝐹 3
𝑦 на 𝑠(𝑡) = 𝑐𝑡+𝑑 или порогом движения

к бесконечности в «правильном направлении».
Графическая иллюстрация сказанного поможет сформулировать окончательную версию

поиска. Двумерного случая для этого будет достаточно: положим 𝐶 = (𝑎, 1), 𝐷 = (1, 0),
𝑦 = (𝑦1, 𝑦2) и за счет выбора 𝑎, 𝑦1, 𝑦2 добьемся нужного результата

� Если 𝑃 = 0, 𝐶 ̸= 0 и 𝐹 3
𝑦 (∞) = cos(𝐶, 𝑦) ≷ 0, то движение к 𝐹 3

𝑦 (∞) (𝐹 3
𝑦 (−∞)), то есть к

модулю | cos(𝐶, 𝑦)|. В параметрах примера 𝑃 = 0←→ 𝑎𝑦2 = 𝑦1, cos(𝐶, 𝑦) = 𝑎𝑦1 + 𝑦2 =
= (𝑎2 + 1)𝑦2. Нужные примеры получаются при 𝑎 = 1; 𝑦2 = ±1. Ими будут функции на
рисунках 1 и 2

Рис. 1: 𝐹 3
𝑦 (𝑡) = (2𝑡+1)√

(𝑡+1)2+𝑡2
√
2

Рис. 2: 𝐹 3
𝑦 (𝑡) = −(2𝑡+1)√

(𝑡+1)2+𝑡2
√
2

� Если 𝑃 = 0, 𝐶 = 0 и 𝐹 3
𝑦 ≡ cos(𝐷, 𝑦) и никакого движения нет

� Если 𝑃 > 0, то существенно все также, как при 𝑃 = 0: движение к модулю |cos(𝐶, 𝑦)|.
Сказанное иллюстрируют функции на рисунках 3 и 4
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Рис. 3: 𝐹 3
𝑦 (𝑡) = 5𝑡+1√

(2𝑡+1)2+𝑡2
√
2

Рис. 4: 𝐹 3
𝑦 (𝑡) = −5𝑡+1√

(−2𝑡+1)2+𝑡2
√
2

� Если 𝑃 < 0, то движение к модулю 𝐹𝑦(−𝑄/𝑃 ). Сказанное иллюстрируют функции на
рисунках 5 и 6

Рис. 5: 𝐹 3
𝑦 (𝑡) = − 5𝑡+1√

(2𝑡+1)2+𝑡2
√
2
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Рис. 6: 𝐹 3
𝑦 (𝑡) = − −5𝑡+1√

(−2𝑡+1)2+𝑡2
√
2

Следующая точка в оптимизации 𝐹 3
𝑦 . Мы находимся в точке 𝑑 пространства параметров

𝐸(𝑠) и двигаемся в нем вдоль прямой 𝑠(𝑡) = 𝑑 + 𝑐𝑡, оптимизируя ограничение 𝐹 3
𝑦 (𝑠(𝑡)). Оно

полностью описывается параметрами 𝐶, 𝐷, 𝑃 , 𝑄 и 𝑦. Следующая за 𝑑 точка 𝑑+ ясна только в
случае 𝑃 < 0: 𝑑+ = −𝑄/𝑃 . В остальных случаях при формировании 𝑑+ участвует «правильная
бесконечность», в которой функционал 𝐹 3

𝑦 равен |cos(𝐶, 𝑦)|. Поступаем следующим образом:
обозначим через 𝛾 полусумму 𝐹 3

𝑦 (𝑑) и |cos(𝐶, 𝑦)|. Точкой 𝑑+ будем считать прообраз 𝛾 на
прямой 𝑠(𝑡): 𝑑+ = 𝑑+ 𝑡+𝑐, где 𝑡+ – правильное решение квадратного уравнения

(𝐶𝑡+ +𝐷, 𝑦)2 = 𝛾2 ‖𝑦‖2
⃦⃦
𝐶𝑡+ +𝐷

⃦⃦2
.

Проделанный выше анализ точно определит 𝑡+ из двух корней этого уравнения.
Подведем итог: относительная простота нелинейности в конструкции 𝐸3

𝑦 (первая степень
по 𝑡 в числителе производной (14)) позволила подробно разобрать оптимизацию алгоритма
ПС соответствующего функционала 𝐹 3

𝑦 . В изложенных ниже конструкциях 𝐸𝜇 такая степень
по 𝑡 будет уже четвертой.

4. Нечеткие СЛАУ

Мотивация дальнейших исследований связана со следующей трактовкой СЛАУ: система
𝐴𝑥 = 𝑏 выражает одно из свойств объекта изучения 𝑂. Нужное решение 𝑥и = {𝑥и𝑗 , 𝑗 ∈ 𝐽}
представляет собой распределение проявлений свойства 𝐴 на 𝑂 через «внутреннем» узлы 𝑗,
образующие «внутренний» для 𝑂 остов 𝐽 . Вектор 𝑥и неизвестен, его нужно определить по
измерениям 𝑏 = {𝑏𝑗 , 𝑖 ∈ 𝐼} проявления 𝐴 на 𝑂 во «внешних» узлах 𝑖, образующих «внешний»
для 𝑂 остов 𝐼.

Проекционный метод (ПМ) конструктивно описывает многообразие Φ(𝐴, 𝑏) всех возмож-
ных проявлений 𝑥 свойства 𝐴 на объекте 𝑂 (кандидатов на роль 𝑥и). Вобщем случае для
определения 𝑥и среди Φ(𝐴, 𝑏) нужна дополнительная информация об 𝑥и, в частности, в виде
экспертных суждений. В рамках ДМА разработаны методы ее формализации. Они активно
используют нечеткую логику, так что окончательным результатом будет нечеткая структура
𝜇 = {𝜇𝑗 , 𝑗 ∈ 𝐽} на «внутреннем» остове 𝐽 для 𝑂.

Возникает нечеткая СЛАУ (𝐴𝑥 = 𝑏, 𝜇) и задача ее решить, т.е. сформировать внутри
Φ(𝐴, 𝑏) подмножество решений Φ(𝐴, 𝑏, 𝜇), согласованных с 𝜇. В настоящей работе такая со-
гласованность 𝐸𝜇 понимается как корреляция модуля |𝑥и| решения 𝑥и: |𝑥и| = {|𝑥𝑗 |, 𝑗 ∈ 𝐽} с
𝜇 и приводит к двум вариантам 𝐸𝜇, из соображения гладкости выражающих согласованность
квадратов |𝑥и|2 = {|𝑥𝑗 |2, 𝑗 ∈ 𝐽} с 𝜇2 = {𝜇2𝑗 , 𝑗 ∈ 𝐽}.
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Необходимые технические вещи для вычислений:

проекционный оператор 𝐻 = (ℎ𝑗𝑘)

зависимость 𝑥𝑗(𝑠) = 𝑥*𝑗 +
∑︁

ℎ𝑗𝑘𝑠𝑘 = 𝑥*𝑗 +𝐻𝑗(𝑠)

𝜕𝑥𝑗
𝜕𝑠𝑘

= ℎ𝑗𝑘;
𝜕𝑥2𝑗
𝜕𝑠𝑘

= 2𝑥𝑗(𝑠)ℎ𝑗𝑘

(16)

Трактовка первая 𝐸1
𝜇 аналогична 𝐸3

𝑦 . Согласованность 𝑥и и 𝜇 состоит в полной cos-
корреляции: «𝑥и – точка на Φ(𝐴, 𝑏) с максимальной корреляцией cos

(︀
|𝑥и|2, 𝜇2

)︀
». С учетом

параметризации (6) и соотношений (16) поиск 𝑥и сводится к безусловной максимизации по 𝑠
функционала 𝐹 1

𝜇

𝐽(𝑠) = 𝐹 1
𝜇(𝑠) =

∑︀
𝑥2𝑗 (𝑠)𝜇

2
𝑗√︁∑︀

𝑥4𝑗 (𝑠)
√︁∑︀

𝜇4𝑗

. (17)

Частная производная 𝜕𝐽
𝜕𝑠𝑘
. Выразим ее через 𝑥2𝑗 (𝑠) и

𝜕𝑥2
𝑗

𝜕𝑠𝑘
. Учитывая (16), этого будет до-

статочно. Ввиду сложности производной сделаем ее вычисление поэтапным с «умным» опус-
канием двоек:
первое слагаемое числителя 𝜕𝐽

𝜕𝑠𝑘(︁∑︁
𝑥2𝑗𝜇

2
𝑗

)︁⃒⃒⃒′
𝑠𝑘

√︁∑︁
𝑥4
𝑗̄

=

(︃∑︁
𝜇2𝑗
𝜕𝑥2𝑗
𝜕𝑠𝑘

)︃√︁∑︁
𝑥4
𝑗̄

второе слагаемое числителя 𝜕𝐽
𝜕𝑠𝑘(︁∑︁

𝑥2𝑗𝜇
2
𝑗

)︁ (︂√︁∑︁
𝑥4
𝑗̄

)︂⃒⃒⃒⃒′
𝑠𝑘

=
(︁∑︁

𝑥2𝑗𝜇
2
𝑗

)︁ (︂√︁∑︁
(𝑥2

𝑗̄
)2
)︂⃒⃒⃒⃒′

𝑠𝑘

=

=
(︁∑︁

𝑥2𝑗𝜇
2
𝑗

)︁ 2
∑︀
𝑥2
𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

2
√︁∑︀

𝑥4
𝑗̄

=

(︁∑︀
𝑥2𝑗𝜇

2
𝑗

)︁∑︀
𝑥2
𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘√︁∑︀
𝑥4
𝑗̄

числитель их разности(︃∑︁
𝜇2𝑗
𝜕𝑥2𝑗
𝜕𝑠𝑘

)︃(︁∑︁
𝑥4𝑗̄

)︁
−
(︁∑︁

𝑥2𝑗𝜇
2
𝑗

)︁(︃∑︁
𝑥2𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

)︃
отдельно члены (𝑗, 𝑗̄) + (𝑗̄, 𝑗)

𝜇2𝑗
𝜕𝑥2𝑗
𝜕𝑠𝑘

𝑥4𝑗̄ − 𝑥
2
𝑗𝜇

2
𝑗𝑥

2
𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘
+ 𝜇2𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘
𝑥4𝑗 − 𝑥2𝑗̄𝜇

2
𝑗̄𝑥

2
𝑗

𝜕𝑥2𝑗
𝜕𝑠𝑘

=

𝜇2𝑗𝑥
2
𝑗̄

(︃
𝑥2𝑗̄
𝜕𝑥2𝑗
𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

)︃
− 𝜇2𝑗̄𝑥

2
𝑗

(︃
𝑥2𝑗̄
𝜕𝑥2𝑗
𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

)︃
=

=
(︁
𝜇2𝑗𝑥

2
𝑗̄ − 𝜇

2
𝑗̄𝑥

2
𝑗

)︁(︃
𝑥2𝑗̄
𝜕𝑥2𝑗
𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

)︃
Окончательная формула для производной

𝜕𝐽

𝜕𝑠𝑘
=

∑︁
(𝑗,𝑗̄):𝑗 ̸=𝑗̄

(︁
𝜇2𝑗𝑥

2
𝑗̄
− 𝜇2

𝑗̄
𝑥2𝑗

)︁(︂
𝑥2
𝑗̄

𝜕𝑥2
𝑗

𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝑥2
𝑗̄

𝜕𝑠𝑘

)︂
√︁∑︀

𝜇4𝑗

(︁∑︀
𝑥4𝑗

)︁3/2 . (18)
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Ограничение 𝐽(𝑠) на прямую. Понимание устройства 𝐽(𝑡) = 𝐽𝑐,𝑑(𝑡) = 𝐽(𝑠(𝑡)) на прямой
𝑠(𝑡) = 𝑐𝑡 + 𝑑 в пространстве параметров 𝐸(𝑠) позволит использовать полиномиальный спуск
(ПС) во всем объеме. Положим с учетом (16)

𝑥𝑗(𝑡) = 𝑥𝑗(𝑠(𝑡)) = 𝑥*𝑗 +𝐻𝑗(𝑠(𝑡)) = 𝑥*𝑗 +𝐻𝑗(𝑑) + 𝑡𝐻𝑗(𝑐).

Тогда

𝑥2𝑗 (𝑡) = (𝑥*𝑗 +𝐻𝑗(𝑑))2 + 2(𝑥*𝑗 +𝐻𝑗(𝑑))𝐻𝑗(𝑐)𝑡+ (𝐻𝑗(𝑐))
2𝑡2 =

= 𝐴𝑗𝑡
2 + 2𝐵𝑗𝑡+ 𝐶𝑗 ,

(19)

где
𝐴𝑗 = (𝐻𝑗(𝑐))

2; 𝐵𝑗 = (𝑥*𝑗 +𝐻𝑗(𝑑))𝐻𝑗(𝑐); 𝐶𝑗 = (𝑥*𝑗 +𝐻𝑗(𝑑))2.

Без двойки
𝜕𝑥2

𝑗

𝜕𝑡 = 𝐴𝑗𝑡+𝐵𝑗 . Формула для
𝜕𝐽
𝜕𝑡 аналогична (18):

𝜕𝐽

𝜕𝑡
=

∑︁
(𝑗,𝑗̄):𝑗 ̸=𝑗̄

(︁
𝜇2𝑗𝑥

2
𝑗̄
− 𝜇2

𝑗̄
𝑥2𝑗

)︁(︂
𝜕𝑥2

𝑗

𝜕𝑡 𝑥
2
𝑗̄
−

𝜕𝑥2
𝑗̄

𝜕𝑡 𝑥
2
𝑗

)︂
√︁∑︀

𝜇4𝑗

(︁∑︀
𝑥4𝑗

)︁3/2 . (20)

Первый член числителя в множителе (𝑗, 𝑗̄):

𝜇2𝑗𝑥
2
𝑗̄ = 𝜇2𝑗 (𝐴𝑗̄𝑡

2 + 2𝐵𝑗̄𝑡+ 𝐶𝑗̄) = 𝜇2𝑗𝐴𝑗̄𝑡
2 + 2𝜇2𝑗𝐵𝑗̄𝑡+ 𝜇2𝑗𝐶𝑗̄

𝜇2𝑗̄𝑥
2
𝑗 = 𝜇2𝑗̄ (𝐴𝑗𝑡

2 + 2𝐵𝑗𝑡+ 𝐶𝑗) = 𝜇2𝑗̄𝐴𝑗𝑡
2 + 2𝜇2𝑗̄𝐵𝑗𝑡+ 𝜇2𝑗̄𝐶𝑗

разность
(𝜇2𝑗𝐴𝑗̄ − 𝜇2𝑗̄𝐴𝑗)⏟  ⏞  

𝐷𝑗𝑗̄

𝑡2 + 2 (𝜇2𝑗𝐵𝑗̄ − 𝜇2𝑗̄𝐵𝑗)⏟  ⏞  
𝐸𝑗𝑗̄

𝑡+ (𝜇2𝑗𝐶𝑗̄ − 𝜇2𝑗̄𝐶𝑗)⏟  ⏞  
𝐹𝑗𝑗̄

𝑡2.

Таким образом, первый член в числителе (20) есть квадратный трехчлен

𝜇2𝑗𝑥
2
𝑗̄ − 𝜇

2
𝑗̄𝑥

2
𝑗 = 𝐷𝑗𝑗̄𝑡

2 + 𝐸𝑗𝑗̄𝑡+ 𝐹𝑗𝑗̄ .

Второй член числителя в множителе (𝑗, 𝑗̄):

𝜕𝑥2𝑗
𝜕𝑡

𝑥2𝑗̄ = (𝐴𝑗𝑡+𝐵𝑗)(𝐴𝑗̄𝑡
2 + 2𝐵𝑗̄𝑡+ 𝐶𝑗̄) =

= 𝐴𝑗𝐴𝑗̄𝑡
3 + (2𝐴𝑗𝐵𝑗̄ +𝐵𝑗𝐴𝑗̄)𝑡

2 + (𝐴𝑗𝐶𝑗̄ + 2𝐶𝑗𝐴𝑗̄)𝑡+𝐵𝑗𝐶𝑗̄

𝜕𝑥2
𝑗̄

𝜕𝑡
𝑥2𝑗 = (𝐴𝑗̄𝑡+𝐵𝑗̄)(𝐴𝑗𝑡

2 + 2𝐵𝑗𝑡+ 𝐶𝑗) =

= 𝐴𝑗̄𝐴𝑗𝑡
3 + (2𝐴𝑗̄𝐵𝑗 +𝐵𝑗̄𝐴𝑗)𝑡

2 + (𝐴𝑗̄𝐶𝑗 + 2𝐶𝑗̄𝐴𝑗)𝑡+𝐵𝑗̄𝐶𝑗 ,

разность

𝜕𝑥2𝑗
𝜕𝑡

𝑥2𝑗̄ −
𝜕𝑥2

𝑗̄

𝜕𝑡
𝑥2𝑗 = (𝐴𝑗𝐵𝑗̄ −𝐵𝑗𝐴𝑗̄)⏟  ⏞  

𝐾𝑗𝑗̄

𝑡2 + (𝐴𝑗𝐶𝑗̄ − 𝐶𝑗𝐴𝑗̄)⏟  ⏞  
𝐿𝑗𝑗̄

𝑡+ (𝐵𝑗𝐶𝑗̄ − 𝐶𝑗𝐵𝑗̄)⏟  ⏞  
𝑀𝑗𝑗̄

.

Таким образом, и второй член в числителе (20) квадратичен:

𝜕𝑥2𝑗
𝜕𝑡

𝑥2𝑗̄ −
𝜕𝑥2

𝑗̄

𝜕𝑡
𝑥2𝑗 = 𝐾𝑗𝑗̄𝑡

2 + 𝐿𝑗𝑗̄𝑡+𝑀𝑗𝑗̄ .
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Окончательная формула для числителя производной 𝜕𝐽
𝜕𝑡 :∑︁

(𝑗,𝑗̄):𝑗 ̸=𝑗̄

(︁
𝜇2𝑗𝑥

2
𝑗̄ − 𝜇

2
𝑗̄𝑥

2
𝑗

)︁(︃𝜕𝑥2𝑗
𝜕𝑡

𝑥2𝑗̄ −
𝜕𝑥2

𝑗̄

𝜕𝑡
𝑥2𝑗

)︃
=

=
∑︁

(𝑗,𝑗̄):𝑗 ̸=𝑗̄

(︀
𝐷𝑗𝑗̄𝑡

2 + 2𝐸𝑗𝑗̄𝑡+ 𝐹𝑗𝑗̄

)︀ (︀
𝐾𝑗𝑗̄𝑡

2 + 𝐿𝑗𝑗̄𝑡+𝑀𝑗𝑗̄

)︀
=

= 𝑡4
(︁∑︁

𝐷𝑗𝑗̄𝐾𝑗𝑗̄

)︁
+ 𝑡3

(︁
2
∑︁

𝐸𝑗𝑗̄𝐾𝑗𝑗̄ +
∑︁

𝐷𝑗𝑗̄𝐿𝑗𝑗̄

)︁
+

+ 𝑡2
(︁∑︁

𝐷𝑗𝑗̄𝑀𝑗𝑗̄ + 2
∑︁

𝐸𝑗𝑗̄𝐿𝑗𝑗̄ +
∑︁

𝐹𝑗𝑗̄𝐾𝑗𝑗̄

)︁
+

+ 𝑡
(︁

2
∑︁

𝐸𝑗𝑗̄𝑀𝑗𝑗̄ +
∑︁

𝐹𝑗𝑗̄𝐿𝑗𝑗̄

)︁
+
(︁∑︁

𝐹𝑗𝑗̄𝑀𝑗𝑗̄

)︁
.

Трактовка вторая 𝐸2
𝜇 состоит в квадратичной близости 𝑙1-нормирований векторов |𝑥и|2 и

|𝜇|2 и сводится к минимизации по 𝑠 функционала 𝐹 2
𝜇(𝑠):

𝐽(𝑠) = 𝐹 2
𝜇(𝑠) =

∑︁(︃
𝑥2𝑗 (𝑠)∑︀
𝑥2
𝑗̄
(𝑠)
−

𝜇2𝑗 (𝑠)∑︀
𝜇2
𝑗̄
(𝑠)

)︃2

−→ min . (21)

Положим

𝜈𝑗 = 𝜇𝑗

(︁∑︁
𝜇2𝑗̄

)︁−1

𝜙(𝑠) =
∑︁

𝑥2𝑗̄ (𝑠)

𝜙𝑗(𝑠) = 𝑥2𝑗 (𝑠)− 𝜈𝑗𝜙(𝑠)

так что 𝐽(𝑠) =
∑︁(︂

𝜙𝐽(𝑠)

𝜙(𝑠)

)︂2

.

(22)

Воспользуемся этим представлением 𝐽(𝑠) для нахождения его частных производных, опус-
кая двойки:

𝜕𝐽

𝜕𝑠𝑘
=
∑︁ 𝜕

𝜕𝑠𝑘

(︂
𝜙𝑗

𝜙

)︂2

𝜕

𝜕𝑠𝑘

(︂
𝜙𝑗

𝜙

)︂2

=
𝜙𝑗

𝜙

𝜕

𝜕𝑠𝑘

(︂
𝜙𝑗

𝜙

)︂
𝜕

𝜕𝑠𝑘

(︂
𝜙𝑗

𝜙

)︂
=
𝜙

𝜕𝜙𝑗

𝜕𝑠𝑘
− 𝜙𝑗

𝜕𝜙
𝜕𝑠𝑘

𝜙2
.

Преобразуем числитель:

𝜙

(︂
𝜕

𝜕𝑠𝑘
𝜙𝑗

)︂
− 𝜙𝑗

(︂
𝜕

𝜕𝑠𝑘
𝜙

)︂
= 𝜙

(︂
𝜕

𝜕𝑠𝑘
(𝑥2𝑗 − 𝜈𝑗𝜙)

)︂
− (𝑥2𝑗 − 𝜈𝑗𝜙)

(︂
𝜕𝜙

𝜕𝑠𝑘

)︂
=

= 𝜙
𝜕𝑥2𝑗
𝜕𝑠𝑘
− 𝜈𝑗

𝜕𝜙

𝜕𝑠𝑘
𝜙− 𝑥2𝑗

𝜕𝜙

𝜕𝑠𝑘
+ 𝜈𝑗𝜙

𝜕𝜙

𝜕𝑠𝑘
= 𝜙

𝜕𝑥2𝑗
𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝜙

𝜕𝑠𝑘
.

Окончательная формула для 𝜕𝐽
𝜕𝑠𝑘

через 𝜙𝑗 и 𝜙:

𝜕𝐽

𝜕𝑠𝑘
=

∑︀
𝜙𝑗

(︂
𝜙

𝜕𝑥2
𝑗

𝜕𝑠𝑘
− 𝑥2𝑗

𝜕𝜙
𝜕𝑠𝑘

)︂
𝜙3

. (23)

От этой формулы с учетом (22) недалеко и до аналога (А) для 𝜕𝐽
𝜕𝑠𝑘

в конструкции 𝐸2
𝜇.
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Ограничение 𝐽(𝑠) на прямую. В обозначениях разговора об этом в рамках конструкции
𝐸1

𝜇 (19) и с дополнительными обозначениями

𝐴 =
∑︁

𝐴𝑗̄ ; 𝐵 =
∑︁

𝐵𝑗̄ ; 𝐶 =
∑︁

𝐶𝑗̄

имеем (без двойки):

𝜙𝑗(𝑡) = (𝐴𝑗 − 𝜈𝑗𝐴)𝑡2 + (𝐵𝑗 − 𝜈𝑗𝐵)𝑡+ (𝐶𝑗 − 𝜈𝑗𝐶)

𝜙(𝑡)
𝜕

𝜕𝑡
𝑥2𝑗 − 𝑥2𝑗 (𝑡)

𝜕𝜙

𝜕𝑡
= (𝐴𝑡2 + 2𝐵𝑡+ 𝐶)(𝐴𝑗𝑡+𝐵𝑗)− (𝐴𝑗𝑡

2 + 2𝐵𝑗𝑡+ 𝐶𝑗)(𝐴𝑡+𝐵) =

= (𝐴𝑗𝐵 −𝐴𝐵𝑗)𝑡
2 + (𝐴𝑗𝐶 −𝐴𝐶𝑗)𝑡+ (𝐵𝑗𝐶 −𝐵𝐶𝑗)

Окончательно производная 𝜕𝐽
𝜕𝑡 аналогична (23)

𝜕𝐽

𝜕𝑡
=

∑︀
𝜙𝑗

(︂
𝜙

𝜕𝑥2
𝑗

𝜕𝑡 − 𝑥
2
𝑗
𝜕𝜙
𝜕𝑡

)︂
𝜙3

, (24)

а потому ее числитель, подобно конструкции 𝐸1
𝜇, имеет четвертую степень по 𝑡.

5. Примеры работы

Теоретические исследования, представленные в работе, выполнены в рамках проекта РНФ,
связанного с магнитометрией, поэтому их прикладную часть мы предваряем магнитным дай-
джестом.
Магнитный дайджест. Встанем на дипольную точку зрения, считая, что истинное распреде-

ление магнитных диполей 𝐷и
𝐽 =

{︁
𝐷и

𝑗 , 𝑗 ∈ 𝐽
}︁
сосредоточено в узлах 𝑗 некоторой трехмер-

ной сетки 𝐽 , состоящей из 𝑛 узлов, где 𝐷и
𝑗 – магнитный диполь с центром в 𝑗, а выход

𝑈(𝐼) = {𝑈(𝑖), 𝑖 ∈ 𝐼} распределения 𝐷и
𝐽 на поверхность измерен в узлах 𝑖 двумерной сетки

𝐼, состоящей из 𝑚 узлов.
Потенциал диполя 𝐷и

𝑗 в узле 𝑖 определяется его магнитным вектором (𝑥и𝑗 , 𝑦
и
𝑗 , 𝑧

и
𝑗 ) и обозна-

чается через 𝐷и
𝑗 (𝑖). Потенциал распределения 𝐷и

𝐽(𝑖) складывается из потенциалов 𝐷и
𝑗 (𝑖)

𝐷и
𝑗 (𝑖) =

(𝐷и
𝑗 , 𝑖− 𝑗)
‖𝑖− 𝑗‖3

и 𝐷и
𝐽(𝑖) =

∑︁
𝑗
𝐷и

𝑗 (𝑖).

Поиск распределения 𝐷и
𝑗 приводит к СЛАУ 𝐷и

𝐽(𝐼) = 𝑈(𝐼) из 𝑚 уравнений с 3𝑛 неизвест-
ными ∑︁

𝑗

𝑥𝑗(𝑖− 𝑗)𝑥 + 𝑦𝑗(𝑖− 𝑗)𝑦 + 𝑧𝑗(𝑖− 𝑗)𝑧
‖𝑖− 𝑗‖3

= 𝑈(𝑖),

𝑗 = 1, . . . , 𝑛; 𝑖 = 1, . . . ,𝑚.

(25)

Все примеры связаны с такой системой и иллюстрируют последовательно проекционный
метод, конструкции 𝐸1

𝑦 , 𝐸
3
𝑦 и 𝐸1

𝜇, а также алгоритмов полиномиальный градиентный спуск
(ПГС) и полиномиальный покоординатный спуск (ППС) на них.

Для этого мы задали аномалеобразующее тело, состоящее из 7×9 диполей, расположенных
равномерно в прямоугольнике размером 450× 900 м. При этом только в центральном прямо-
угольнике заданы магнитные диполи (рис. 7). Вне этого прямоугольника значения магнитных
диполей равны 0. В дальнейшем это распределение диполей (рис. 7) будем считать истинным
и обозначать через 𝑥и, а произвольное распределение через 𝑥.
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На рисунке 8 показан отклик от этого тела на профиле, представляющего собой 25 точек,
расположенных в интервале от -450 до 450 м на высоте 100 м.

Рис. 7: Истинное распределение 𝑥и

Рис. 8: Отклик на поверхности. Черными точками отмечены координаты профиля, на
котором задан отклик аномалеобразующего тела. Красными точками обозначена

горизонтальная составляющая, синими – вертикальная

Пример 2 посвящен ПМ и показывает, как выглядит параметризация 𝑥 = 𝑥* + 𝐻𝑠 при
разных 𝑠.

Примеры 3 и 4 посвящены конструкции 𝐸1
𝑦 : в первом случае 𝑦 = 0, а результат – решение,

минимальное по норме; во втором случае 𝑦 = 𝑥и и интерес представляет переход от частного
решения 𝑥* к истинному 𝑥и с помощью последовательной оптимизации 𝐹 3

𝑦 .
У каждого диполя 𝐷𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) есть две характеристики: масса 𝑚(𝐷𝑗) = ‖𝐷𝑗‖ =

=
√︁
𝑥2𝑗 + 𝑦2𝑗 + 𝑧2𝑗 и ориентация 𝑒(𝐷𝑗) =

𝐷𝑗

‖𝐷𝑗‖ . С ними связаны примеры 5 и 6, в которых с

помощью конструкций 𝐸3
𝑦 и 𝐸1

𝜇 мы пытаемся восстановить решение 𝑥и по его ориентации
𝑒(𝑥и) = (𝑒(𝐷и

𝑗 ), 𝑗 ∈ 𝐽) и массе 𝑚(𝑥и) = (𝑚(𝐷и
𝑗 ), 𝑗 ∈ 𝐽).

Пример 2 (Проекционный метод). В этом примере показано, что множество
𝑥 = 𝑥*+𝐻𝑠 описывает многообразие решений системы (25). На рисунке 9 – частное решение,
полученное методом наименьших квадратов. На рисунках 10-12 – решения при различных 𝑠.
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Рис. 9: Частное решение 𝑥*, полученное, методом наименьших квадратов. Вектор 𝑠 равен 0.
‖𝐴𝑥* − 𝑏‖ = 5.734342𝑒−13

Рис. 10: Решение, полученное при помощи вектора 𝑠 равному нулю везде, кроме 45-ой
координаты. ‖𝐴𝑥− 𝑏‖ = 9.265617𝑒−13

Видно, что все решения на рисунках 9-12 имеют точность одного порядка.
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Рис. 11: Решение, полученное при помощи вектора 𝑠 равному нулю везде, кроме 60-ой
координаты. ‖𝐴𝑥− 𝑏‖ = 5.900362𝑒−13

Рис. 12: Решение, полученное при помощи вектора 𝑠 равному нулю везде, кроме 75-ой
координаты. ‖𝐴𝑥− 𝑏‖ = 6.359316𝑒−13

Пример 3 (𝐹 1
𝑦 ). Поиск решения с наименьшей нормой. На рисунке 13 показано частное

решение 𝑥* (4).
Для получения решения задачи в данной постановке использовался алгоритм ПГС, по-

требовалось 82 итерации. На рисунке 14 показано итоговое решение данного примера



34 С. М. Агаян, Ш. Р. Богоутдинов, А. А. Соловьев

Рис. 13: Частное решение. ‖𝑥*‖ = 7.414610𝑒4

Рис. 14: Итоговое решение. ‖𝑥‖ = 1.5763745𝑒3

Пример 4 (𝐹 1
𝑦 ). Поиск решения, наиболее похожего на 𝑥и. На рисунке 15 показано част-

ное решение 𝑥* (4).
Для получения решения задачи в данной постановке использовался алгоритм ПГС, по-

требовалось 126 итераций. На рисунке 16 показано итоговое решение данного примера
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Рис. 15: Частное решение. ‖𝑥* − 𝑥и‖ = 7.363328𝑒4

Рис. 16: Итоговое решение. ‖𝑥− 𝑥и‖ = 1.978827𝑒−5

Пример 5 (𝐹 3
𝑦 ). В данном примере в качестве вектора 𝑦 будем использовать вектор{︁

|𝐷𝑗 |
‖𝐷𝑗‖ , 𝑗 = 1, . . . , 𝑛

}︁
(рис. 17)

Для получения решения использовался алгоритм ПГС, потребовалось 12 итераций. На
рисунке 19 показано итоговое решение данного примера. Голубые вектора имеют очень ма-
ленькую норму.
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Рис. 17: Целевой вектор 𝑦 данного примера

Рис. 18: Частное решение исходной задачи

Пример 6 (𝐹 1
𝜇). В данном примере показано применение трактовки 𝐸1

𝜇 к исходной задаче
(рис. 7 и 8). Поскольку в данной постановке ищется корреляция модулей на рисунке 20 пока-
зано целевые значения. В качестве вектора 𝑦 используем нормированное к единице исходное

распределение масс
{︁

𝑚𝐷𝑗∑︀
𝑚𝐷𝑗

, 𝑗 = 1, . . . , 𝑛
}︁
(рис. 21). Частное решение показано на рис. 22.
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Рис. 19: Итоговое решение

Рис. 20: Распределение модулей исходного магнитного поля (рис. 7)

Для получения решения использовался алгоритм ППС, потребовалось 64 итерации. На
рисунке 23 показано итоговое решение данного примера
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Рис. 21: Вектор 𝑦, с которым мы будем искать корреляцию целевого решения

Рис. 22: Распределение модулей частного решения (рис. 18)

6. Заключение

Проекционный метод (ПМ) и его параметризация (6) Открывают совершенно новые воз-
можности в использовании СЛАУ. В разговоре об этом воспользуемся аналогией с космосом.

ПМ выполняет три функции:

� телескопа ≡ крупно, но конструктивно, описывая многообразие (планету) Φ(𝐴, 𝑏) реше-
ний СЛАУ 𝐴𝑥 = 𝑏;

� космического корабля ≡ доставляя исследователя в точку частного решения 𝑥* на
Φ(𝐴, 𝑏);

� планетохода ≡ средства передвижения по Φ(𝐴, 𝑏) из 𝑥*, благодаря конструктивности (6),
согласно той или иной стратегии на параметр параметризации 𝑠.
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Рис. 23: Итоговое решение

Рис. 24: Итоговое решение

Последняя зависит от цели путешествия. В нашем случае это конструкции 𝐸𝑦 и 𝐸𝜇, а их
техническое выражение – Полиномиальный Спуск (ПС) в виде алгоритмов ПГС и ППС.

Приведенные в работе сценарии изучения Φ(𝐴, 𝑏) фундаментальны, но просты. Из них
должны складываться путешествия с более сложными целями. Технически они должны пред-
ставлять собой соединение функционалов 𝐹𝑦 и 𝐹𝜇 с помощью тех или иных операций (разного
рода усреднений, операторов нечеткой логики и так далее [5]). Это представляется авторам
первым направлением дальнейших исследований.

Второе направление связано с решением важных, но более проблемно ориентированных
задач. Так, в магнитном случае значительный интерес представляют обратные задачи с из-
мерениями на поверхности 𝐼 не самого поля 𝑈 , а его модуля |𝑈(𝐼)|. Исследования авторов
показывают, что эта задача может быть решена полиномиальным спуском 3-ей степени.

Третье направление возможных исследований связано с предположением о наличии топо-
логической структуры на множестве индексов 𝐽 переменной 𝑥 = (𝑥𝑗 , 𝑗 ∈ 𝐽) СЛАУ Φ(𝐴, 𝑏). В
этом случае исследование ДМА по дискретным функциям [6, 8, 7, 9, 10] позволяет построить
новые суждения 𝐸(𝑥и) относительно истинного решения 𝑥и.
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Аннотация

Многомерные гиперболо-эллиптические уравнения описывают важные физические,
астрономические и геометрические процессы. Известно, что колебания упругих мембран
в пространстве можно моделировать многомерными гиперболическими уравнениями на
основе принципа Гамильтона. Если предположить, что в положении изгиба мембрана на-
ходится в равновесии, то из принципа Гамильтона также следуют многомерные эллипти-
ческие уравнения.

Следовательно, колебания упругих мембран в пространстве могут быть описаны с по-
мощью многомерных гиперболо-эллиптических уравнений.

Проблема корректности задачи Дирихле для уравнений смешанного типа в специаль-
ных областях была объектом исследований многих авторов в двумерном и многомерном
случаях.

Автором ранее изучена задача Дирихле для многомерных гиперболо-параболических
уравнений, показана однозначная разрешимость этой задачи, существенно зависящая от
высоты рассматриваемой цилиндрической области.

В данной работе исследуется задача типа Дирихле в цилиндрической области для од-
ного класса многомерных гиперболо-эллиптических уравнений и получен явный вид её
классического решения.

Показано, что однозначная разрешимость зависит только от высоты гиперболической
части цилиндрической области, а также приведён критерий единственности решения.

Ключевые слова: задача Дирихле, многомерные уравнения, однозначная разрешимость,
критерий, сферические функции, функция Бесселя.
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Abstract

Multidimensional Hyperbolic-Elliptic Equations describe important physical, astronomical,
and geometric processes. It is known that the oscillations of elastic membranes in space can
be modeled by multidimensional hyperbolic equations based on Hamilton’s principle. Assuming
that the membrane is in equilibrium in the bending position, Hamilton’s principle also leads to
multidimensional elliptic equations.

Consequently, the oscillations of elastic membranes in space can be described using
multidimensional hyperbolic-elliptic equations.

The problem of the well-posedness of the Dirichlet problem for mixed-type equations in
special domains has been the subject of research by many authors in both two-dimensional and
multidimensional cases.

The author previously studied the Dirichlet problem for multidimensional hyperbolic-
parabolic equations, where the unique solvability of this problem was demonstrated, significantly
depending on the height of the considered cylindrical domain.

In this work, a Dirichlet-type problem is studied in a cylindrical domain for a certain class
of multidimensional hyperbolic-elliptic equations, and an explicit form of its classical solution
is obtained.

It is shown that the unique solvability depends only on the height of the hyperbolic part of
the cylindrical domain, and a uniqueness criterion for the solution is provided.

Keywords: Dirichlet problem, multidimensional equations, unique solvability, criterion,
spherical functions, Bessel function.
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1. Введение

Известно, что колебания упругих мембран в пространстве моделируются уравнениями в
частных производных. Если прогиб мембраны считать функцией 𝑢(𝑥, 𝑡), 𝑥=(𝑥1, ..., 𝑥𝑚),𝑚≥2,
то по принципу Гамильтона приходим к многомерным гиперболическим уравнениям.

Полагая, что в положении изгиба мембрана находиться в равновесии, из принципа Гамиль-
тона также получаем многомерные эллиптические уравнения.

Следовательно, колебания упругих мембран в пространстве можно моделировать в каче-
стве многомерных гиперболо-эллиптических уравнений.
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Проблема корректности задачи Дирихле для уравнений смешанного типа в специальных
областях была объектом исследований многих авторов на плоскости [1-5] и в пространстве
[5,6]. Более полную библиографию работ, посвященных этой тематике, можно найти в моно-
графиях [5,6].

Автором ранее (см. [7-9]) изучена задача Дирихле для многомерных гиперболо-эллиптиче-
ских уравнений, где показана однозначная разрешимость этой задачи, существенно зависящая
от высоты рассматриваемой цилиндрической области.

В данный работе исследована задача типа Дирихле в цилиндрической области для одного
класса многомерных гиперболо-эллиптических уравнений и получен явный вид ее классиче-
ского решение.

Показано,что однозначная разрешимость зависит только от высоты гиперболической части
цилиндрической области, а также приведен критерий единственности решения.

2. Постановка задачи и результат.

Пусть Ω𝛼𝛽− цилиндрическая область евклидова пространства 𝐸𝑚+1 точек (𝑥1, ..., 𝑥𝑚, 𝑡),
ограниченная цилиндром Γ = {(𝑥, 𝑡) : : |𝑥| = 1}, плоскостями 𝑡 = 𝛼 > 0 и 𝑡 = 𝛽 < 0, где |𝑥|−
длина вектора 𝑥 = (𝑥1, ..., 𝑥𝑚).

Обозначим через Ω𝛼 и Ω𝛽 части области Ω𝛼𝛽, а через Γ𝛼, Γ𝛽−части поверхности Γ, лежащие
в полупространствах 𝑡 > 0 и 𝑡 < 0, 𝜎𝛼− верхнее, а 𝜎𝛽− нижнее основание области Ω𝛼𝛽.

Пусть далее 𝑆− общая часть границ областей Ω𝑎 и Ω𝑏 представляющая множество
{𝑡 = 0, 0 < |𝑥| < 1} в 𝐸𝑚.

В области Ω𝛼𝛽 рассмотрим многомерные гиперболо-эллиптические уравнения

Δ𝑥𝑢− (𝑠𝑔𝑛𝑡)𝑢𝑡𝑡 +

𝑚∑︁
𝑖=1

𝑎𝑖(𝑥, 𝑡)𝑢𝑥𝑖 + 𝑏(𝑥, 𝑡)𝑢𝑡 + 𝑐(𝑥, 𝑡)𝑢 = 0, (1)

где Δ𝑥 - оператор Лапласа по переменным 𝑥1, ..., 𝑥𝑚, 𝑚 ⩾ 2.

В дальнейшем нам удобно перейти от декартовых координат 𝑥1, ..., 𝑥𝑚, 𝑡 к сферическим
𝑟, 𝜃1, ..., 𝜃𝑚−1, 𝑡, 𝑟 ⩾ 0, 0 ⩽ 𝜃1 < 2𝜋, 0 ⩽ 𝜃𝑖 ≤ 𝜋, 𝑖 = 2, 3, ...,𝑚− 1, 𝜃 = (𝜃1, ..., 𝜃𝑚−1).

Рассмотрим следующую задачу типа Дирихле

Задача 1. Найти решение уравнения (1) в области Ω𝛼𝛽 при 𝑡 ̸= 0 из класса 𝐶1(Ω̄𝛼𝛽) ∩
∩ 𝐶2(Ω𝛼 ∪ Ω𝛽), удовлетворяющее краевым условиям

𝑢
⃒⃒
𝜎𝛼

= 𝜙(𝑟, 𝜃), 𝑢
⃒⃒
Γ𝛼

= 𝜓1(𝑡, 𝜃),

𝑢
⃒⃒
Γ𝛽

= 𝜓2(𝑡, 𝜃), 𝑢
⃒⃒
𝜎𝛽

= 𝜏(𝑟, 𝜃), 𝑢𝑡
⃒⃒
𝜎𝛽

= 𝜈(𝑟, 𝜃), (2)

при этом 𝜙(1, 𝜃) = 𝜓1(𝛼, 𝜃), 𝜓1(0, 𝜃) = 𝜓2(0, 𝜃), 𝜓2(𝛽, 𝜃) = 𝜏(1, 𝜃), 𝜓2𝑡(𝛽, 𝜃) = 𝜈(1, 𝜃).

Пусть
{︀
𝑌 𝑘
𝑛,𝑚(𝜃)

}︀
− система линейно независимых сферических функций порядка 𝑛,

1 ⩽ 𝑘 ⩽ 𝑘𝑛, (𝑚−2)!𝑛!𝑘𝑛 = (𝑛+𝑚−3)!(2𝑛+𝑚−2), 𝑊 𝑙
2(𝑆), 𝑙 = 0, 1, ...− пространства Соболева.

Имеет место ([10])

Лемма 1. Пусть 𝑓(𝑟, 𝜃) ∈𝑊 𝑙
2(𝑆). Если 𝑙 ⩾ 𝑚− 1, то ряд

𝑓(𝑟, 𝜃) =

∞∑︁
𝑛=0

𝑘𝑛∑︁
𝑘=1

𝑓𝑘𝑛(𝑟)𝑌 𝑘
𝑛,𝑚(𝜃), (3)

а также ряды, полученного из него дифференцированием порядка 𝑝 ⩽ 𝑙 − 𝑚 + 1, сходятся
абсолютно и равномерно.
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Лемма 2. Для того, чтобы 𝑓(𝑟, 𝜃) ∈𝑊 𝑙
2(𝑆), необходимо и достаточно, чтобы коэффициен-

ты ряда (3) удовлетворяли неравенствам

|𝑓10 (𝑟)| ≤ 𝑐1,
∞∑︁
𝑛=1

𝑘𝑛∑︁
𝑘=1

𝑛2𝑙|𝑓𝑘𝑛(𝑟)|2 ≤ 𝑐2, 𝑐1, 𝑐2 = 𝑐𝑜𝑛𝑠𝑡.

Через 𝑎̃𝑘𝑖𝑛(𝑟, 𝑡), 𝑎𝑘𝑖𝑛(𝑟, 𝑡), 𝑏̃𝑘𝑛(𝑟, 𝑡), 𝑐𝑘𝑛(𝑟, 𝑡), 𝑑𝑘𝑛(𝑟, 𝑡), 𝜌𝑘𝑛, 𝜓
𝑘
2𝑛(𝑡), 𝜏𝑘𝑛(𝑟), 𝜈𝑘𝑛(𝑟), обозначим коэффици-

енты разложения ряда (3), соответственно функций 𝑎𝑖(𝑟, 𝜃, 𝑡)𝜌(𝜃), 𝑎𝑖
𝑥𝑖
𝑟 𝜌, 𝑏(𝑟, 𝜃, 𝑡)𝜌, 𝑐(𝑟, 𝜃, 𝑡)𝜌,

𝑑(𝑟, 𝜃, 𝑡)𝜌, 𝜌(𝜃), 𝑖 = 1, ...,𝑚, 𝜓2(𝑡, 𝜃), 𝜏(𝑟, 𝜃), 𝜈(𝑟, 𝜃), причем 𝜌(𝜃) ∈ 𝐶∞(𝐻), 𝐻− единичная сфера
в 𝐸𝑚.

Пусть 𝑎𝑖(𝑟, 𝜃, 𝑡), 𝑏(𝑟, 𝜃, 𝑡), 𝑐(𝑟, 𝜃, 𝑡) ∈𝑊 𝑙
2(Ω𝛼𝛽) ⊂ 𝐶(Ω̄𝛼𝛽), 𝑙 ≥ 𝑚+ 1, 𝑖 = 1, ...,𝑚, 𝑐(𝑟, 𝜃) ≤ 0,

∀(𝑟, 𝜃, 𝑡) ∈ Ω𝛽.
Тогда справедливы следующие теоремы
Теорема 1. Если 𝜙(𝑟, 𝜃) ∈𝑊 𝑙

2(𝜎𝛼), 𝜓1(𝑡, 𝜃) ∈𝑊 𝑙
2(Γ𝛼), 𝜓2(𝑡, 𝜃) ∈𝑊 𝑙

2(Γ𝛽), 𝜏(𝑟, 𝜃), 𝜈(𝑟, 𝜃) ∈
∈𝑊 𝑙

2(𝑆), 𝑙 > 3𝑚
2 , и

𝑠𝑖𝑛𝜇𝑠,𝑛𝛼 ̸= 0, 𝑠 = 1, 2, ..., (4)

то задача 1 однозначна разрешима,где 𝜇𝑠,𝑛− положительные нули функций Бесселя первого
рода 𝐽

𝑛+
(𝑚−2)

2

(𝑧), 𝑛 = 0, 1, ... .

Теорема 2. Решение задачи 1 единственно, тогда и только тогда, когда выполняется
условие (4).

3. Разрешимость задачи 1.

В сферических координатах уравнение (1) в области Ω𝛽 имеет вид ([9])

𝐿𝑢 ≡ 𝑢𝑟𝑟 +
𝑚− 1

𝑟
𝑢𝑟 −

𝛿𝑢

𝑟2
+ 𝑢𝑡𝑡 +

𝑚∑︁
𝑖=1

𝑎𝑖(𝑟, 𝜃, 𝑡)𝑢𝑥𝑖 + 𝑏(𝑟, 𝜃, 𝑡)𝑢𝑡 + 𝑐(𝑟, 𝜃, 𝑡)𝑢 = 0, (5)

𝛿 ≡ −
𝑚−1∑︁
𝑗=1

1

𝑔𝑗 sin𝑚−𝑗−1 𝜃𝑗

𝜕

𝜕𝜃𝑗

(︂
sin𝑚−𝑗−1 𝜃𝑗

𝜕

𝜕𝜃𝑗

)︂
, 𝑔1 = 1, 𝑔𝑗 = (sin 𝜃1... sin 𝜃𝑗−1)

2, 𝑗 > 1.

Известно ([10]), что спектр оператора 𝛿 состоит из собственных чисел 𝜆𝑛 = 𝑛(𝑛 + 𝑚−
−2), 𝑛 = 0, 1, ..., каждому из которых соответствует 𝑘𝑛 ортонормированных собствен- ных
функций 𝑌 𝑘

𝑛,𝑚(𝜃).
Искомое решение задачи 1 будем искат в виде

𝑢(𝑟, 𝜃, 𝑡) =
∞∑︁
𝑛=0

𝑘𝑛∑︁
𝑘=1

𝑢̄𝑘𝑛(𝑟, 𝑡)𝑌 𝑘
𝑛,𝑚(𝜃), (6)

где 𝑢̄𝑘𝑛(𝑟, 𝑡)− функции, подлежащие определению.
Подставляя (6) в (5), умножив затем полученное выражение на 𝜌(𝜃) ̸= 0 и проинтегрировав

по единичной сфере Н, для 𝑢̄𝑘𝑛 получим ([9])

𝜌10𝑢
1
0𝑟𝑟 + 𝜌10𝑢

1
0𝑡𝑡 + (

𝑚− 1

𝑟
· 𝜌10 +

𝑚∑︁
𝑖=1

𝑎1𝑖0)𝑢
1
0𝑟 +̃︀𝑏10𝑢10𝑡 + ̃︀𝑐10𝑢10

+
∞∑︁
𝑛=1

𝑘𝑛∑︁
𝑘=1

{︃
𝜌𝑘𝑛𝑢

𝑘
𝑛𝑟𝑟 + 𝜌𝑘𝑛𝑢

𝑘
𝑛𝑡𝑡 +

(︃
𝑚− 1

𝑟
· 𝜌𝑘𝑛 +

𝑚∑︁
𝑖=1

𝑎𝑘𝑖𝑛

)︃
𝑢𝑘𝑛𝑟 +̃︀𝑏𝑘𝑛𝑢𝑘𝑛𝑡+
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+

[︃̃︀𝑐𝑘𝑛 − 𝜆𝑛 𝜌𝑘𝑛𝑟2 +
𝑚∑︁
𝑖=1

(̃︀𝑎𝑘𝑖𝑛−1 − 𝑛𝑎𝑘𝑖𝑛)

]︃
𝑢𝑘𝑛

}︃
= 0. (7)

Теперь рассмотрим бесконечную систему дифференциальных уравнений

𝜌10𝑢
𝑘
0𝑟𝑟 + 𝜌10𝑢

𝑘
0𝑡𝑡 +

𝑚− 1

𝑟
𝜌10𝑢

1
0𝑟 = 0, (8)

𝜌𝑘1𝑢
𝑘
1𝑟𝑟 + 𝜌𝑘1𝑢

𝑘
1𝑡𝑡 +

𝑚− 1

𝑟
𝜌𝑘1𝑢

1
1𝑟 −

𝜆1
𝑟2
𝜌𝑘1𝑢

𝑘
1 = (9)

= − 1

𝑘1

(︃
𝑚∑︁
𝑖=1

𝑎1𝑖0𝑢
1
0𝑟 +̃︀𝑏10𝑢10𝑡 + ̃︀𝑐10𝑢10

)︃
, 𝑛 = 1, 𝑘 = 1, 𝑘1,

𝜌𝑘𝑛𝑢
𝑘
𝑛𝑟𝑟 + 𝜌𝑘𝑛𝑢

𝑘
𝑛𝑡𝑡 +

𝑚− 1

𝑟
𝜌𝑘𝑛𝑢

𝑘
𝑛𝑟 −

𝜆𝑛
𝑟2
𝜌𝑘𝑛𝑢

𝑘
𝑛 = −

− 1

𝑘𝑛

𝑘𝑛−1∑︁
𝑘=1

{︃
𝑚∑︁
𝑖=1

𝑎𝑘𝑖𝑛−1𝑢
𝑘
𝑛−1𝑟 +̃︀𝑏𝑘𝑛−1𝑢

𝑘
𝑛−1𝑡 +

[︃̃︀𝑐𝑘𝑛−1 +

𝑚∑︁
𝑖=1

(̃︀𝑎𝑘𝑖𝑛−2−

−(𝑛− 1)𝑎𝑘𝑖𝑛−1)
]︁
𝑢𝑘𝑛−1

}︁
, 𝑘 = 1, 𝑘𝑛, 𝑛 = 2, 3, .... (10)

Cуммируя уравнение (9) от 1 до 𝑘1 а уравнение (10) от 1 до 𝑘𝑛, а затем сложив полученные
выражения вместо с (8), приходим к уравнению (7).

Отсюда следует, что если 𝑢̄𝑘𝑛, 𝑘 = 1, 𝑘𝑛, 𝑛 = 0, 1, ...− решение системы (8)-(10), то оно
является решенеием уравнения (7).

Нетрудно заметить, что каждое уравнение системы (8)-(10) можно представить в виде

𝑢̄𝑘𝑛𝑟𝑟 +
𝑚− 1

𝑟
𝑢̄𝑘𝑛𝑟 +

𝜆𝑛
𝑟2
𝑢̄𝑘𝑛 + 𝑢̄𝑘𝑛𝑡𝑡 = 𝑓𝑘𝑛(𝑟, 𝑡), (11)

где 𝑓𝑘𝑛(𝑟, 𝑡) определяются из предыдущих уравнений этой сиситемы, при этом 𝑓𝑘0 (𝑟, 𝑡) ≡ 0.

Далее, из краевого условия (2) в силу (6), с учетом леммы 1 будем иметь

𝑢̄𝑘𝑛(1, 𝑡) = 𝜓𝑘
2𝑛(𝑡), 𝑢̄𝑘𝑛(𝑟, 𝛽) = 𝜏𝑘𝑛(𝑟), 𝑢̄𝑘𝑛𝑡(𝑟, 𝛽) = 𝜈𝑘𝑛(𝑟), 𝑘 = 1, 𝑘𝑛, 𝑛 = 0, 1, ... . (12)

В (11), (12) произведя замену 𝜐𝑘𝑛(𝑟, 𝑡) = 𝑢̄𝑘𝑛(𝑟, 𝑡)− 𝜓𝑘
2𝑛(𝑡), получим

𝜐𝑘𝑛𝑟𝑟 +
𝑚− 1

𝑟
𝜐𝑘𝑛𝑟 −

𝜆𝑛
𝑟2
𝜐𝑘𝑛 + 𝜐𝑘𝑛𝑡𝑡 = 𝑓𝑘𝑛(𝑟, 𝑡), (13)

𝜐𝑘𝑛(1, 𝑡) = 0, 𝜐𝑘𝑛(𝑟, 𝛽) = 𝜏𝑘𝑛(𝑟), 𝜐𝑘𝑛𝑡(𝑟, 𝛽) = 𝜈𝑘𝑛(𝑟), 𝑘 = 1, 𝑘𝑛, 𝑛 = 0, 1, ... , (14)

𝑓𝑘𝑛(𝑟, 𝑡) = 𝑓𝑘𝑛(𝑟, 𝑡) +
𝜆𝑛
𝑟2
𝜓𝑘
𝑛(𝑡)− 𝜓𝑘

2𝑛𝑡𝑡, 𝜏
𝑘
𝑛(𝑟) = 𝜏𝑘𝑛(𝑟)− 𝜓𝑘

2𝑛(𝛽), 𝜈𝑘𝑛(𝑟) = 𝜈𝑘𝑛(𝑟)− 𝜓𝑘
2𝑛𝑡(𝛽).

Произведя замену 𝜐𝑘𝑛(𝑟, 𝑡) = 𝑟
1−𝑚

2 𝜐𝑘𝑛(𝑟, 𝑡) задачу (13),(14) приведем к следующей задаче

𝐿𝜐𝑘𝑛 ≡ 𝜐𝑘𝑛𝑟𝑟 +
𝜆̄𝑛
𝑟2
𝜐𝑘𝑛 + 𝜐𝑘𝑛𝑡𝑡 = 𝑓𝑘𝑛(𝑟, 𝑡), (15)

𝜐𝑘𝑛(1, 𝑡) = 0, 𝜐𝑘𝑛(𝑟, 𝛽) = 𝜏𝑘𝑛(𝑟), 𝜐𝑘𝑛𝑡(𝑟, 𝛽) = 𝜈𝑘𝑛(𝑟), (16)

𝜆̄𝑛 =
[(𝑚− 1)(3−𝑚)− 4𝜆𝑛]

4
, 𝑓𝑘𝑛(𝑟, 𝑡) = 𝑟

(𝑚−1)
2 𝑓𝑘𝑛(𝑟, 𝑡), 𝜏𝑘𝑛(𝑟) = 𝑟

𝑚−1
2 𝜏𝑘𝑛(𝑟), 𝜈𝑘𝑛(𝑟) = 𝑟

𝑚−1
2 𝜈𝑘𝑛(𝑟).
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Решение задачи (15), (16) ищем в виде 𝜐𝑘𝑛(𝑟, 𝑡) = 𝜐𝑘1𝑛(𝑟, 𝑡) + 𝜐𝑘2𝑛(𝑟, 𝑡), где 𝜐𝑘1𝑛(𝑟, 𝑡)− решение
задачи

𝐿𝜐𝑘1𝑛 = 𝑓𝑘𝑛(𝑟, 𝑡), 𝜐𝑘1𝑛(1, 𝑡) = 0, 𝜐𝑘1𝑛(𝑟, 𝛽) = 𝜐𝑘1𝑛𝑡(𝑟, 𝛽) = 0, (17)

а 𝜐𝑘2𝑛(𝑟, 𝑡)− решение задачи

𝐿𝜐𝑘2𝑛 = 0, 𝜐𝑘2𝑛(1, 𝑡) = 0, 𝜐𝑘2𝑛(𝑟, 𝛽) = 𝜏𝑘𝑛(𝑟), 𝜐𝑘2𝑛𝑡(𝑟, 𝛽) = 𝜈𝑘𝑛(𝑟). (18)

Решение выше указанных задач рассмотрим в виде

𝜐𝑘𝑛(𝑟, 𝑡) =
∞∑︁
𝑠=1

𝑅𝑠(𝑟)𝑇𝑠(𝑡), (19)

при этом пусть

𝑓𝑘𝑛(𝑟, 𝑡) =

∞∑︁
𝑠=1

𝑎𝑘𝑠,𝑛(𝑡)𝑅𝑠(𝑟), 𝜏
𝑘
𝑛(𝑟) =

∞∑︁
𝑠=1

𝑏𝑘𝑠,𝑛𝑅𝑠(𝑟), 𝜈
𝑘
𝑛(𝑟) =

∞∑︁
𝑠=1

𝑒𝑘𝑠,𝑛𝑅𝑠(𝑟). (20)

Подставляя (19) в (17), с учетом (20), получим

𝑅𝑠𝑟𝑟 +

(︂
𝜆𝑛
𝑟2

+ 𝜇

)︂
𝑅𝑠 = 0, 0 < 𝑟 < 1, 𝑅𝑠(1) = 0, |𝑅𝑠(0)| <∞, (21)

𝑇𝑠𝑡𝑡 − 𝜇𝑇𝑠(𝑡) = 𝑎𝑘𝑠,𝑛(𝑡), 𝛽 < 𝑡 < 0, 𝑇𝑠(𝛽) = 0, 𝑇𝑠𝑡(𝛽) = 0. (22)

Ограниченным решением задачи (21) является([11])

𝑅𝑠(𝑟) =
√
𝑟𝐽𝜈(𝜇𝑠,𝑛𝑟), (23)

где 𝜈 = 𝑛+ (𝑚−2)
2 , 𝜇𝑠,𝑛− нули функций Бесселя первого рода 𝐽𝜈(𝑧), 𝜇 = 𝜇2𝑠,𝑛.

Задача (22) сводится к интегральному уравнению Вольтерра второго рода относительно
𝑇𝑠,𝑛(𝑡) ([12])

𝑇𝑠,𝑛(𝑡)− 𝜇2𝑠,𝑛

𝑡∫︁
𝛽

(𝑡− 𝜉)𝑇𝑠,𝑛(𝜉)𝑑𝜉 =

𝑡∫︁
𝛽

(𝑡− 𝜉)𝑎𝑠,𝑛(𝜉)𝑑𝜉, (24)

которое имеет, и притом единственное решение.
Подставляя (23) в (20) получим

𝑟−
1
2 𝑓𝑘𝑛(𝑟, 𝑡) =

∞∑︀
𝑠=1

𝑎𝑘𝑠,𝑛(𝑡)𝐽𝜈(𝜇𝑠,𝑛𝑟), 𝑟
− 1

2 𝜏𝑘𝑛(𝑟) =
∞∑︀
𝑠=1

𝑏𝑘𝑠,𝑛𝐽𝜈(𝜇𝑠,𝑛𝑟),

𝑟−
1
2 𝜈𝑘𝑛(𝑟) =

∞∑︀
𝑠=1

𝑒𝑘𝑠,𝑛𝐽𝜈(𝜇𝑠,𝑛𝑟), 0 < 𝑟 < 1.
(25)

Ряды (25)-разложения в ряды Фурье-Бесселя ([13]), если

𝑎𝑘𝑠,𝑛(𝑡) = 2[𝐽𝜈+1(𝜇𝑠,𝑛)]−2

1∫︁
0

√︀
𝜉𝑓𝑘𝑛(𝜉, 𝑡)𝐽𝜈(𝜇𝑠,𝑛𝜉)𝑑𝜉. (26)

𝑏𝑘𝑠,𝑛 = 2[𝐽𝜈+1(𝜇𝑠,𝑛)]−2
1∫︀
0

√
𝜉𝜏𝑘𝑛(𝜉)𝐽𝜈(𝜇𝑠,𝑛𝜉)𝑑𝜉,

𝑒𝑘𝑠,𝑛 = 2[𝐽𝜈+1(𝜇𝑠,𝑛)]−2
1∫︀
0

√
𝜉𝜈𝑘𝑛(𝜉)𝐽𝜈(𝜇𝑠,𝑛𝜉)𝑑𝜉,

(27)
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где 𝜇𝑠,𝑛, 𝑠 = 1, 2, ...− положительные нули функций Бесселя первого рода 𝐽𝜈(𝑧), расположен-
ные в порядке возрастания их величины.

Из (23), (24) получим решение задачи (17) в виде

𝜐𝑘1𝑛(𝑟, 𝑡) =
∞∑︁
𝑠=1

√
𝑟𝑇𝑠,𝑛(𝑡)𝐽𝜈(𝜇𝑠,𝑛𝑟), (28)

где 𝑎𝑘𝑠,𝑛(𝑡) определяется из (26).
Далее подставляя (23) в (18), с учетом (20), будем иметь

𝑉𝑠𝑡𝑡 − 𝜇2𝑠,𝑛𝑉𝑠 = 0, 𝛽 < 𝑡 < 0, 𝑉𝑠(𝛽) = 𝑏𝑘𝑠,𝑛, 𝑉𝑠𝑡(𝛽) = 𝑒𝑘𝑠,𝑛,

которой произведя замену

𝐺𝑠,𝑛(𝑡) = 𝑉𝑠,𝑛(𝑡)− 𝑏𝑘𝑠,𝑛 − (𝑡− 𝛽)𝑏𝑘𝑠,𝑛, (29)

приходим к следующей задаче

𝐺𝑠,𝑛𝑡𝑡 − 𝜇2𝑠,𝑛𝐺𝑠,𝑛 = 𝑞𝑘𝑠,𝑛(𝑡), 𝛽 < 𝑡 < 0, 𝐺𝑠,𝑛(𝛽) = 0, 𝐺𝑠,𝑛𝑡(𝛽) = 0, (30)

𝑞𝑘𝑠,𝑛(𝑡) = 𝜇2𝑠,𝑛[𝑏𝑘𝑠,𝑛 + (𝑡− 𝛽)𝑒𝑘𝑠,𝑛].

Задача (30) сводится также к интегральному уравнению (24), где вместо 𝑎𝑘𝑠,𝑛(𝑡) берется

𝑞𝑘𝑠,𝑛(𝑡).
Из (23), (24), (29) найдем решение задачи (18) в виде

𝜐𝑘2𝑛(𝑟, 𝑡) =
∞∑︁
𝑠=1

√
𝑟𝑉𝑠,𝑛(𝑡)𝐽𝜈(𝜇𝑠,𝑛𝑟), (31)

где 𝑏𝑘𝑠,𝑛, 𝑒
𝑘
𝑠,𝑛 находятся из (27).

Следовательно, сначала решив задачу (8), (12) (𝑛 = 0), а затем (8), (12)(𝑛 = 0) и т.д.
найдем последлвательно все 𝜐𝑘𝑛(𝑟, 𝑡) = 𝜐𝑘1𝑛(𝑟, 𝑡) + 𝜐𝑘2𝑛(𝑟, 𝑡), где 𝜐𝑘1𝑛(𝑟, 𝑡), 𝜐𝑘2𝑛(𝑟, 𝑡), определяются
из (28), (31), 𝑘 = 1, 𝑘𝑛, 𝑛 = 0, 1, ... .

Итак, в области Ω𝛽, имеет место ∫︁
𝐻
𝜌(𝜃)𝐿𝑢𝑑𝐻 = 0. (32)

Пусть 𝑓(𝑟, 𝜃, 𝑡) = 𝑅(𝑟)𝜌(𝜃)𝑇 (𝑡), причем 𝑅(𝑟) ∈ 𝑉0, 𝑉0− плотна в 𝐿2((0, 1)), 𝜌(𝜃) ∈ 𝐶∞(𝐻)−
плотна в 𝐿2(𝐻), а 𝑇 (𝑡) ∈ 𝑉1, 𝑉1− плотна в 𝐿2((0, 𝛽)). Тогда 𝑓(𝑟, 𝜃, 𝑡) ∈ 𝑉, 𝑉 = 𝑉0 ⊗ (𝐻)⊗ 𝑉1−
плотна в 𝐿2(𝐷𝛽) ([14]). Отсюда 𝑢 из (12) следует, что∫︁

Ω𝛽

𝑓(𝑟, 𝜃, 𝑡)𝐿𝑢𝑑Ω𝛽 = 0

и

𝐿𝑢 = 0, ∀(𝑟, 𝜃, 𝑡) ∈ Ω𝛽.

Таким образом, решением задачи (1), (2) в области Ω𝛽 является ряд

𝑢(𝑟, 𝜃, 𝑡) =
∞∑︀
𝑛=0

𝑘𝑛∑︀
𝑘=1

[𝜓𝑘
2𝑛(𝑡) + 𝑟

(1−𝑚)
2 [𝜐𝑘1𝑛(𝑟, 𝑡) + 𝜐𝑘2𝑛(𝑟, 𝑡)]]𝑌 𝑘

𝑛,𝑚(𝜃), (33)

где 𝜐𝑘1𝑛(𝑟, 𝑡), 𝜐𝑘2𝑛(𝑟, 𝑡) определяются из (28) и (31).



Задача типа Дирихле в цилиндрической области. . . 49

Учитывая формулу ([13]) 2𝐽 ′
𝜈(𝑧) = 𝐽𝜈−1(𝑧)− 𝐽𝜈+1(𝑧), оценки ([15,10])

𝐽𝜈(𝑧) =
√︁

2
𝜋𝑧 cos

(︀
𝑧 − 𝜋

2 𝜈 −
𝜋
4

)︀
+ 0( 1

𝑧3/2
), 𝜈 ≥ 0,

|𝑘𝑛| ≤ 𝑐1𝑛𝑚−2,

⃒⃒⃒⃒
𝜕𝑙

𝜕𝜃𝑙𝑗
𝑌 𝑘
𝑛,𝑚(𝜃)

⃒⃒⃒⃒
≤ 𝑐2𝑛

𝑚
2
−1+𝑙, 𝑗 = 1,𝑚− 1, 𝑙 = 0, 1, ...

(34)

а также леммы, ограничения на заданные функций 𝜓2(𝑡, 𝜃), 𝜏(𝑟, 𝜃), 𝜈(𝑟, 𝜃), как в [9] можно
доказать, что полученное решение в виде (33) принадлежит классу 𝐶(Ω̄𝛽) ∩ 𝐶1(Ω𝛽 ∪ 𝑆)
∩ 𝐶2(Ω𝛽).

Далее, из (28), (31), (33) при 𝑡→ −0 имеем

𝑢(𝑟, 𝜃, 0) = 𝜏1(𝑟, 𝜃) =
∞∑︀
𝑛=0

𝑘𝑛∑︀
𝑘=1

𝜏𝑘1𝑛(𝑟)𝑌 𝑘
𝑛,𝑚(𝜃),

𝜏𝑘1𝑛(𝑟) = 𝜓𝑘
2𝑛(0) +

∞∑︀
𝑠=1

𝑟
(2−𝑚)

2 [𝑇𝑠,𝑛(0) + 𝑉𝑠,𝑛(0)] 𝐽
𝑛+

(𝑚−2)
2

(𝜇𝑠,𝑛𝑟).

Из (25)-(27), (34), а также из леммы вытекает, что 𝜏1(𝑟, 𝜃) ∈𝑊 𝑙
2(𝑆), 𝑙 > 3𝑚

2 .
Таким образом, задача 1 приводится в области Ω𝛼 к следующей задаче Дирихле для ги-

перболических уравнений

Δ𝑥𝑢− 𝑢𝑡𝑡 +
𝑚∑︁
𝑖=1

𝑎𝑖(𝑟, 𝜃, 𝑡)𝑢𝑥𝑖 + 𝑏(𝑟, 𝜃, 𝑡)𝑢𝑡 + 𝑐(𝑟, 𝜃, 𝑡)𝑢 = 0. (35)

Задача 2. Найти решение уравнения (35) в области Ω𝛼 из класса 𝐶(Ω̄𝛼)∩𝐶2(Ω𝛼), удовле-
творяющее краевым условиям

𝑢
⃒⃒
𝑆

= 𝜏1(𝑟, 𝜃), 𝑢
⃒⃒
Γ𝛼

= 𝜓1(𝑡, 𝜃), 𝑢
⃒⃒
𝜎𝛼

= 𝜙(𝑟, 𝜃). (36)

В [16] доказаны теоремы 1 и 2 для задачи 2 при выполнение условия (4).
Далее используя справедливость теоремы 1 для задачи 2 получаем разрешимость задачи

1.
Так как в [16] получен явный вид решения задачи (35), (36), то можно записать явное

представления и для задачи 1.

4. Единственность решения задачи 1.

Сначала рассмотрим задачу (1), (2) в области Ω𝛽 и докажем ее единственность решения.
Для этого построим решение смешанной задачи для уравнения

𝐿*𝑣 ≡ Δ𝑥𝑣 + 𝑣𝑡𝑡 −
𝑚∑︁
𝑖=1

𝑎𝑖𝑣𝑥𝑖 − 𝑏𝑣𝑡 + 𝑑𝑣 = 0, (5*)

𝑑(𝑥, 𝑡) = 𝑐−
∑︀𝑚

𝑖=1 𝑎𝑖𝑥𝑖 − 𝑏𝑡, с данными

𝑣|𝑆 = 0, 𝑣𝑡|𝑆 = 𝜈1(𝑟, 𝜃) = 𝜈𝑘1𝑛(𝑟)𝑌 𝑘
𝑛,𝑚(𝜃), 𝑣|Γ𝛽

= 0, 𝑘 = 1, 𝑘𝑛, 𝑛 = 0, 1, ... . (37)

где 𝜈𝑘1𝑛(𝑟) ∈ 𝐺− множество функций 𝜈(𝑟) из класса 𝐶([0, 1])∩𝐶2((0, 1)). Множество G плотна
всюду в 𝐿2((0, 1)) [14].

Решение задачи (5*), (37) будем искать в виде (6), где функции 𝑣𝑘𝑛(𝑟, 𝑡) будут определены
ниже. Тогда, аналогично п.2, функции 𝑣𝑘𝑛(𝑟, 𝑡) удовлетворяют систему уравнений (8)-(10), где
𝑎̃𝑘𝑖𝑛, 𝑎

𝑘
𝑖𝑛, 𝑏̃

𝑘
𝑛, заменены на −𝑎̃𝑘𝑖𝑛,−𝑎𝑘𝑖𝑛,−𝑏̃𝑘𝑛, а 𝑐𝑘𝑛, на 𝑑𝑘𝑛, 𝑖 = 1, ...,𝑚, 𝑘 = 1, 𝑘𝑛, 𝑛 = 0, 1, ... .

Далее, из краевого условия (37), в силу (6), получим
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𝑣𝑘𝑛(𝑟, 𝛽) = 0, 𝑣𝑘𝑛𝑡(𝑟, 𝛽) = 𝜈𝑘1𝑛(𝑟), 𝑣𝑘𝑛(1, 𝑡) = 0, 𝑘 = 1, 𝑘𝑛, 𝑛 = 0, 1, ... . (38)

Как ранее замечено, что каждое уравнение системы (8)-(10) представимо в виде (11). Как
в п.2, нетрудно показать, задача (11), (38) имеет единственное решение.

Таким образом, решение задачи (5*), (37) в виде ряда (33) построено, которая в силу (34)
принадлежит классу 𝐶(Ω𝛽) ∩ 𝐶1(Ω𝛽 ∪ 𝑆) ∩ 𝐶2(Ω𝛽).

Из определения сопряженных операторов 𝐿,𝐿* ([17]) имеем

𝑣𝐿𝑢− 𝑢𝐿*𝑣 = −𝑣𝑃 (𝑢) + 𝑢𝑃 (𝑣)− 𝑢𝑣𝑄,

где 𝑃 (𝑢) =
∑︀𝑚

𝑖=1 𝑢𝑥𝑖 cos
(︀
𝑁⊥, 𝑥𝑖

)︀
− 𝑢𝑡 cos

(︀
𝑁⊥, 𝑡

)︀
, 𝑄 =

∑︀𝑚
𝑖=1 𝑎𝑖 cos

(︀
𝑁⊥, 𝑥𝑖

)︀
− 𝑏 cos

(︀
𝑁⊥, 𝑡

)︀
,

a 𝑁⊥ - внутренняя нормаль к границе 𝜕Ω𝛽 , по формуле Грина имеем∫︁
Ω𝛽

(𝑣𝐿𝑢− 𝑢𝐿*𝑣)𝑑Ω𝛽 =

∫︁
𝜕Ω𝛽

[︂(︂
𝑣
𝜕𝑢

𝜕𝑁
− 𝑢 𝜕𝑣

𝜕𝑁

)︂
𝑀 + 𝑢𝑣𝑄

]︂
𝑑𝑠 (39)

где 𝜕
𝜕𝑁 =

∑︀𝑚
𝑖=1 cos

(︀
𝑁⊥, 𝑥𝑖

)︀
− cos

(︀
𝑁⊥, 𝑡

)︀
𝜕
𝜕𝑡 , a 𝑀

2 =
∑︀𝑚

𝑖=1 cos2(𝑁⊥, 𝑥𝑖) + cos2(𝑁⊥, 𝑡).
Из (39), принимая во внимание однородные граничные условия (2) и условия (37) получим∫︁

𝑆
𝜈1(𝑟, 𝜃)𝑢(𝑟, 𝜃, 0)𝑑𝑠 = 0. (40)

Поскольку линейная оболочка системы функций
{︀
𝜈𝑘𝑛(𝑟)𝑌 𝑘

𝑛,𝑚(𝜃)
}︀
плотна в 𝐿2(𝑆)[14], то из

(40) заключаем, что 𝑢𝑡(𝑟, 𝜃, 0) = 0, ∀(𝑟, 𝜃) ∈ 𝑆.
Таким образом, мы приходим к задаче Дирихле:

𝐿𝑢 = 0, 𝑢
⃒⃒
𝑆

= 0, 𝑢
⃒⃒
Γ𝛽

= 0, 𝑢
⃒⃒
𝜎𝛽

= 0,

решение которого тривиальное [18].
Следовательно, мы пришли к однородной задаче (35), (36), которое имеет нулевое решение,

если имеет место условие (4).
Единственность решения задачи 1 доказано.
Теорема 1 доказано.
Так как для задачи 2 имеет место теорема 2, то отсюда следует ее справедливость и для

задачи 1.
Отметим, что в [19] задача 1 изучена для многомерного уравнения Лаврентьева-Бицадзе.
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Аннотация

В работе изучается задача о представлении натурального числа 𝑛 в виде суммы квадра-
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Abstract

The work studies the problem of representing the natural number 𝑛 as the sum of the squares
of four prime numbers from an arithmetic progression. The number of natural numbers that
cannot be represented in the specified form has been estimated, i.e. the exceptional set of the
problem, is estimated.. Also, for the first time, a lower estimate was obtained for the number
of representations of a given non-exceptional 𝑛 in the indicated form.
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1. Введение

Известно, что после доказательства теоремы Ж. Л. Лагранжа (см.§6.5., гл.VI [1]), о пред-
ставлении заданного целого числа в виде суммы квадратов четырех целых чисел первым, кто
обратил внимание на задачу представления данного целого числа в виде суммы квадратов
четырех простых чисел 𝑝1, ..., 𝑝4 был Л. К.Хуа [2]. Пусть 𝑁 -достаточно большое натуральное
число и 𝑈(𝑁) = {𝑛 | 1 < 𝑛 ⩽ 𝑁,𝑛 ≡ 4(mod24), 𝑛 ̸= 𝑝21 + 𝑝22 + 𝑝23 + 𝑝24}, 𝐸(𝑁) = 𝑐𝑎𝑟𝑑𝑈(𝑁).

Л. К.Хуа доказал, что 𝐸(𝑁)≪ 𝑁 log−𝐴𝑁 , где 𝐴 > 0− некоторая постоянная, ≪ − символ
Виноградова. Jianya Liu и Ming-Chit Liu [3] улучшили этот результат и доказали новую оценку
𝐸(𝑁)≪ 𝑁 𝜃, при 𝜃 > 13/15.

Yonghui Wang [4] доказал, что диофантово уравнение 𝑛 = 𝑝21 + 𝑝22 + 𝑝23 + 𝑝24 + 𝑝25 имеет
решение, если выполняются условия 𝑝𝑖 ≡ 𝑏𝑖 (mod 𝑑) , ( 𝑖 = 1, 2, ..., 5), 𝑑 ⩽ 𝑁 𝛿, 𝑛 ≡ 5 (mod24).
Здесь и далее 𝛿 > 0− достаточно малое число. Затем в работе [5] авторы настоящей работы
получили оценки снизу для количества представлений данного 𝑛, 1 < 𝑛 ⩽ 𝑁,𝑛 ≡ 5(mod24)
в виде суммы квадратов пяти простых чисел из арифметической прогрессии. Кроме того О.
Имамов [6] получил оценку снизу, для количества решений уравнения

𝑛 = 𝑝21 + 𝑝22 + 𝑝23 + 𝑝24. (1)

В данной статье мы исследуем существования решений уравнения (1) в простых числах из
арифметической прогрессии. Для удобства введем следующие обозначения:

𝑈 (𝑁, 𝑑) =
{︀
𝑏̄ ∈ N4 : 1 ⩽ 𝑏𝑖 ⩽ 𝑑, (𝑏𝑖, 𝑑) = 1, 𝑏21 + · · ·+ 𝑏24 ≡ 𝑛 (mod𝜎(𝑑)𝑑)

}︀
. (2)

В дальнейшем будем рассматривать 𝑝𝑖 ≡ 𝑏𝑖(mod 𝑑), 𝑖 = 1, ..., 4 и 𝑏̄ = (𝑏1, . . . , 𝑏4) ∈ 𝑈(𝑁, 𝑑).
Здесь 𝜎(𝑑) = 1, 4, 2 соответственно означает 2 ∤ 𝑑, 2 ‖𝑑 и 4|𝑑.

Пусть 𝑆𝑑 (𝑛)− количество решений уравнения (1) в простых числах 𝑝𝑖 ≡ 𝑏𝑖(mod 𝑑),
𝑖 = 1, ..., 4; а 𝐸𝑑 (𝑛)— количество 𝑛 (2 < 𝑛 ⩽ 𝑁), которые не представимо в виде суммы
четырёх квадратов простых чисел из арифметической прогрессии 𝑝𝑖 ≡ 𝑏𝑖(mod 𝑑), 𝑖 = 1, ..., 4.
Положим 𝑄 = 𝑁21𝛿. Основным результатам настоящей работы является следующая.

Теорема. Если 𝑛 ≡ 4 (mod24), 2 ⩽ 𝑑 ⩽ 𝑁 𝛿 , тогда справедлива оценка

𝐸𝑑(𝑁)≪ 𝑁(𝑄15/14 𝑑)
−1
.

Метод, используемый в доказательстве теоремы, позволяет получить оценку для 𝑆𝑑 (𝑛)
при 𝑁/50 < 𝑛 ⩽ 𝑁 .
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Следствие. Для всех 𝑛 (𝑁/50 < 𝑛 ⩽ 𝑁), удовлетворяющие условию 𝑛 ≡ 4 (mod24), за

исключением не более чем 𝐸𝑑(𝑁)≪ 𝑁
(︀
𝑄15/14 𝑑

)︀−1
значений, справедлива оценка 𝑆𝑑 (𝑛)≫

≫ 𝑛1−7𝛿(𝑑1/2log4𝑛)
−1
.

Результаты сформулированном теоремы не только является обобщением сооатветствую-
щие резултать Jianya Liu и Ming-Chit Liu [3] простых чисел арифметической прогрессии, по
внем улучщена оценка множества 𝐸𝑑(𝑁) в сравниние оценки 𝐸1(𝑁) доказанные в [3] . Отметим
также, что вперые получена оценки для 𝑆𝑑(𝑁). В доказательстве теоремы, будем использовать
методы Харди-Литтлвуда [7] , метод И.М.Виноградова [8],[9] а также схема работы Аллакова
[10].

Отметим оценка для 𝑆𝑑(𝑛), получена впервые и отличается от ожидаемого главного члена
на 𝑛−7𝛿.

2. Обозначения и оценка интеграла по малым дугам

Введем обозначения:

𝑇 = 𝑁
√
𝛿, 𝐿 = 𝑁/50, 𝜏 = 𝑁−1𝑇

1
4 , 𝐿1 =

√
𝐿,𝑁1 =

√
𝑁. (3)

Положим 𝑒(𝑦) = 𝑒2𝜋𝑖𝑦 и 𝑒𝑞(𝑦) = 𝑒(𝑦/𝑞). Для любых 𝑎, 𝑞, (𝑎, 𝑞) = 1 при 1 ⩽ 𝑎 ⩽ 𝑞 ⩽ 𝑄, обозначим

m (𝑎, 𝑞) =
[︁
𝑎−𝜏
𝑞 , 𝑎+𝜏

𝑞

]︁
. Легко видеть, что эти промежутки принадлежат интервалу [𝜏, 1 + 𝜏 ] и

не пересекаются (см. §2 , гл X [11] или п.3, §5 , гл II, [12]). Обозначим объединение m(𝑎, 𝑞)
через M, то есть M =

⋃︀
𝑎,𝑞

m(𝑎, 𝑞). Разность [𝜏, 1 + 𝜏 ] ∖M обозначим через m. Пусть

𝑆𝑖(𝛼) = 𝑆𝑖(𝛼, 𝑑, 𝑏𝑖) =
∑︁

𝐿1<𝑚𝑖⩽𝑁1

𝑚𝑖≡𝑏𝑖( mod 𝑑)

Λ(𝑚𝑖)𝑒(𝛼𝑚
2
𝑖 ), (4)

и

ℛ(𝑛) :=
∑︁

𝐿1<𝑛𝑖⩽𝑁1,
𝑚2

1+···+𝑚2
4=𝑛,

𝑚𝑖≡𝑏𝑖( mod 𝑑)

Λ(𝑚1) · · ·Λ(𝑚4), (5)

где Λ(𝑚)-функция Мангольдта. Тогда, используя (4), ℛ(𝑛) можем представить в виде:

ℛ(𝑛) =
1+𝜏∫︀
𝜏

4∏︀
𝑖=1

𝑆𝑖(𝛼)𝑒(−𝑛𝛼)𝑑𝛼. Теперь ℛ(𝑛) можем записать в виде

ℛ(𝑛) =

⎧⎨⎩
∫︁
M

+

∫︁
m

⎫⎬⎭
4∏︁

𝑖=1

𝑆𝑖(𝛼)𝑒(−𝑛𝛼)𝑑𝛼 = ℛ1(𝑛) +ℛ2(𝑛). (6)

В (6) интеграл по множестве M обозначен как ℛ1(𝑛), а интеграл по m как ℛ2(𝑛).

Оценим ℛ2(𝑛). Для этого воспользуемся следующими леммами.

Лемма 2.1. Если
⃒⃒
𝛼− 𝑎𝑞−1

⃒⃒
⩽ 𝑞−2, (𝑎, 𝑞) = 1, 𝑑 ⩽ 𝑁 𝛿 и ℎ = (𝑞, 𝑑), то для любого

действительного числа 𝛼 ∈ m при 𝑁 > 𝑁0(𝛿) справедлива оценка для 𝑆𝑖(𝛼)≪ 𝑁
1
2
+ 𝜀

2𝑄− 1
2 .

Эта лемма следует из леммы 2.1 в [4].

Лемма 2.2. Для всех 𝑛 ⩽ 𝑁 , 𝜀 < 0, 6𝛿 и 𝑛 ≡ 4 (mod24) за исключением не более чем
≪ 𝑁𝑄−15/14 𝑑−1 значений 𝑛, справедлива оценка

|ℛ2(𝑛)| < 𝑁𝑄−3/7𝑑−1/2. (7)
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Доказательство. Используя неравенство Бесселя (см. §4, гл.III, [13]) и лемму 2.1, получим

∑︁
𝑁/2 ⩽𝑛⩽𝑁

|ℛ2 (𝑛)|
2
≪
∫︁
m

|𝑆 (𝛼)|8𝑑𝛼≪
(︁
𝑁

1
2
+ 𝜀

2𝑄− 1
2

)︁4 1∫︁
0

|𝑆 (𝛼)|4𝑑𝛼

Так как

1∫︁
0

|𝑆 (𝛼)|4𝑑𝛼 ⩽ log4𝑁

1∫︁
0

⃒⃒⃒⃒
⃒⃒⃒⃒ ∑︁

𝐿1<𝑚𝑖⩽𝑁1

𝑚𝑖≡𝑏𝑖( mod 𝑑)

𝑒(𝛼𝑚𝑖)

⃒⃒⃒⃒
⃒⃒⃒⃒
4

𝑑𝛼

и согласно лемме Хуа ( см. п.2.2, гл. II, [7]), существует такая постоянная 𝑐, что справедлива
оценка

1∫︁
0

⃒⃒⃒⃒
⃒⃒⃒⃒ ∑︁

𝐿1<𝑚𝑖⩽𝑁1

𝑚𝑖≡𝑏𝑖( mod 𝑑)

𝑒(𝛼𝑚)

⃒⃒⃒⃒
⃒⃒⃒⃒
4

𝑑𝛼≪ 𝑁𝑑−2log𝑐𝑁,

то получим ∑︁
𝐿<𝑛⩽𝑁

|ℛ2 (𝑛)|
2
≪ 𝑁3+2𝜀𝑄−2𝑑−2log4+𝑐𝑁.

Отсюда следует, что количество значений 𝑛, 𝑛 ⩽ 𝑁 для которых |ℛ2 (𝑛)| ⩾ 𝑁(𝑄3/7 𝑑1/2 )
−1
,

не превосходит < 𝑁(𝑄15/14𝑑)
−1
. То есть, для всех 𝐿 < 𝑛 ⩽ 𝑁 и 𝑛 ≡ 4 (mod24) за исключением

не более чем ≪ 𝑁(𝑄15/14𝑑)
−1

значений 𝑛, справедливо неравенство |ℛ2 (𝑛)| < 𝑁(𝑄3/7𝑑1/2)
−1
.

3. Упрощение интеграла ℛ1(𝑛)

Обозначим ℎ = (𝑑, 𝑞) и для любого характера 𝜒(𝑚𝑜𝑑𝑑𝑞ℎ−1) и действительного числа 𝑦,
𝑆𝑖(𝜒, 𝑦) и интегралы сумму 𝐼(𝑦), 𝐼(𝑦) и 𝐼(𝜒, 𝑦) определим следующими равенствами:

𝑆𝑖(𝜒, 𝑦) := 𝑆𝑖(𝜒, 𝑦, 𝑑, 𝑞) :=
∑︁

𝐿1<𝑚𝑖⩽𝑁1,

𝑛𝑖≡𝑏𝑖( mod 𝑑𝑞ℎ−1)

𝜒(𝑚𝑖)Λ(𝑚𝑖)𝑒(𝑚𝑖
2𝑦),

𝐼(𝑦) :=

𝑁1∫︁
𝐿1

𝑒(𝑥2𝑦)𝑑𝑥, 𝐼(𝑦) :=

𝑁1∫︁
𝐿1

𝑥𝛽−1𝑒(𝑥2𝑦)𝑑𝑥, 𝐼(𝜒, 𝑦) :=
∑︁
𝛾⩽𝑇

′
𝑁1∫︁

𝐿1

𝑥𝜌−1𝑒(𝑥2𝑦)𝑑𝑥.

Здесь
∑︀
𝛾⩽𝑇

′− обозначает сумму по всем нулям 𝜌 = 𝛽 + 𝑖𝛾 функции 𝐿(𝑠, 𝜒) в области

1
2 ⩽ 𝛽 ⩽ 1− 𝑐1(ln𝑇 )−1, |𝛾| ⩽ 𝑇, за кроме исключительного нуля 𝛽.
Для дальнейших исследований нам понадобится следующые леммы.

Лемма 3.1. Для любого действительного числа 𝑦 и характера 𝜒(𝑚𝑜𝑑𝑑𝑞ℎ−1) при
𝑑𝑞ℎ−1 ⩽ 𝑇 справедливо следующее равенство

𝑆(𝜒, 𝑦) = 𝛿𝜒0𝐼(𝑦)− 𝛿𝜒̃𝐼(𝑦)− 𝐼(𝜒, 𝑦) +𝑂
(︀
(1 + |𝑦|𝑁)𝑁1𝑇

−1log2𝑁
)︀
,

где 𝛿𝜒0 =

{︂
1, если 𝜒 ≡ 𝜒0(𝑚𝑜𝑑𝑑𝑞ℎ

−1),
0, в противном случае,

𝛿𝜒̃ =

{︂
1 , если 𝜒 ≡ 𝜒̃𝜒0(𝑚𝑜𝑑𝑑𝑞ℎ

−1),
0, в противном случае.

Доказательство этой леммы приведено в [11, 12, 14] (например, см. страницу 120 в [14]).
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Чтобы упростить ℛ1(𝑛) нам потребуются следующие обозначения. Для положитель-
ных целых чисел 𝑑, 𝑞 обозначим ℎ (𝑞) := (𝑑, 𝑞), то есть наибольший общий делитель чи-
сел 𝑑 и 𝑞.Через положительные целые числа 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 определим ℎ (𝑞) следующим образом:

𝑑 = 𝑝𝛼1
1 · · · 𝑝𝛼𝑠

𝑠 𝑑0, 𝑞 = 𝑝𝛽1
1 · · · 𝑝

𝛽𝑠
𝑠 𝑞0, (𝑑0, 𝑞0) = 1,

ℎ (𝑞) = 𝑝𝛾11 · · · 𝑝
𝛾𝑠
𝑠 , (8)

где 𝛾𝑖 = min (𝛼𝑖, 𝛽𝑖) , 𝑖 = 1, ..., 𝑠. Определим ℎ1 (𝑞) и ℎ2 (𝑞) следующим образом.

ℎ1 (𝑞) : = 𝑝𝛿11 · · · 𝑝
𝛿𝑠
𝑠 , 𝛿𝑖 =

{︃
𝛼𝑖, если 𝛽𝑖 > 𝛼𝑖

0, в противном случае.
(9)

Согласно (8) и (9)

ℎ2 (𝑞) : = ℎ (𝑞)/ℎ1 (𝑞). (10)

Для удобства записи обозначим ℎ = ℎ (𝑞), ℎ1 = ℎ1 (𝑞) и ℎ2 = ℎ2 (𝑞). Легко видеть, что
(ℎ1, ℎ2) = 1 и (𝑑/ℎ1, 𝑞/ℎ2 ) = 1.

Лемма 3.2. Если 𝛼 = 𝑎𝑞−1 + 𝜆, то справедливо равенство

𝑆𝑖(𝛼) = 𝜙−1 (𝑑/ℎ1 )𝜙−1 (𝑞/ℎ2 )
∑︁

𝜁( mod 𝑑/ℎ1)

𝜁(𝑏𝑖)
∑︁

𝜂( mod 𝑞/ℎ2)

𝐺𝑖(𝑎, 𝜂, 𝑞)𝑆(𝜁𝜂, 𝜆) +𝑂
(︀
log2𝑁

)︀
,

где

𝐺𝑖 (𝑎, 𝜂, 𝑞) = 𝐺 (ℎ, 𝑏𝑖, 𝑎, 𝜂, 𝑞) =
∑︁
(𝑐,𝑞)=1

𝑐≡𝑏𝑖( mod ℎ)

𝑒
(︀
𝑎𝑐2/𝑞

)︀
𝜂(𝑐), (11)

а 𝜂 и 𝜁 — характеры по модулям 𝑞/ℎ2 и 𝑑/ℎ1 соответственно.

Доказательство. В силу определения 𝑆𝑖 (𝛼) имеем:

𝑆𝑖 (𝛼) =
∑︁

𝐿1<𝑚𝑖⩽𝑁1,
𝑚𝑖≡𝑏𝑖( mod 𝑑)

(𝑚𝑖,𝑞)=1

Λ(𝑚𝑖)𝑒
(︀
𝛼𝑚2

𝑖

)︀
+𝑂

⎛⎜⎜⎜⎝ ∑︁
𝑝𝑘⩽𝑁1

𝑝|𝑞

log 𝑝 𝑒(𝑝2𝑘𝛼)

⎞⎟⎟⎟⎠ =

=
∑︁

(𝑐,𝑞)=1
𝑐≡𝑏𝑖( mod ℎ)

𝑒

(︂
𝑎𝑐2

𝑞

)︂ ∑︁
𝐿1<𝑚𝑖⩽𝑁1

𝑚𝑖≡𝑏𝑖( mod 𝑑)
𝑚𝑖≡𝑐( mod 𝑞)

Λ(𝑚𝑖)𝑒(𝑚
2
𝑖𝜆) +𝑂

(︀
log2𝑁

)︀
.

Если 𝑐 ≡ 𝑏𝑖(modℎ), то внутренняя сумма в главном члене превращяется в нуль. Поэтому мы
можем применить условие 𝑐 ≡ 𝑏𝑖(modℎ) к суммированию по 𝑐. С другой стороны, условие
𝑐 ≡ 𝑏𝑖(𝑚𝑜𝑑ℎ) эквивалентно условиям 𝑚𝑖 ≡ 𝑏𝑖(mod 𝑑) и 𝑚𝑖 ≡ 𝑐(mod𝑞) которые, в свою оче-
редь, эквивалентны условиям 𝑚𝑖 ≡ 𝑏𝑖(mod 𝑑/ℎ1), и 𝑚𝑖 ≡ 𝑐(mod 𝑞/ℎ2 ). В этом случае, соглас-
но свойству ортогональности характеров ( см. §4,5, [14]), для 𝑆𝑖 (𝛼) справедливо следующее
равенство

𝑆𝑖 (𝛼) = 𝜙−1 (𝑑/ℎ1 )𝜙−1 (𝑞/ℎ2 )
∑︁

𝜁( mod 𝑑/ℎ1)

𝜁 (𝑏𝑖)×

×
∑︁

𝜂( mod 𝑞/ℎ2)

∑︁
(𝑐,𝑞)=1

𝑐≡𝑏𝑖( mod ℎ)

𝑒

(︂
𝑎𝑐2

𝑞

)︂
𝜂 (𝑐)

∑︁
𝐿1<𝑚𝑖⩽𝑁1

𝑚𝑖≡𝑏𝑖( mod 𝑑)

𝜁𝜂(𝑚𝑖)Λ(𝑚𝑖)𝑒(𝑚
2
𝑖𝜆)+𝑂(log2𝑁).
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Следовательно, используя (11) получим

𝑆𝑖(𝛼) = 𝜙−1(𝑑/ℎ1)𝜙
−1(𝑞/ℎ2)

∑︁
𝜁( mod 𝑑/ℎ1)

𝜁(𝑏𝑖)
∑︁

𝜂( mod 𝑞/ℎ2)

𝐺𝑖(𝑎, 𝜂, 𝑞)𝑆(𝜁𝜂, 𝜆) +𝑂
(︀
log2𝑁

)︀
.

Отсюда следует утверждение леммы 3.2.

Теперь, используя приведённые леммы, упростим 𝑅1(𝑛) следующим образом. Для любого
𝛼 = 𝑎/𝑞 + 𝜆 ∈m(𝑎, 𝑞) выполняются условия |𝜆| < 𝜏/𝑞 и 𝑞 ⩽ 𝑄. Согласно леммам 3.1 и 3.2,
𝑆𝑖 (𝛼) можно записать следующим образом:

𝑆𝑖(𝛼) = 𝜙−1(𝑑/ℎ1)𝜙
−1(𝑞/ℎ2){𝐺𝑖(𝑎, 𝜂0, 𝑞)𝐼(𝜆)− 𝛿𝑞𝜁𝜁0 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂𝜂0, 𝑞)𝐼(𝜆)−

−
∑︁

𝜁 (mod 𝑑/ℎ1)𝜂 (mod 𝑞/ℎ2)

𝜁 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂, 𝑞)𝐼(𝜁𝜂, 𝜆)}+

+𝑂(𝜙−1(𝑞/ℎ2)
∑︁

𝜂 (mod 𝑞/ℎ2)

|𝐺𝑖(𝑎, 𝜂, 𝑞)|(1 + |𝜆|𝑁)𝑁1/2𝑇−1log2𝑁) +𝑂(log2𝑁),

где 𝜁𝜁0 (mod𝑑/ℎ1) 𝜂𝜂0 (mod𝑞/ℎ2) = 𝜒̃𝜒0 (mod𝑑𝑞/ℎ ), 𝜁 и 𝜂 — примитивные характеры и

𝛿𝑞 :=

{︂
1, если существует 𝜒̃ (mod𝑟) и 𝑟 | (𝑑𝑞/ℎ),
0, в противном случае.

Так как |𝜆| ≪ 𝜏/𝑞 и |𝜆|𝑁 < 𝑇 1/4𝑞−1, то тривиально получаем следующую оценку:∑︀
𝜂 (mod 𝑞/ℎ2)

|𝐺𝑖(𝑎, 𝜂, 𝑞)| ≪ 𝜙(𝑞/ℎ2)𝜙(𝑞), |𝐺𝑖 (𝑎, 𝜒, 𝑞)| ⩽
∑︀

(𝑐,𝑞)=1
𝑐≡𝑏𝑖( mod 𝑞)

⃒⃒⃒
𝑒
(︁
𝑎𝑐2

𝑞

)︁⃒⃒⃒
|𝜒 (𝑐)| ⩽𝜙 (𝑞).

Используя это и (3), можно оценить остаток следующим образом.
≪ 𝜙(𝑞)𝑇 1/4𝑞−1𝑁1𝑇

−1log2𝑁 ≪ 𝑁1𝑇
−3/4log2𝑁. Таким образом, для 𝛼 = 𝑎/𝑞 + 𝜆 ∈m (𝑎, 𝑞)

имеем следующего:

𝑆𝑖 (𝛼) = 𝜙−1 (𝑑/ℎ1 )𝜙−1 (𝑞/ℎ2 )𝐻𝑖 (𝑎, 𝑞, 𝜆) +𝑂
(︁
𝑁1𝑇

−3/4log2𝑁
)︁
. (12)

где

𝐻𝑖 (𝑎, 𝑞, 𝜆) := 𝐺𝑖(𝑎, 𝜂0, 𝑞)𝐼(𝜆)− 𝛿𝑞𝜁𝜁0 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂𝜂0, 𝑞)𝐼(𝜆)− 𝐹𝑖 (𝑎, 𝑞, 𝜆) (13)

𝐹𝑖 (𝑎, 𝑞, 𝜆) :=
∑︁

𝜁 (mod 𝑑/ℎ1)𝜂 (mod 𝑞/ℎ2)

𝜁 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂, 𝑞)𝐼(𝜁𝜂, 𝜆). (14)

Согласно лемме 3.3. а) работы [4], имеем 𝜙−1 (𝑑/ℎ1 )𝜙−1 (𝑞/ℎ2 )𝐻𝑖 (𝑎, 𝑞, 𝜆)≪ 𝜙 (𝑞)𝑁1. Учиты-
вая это и (12) из (6) получим

ℛ1 (𝑛) =
∑︁
𝑞⩽𝑄

1

𝜙4
(︁

𝑑
ℎ1

)︁
𝜙4
(︁

𝑞
ℎ2

)︁ ∑︁
(𝑎,𝑞)=1

𝜏/𝑞∫︁
−𝜏/𝑞

𝑒

(︂
−𝑛
(︂
𝑎

𝑞
+ 𝜆

)︂)︂ 4∏︁
𝑖=1

𝐻𝑖 (𝑎, 𝑞, 𝜆)𝑑𝜆+𝑂

(︂
𝑁𝑄4log2𝑁

𝑇 1/2

)︂
.

В произведении
4∏︀

𝑖=1
𝐻𝑖 (𝑎, 𝑞, 𝜆) содержится (𝜙 (𝑑𝑞/ℎ) + 2)4 слагаемых. Каждое из этих слагае-

мых представляет собой
4∏︀

𝑖=1
𝐸𝑖, где 𝐸𝑖 принимает одно из следующих значений: 𝐺𝑖 (𝑞) 𝐼 (𝜆),

−𝛿𝑞𝜁 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂𝜂0, 𝑞)𝐼(𝜆) или −𝜁 (𝑏𝑖)𝐺𝑖(𝑎, 𝜂, 𝑞)𝐼 (𝜁𝜂, 𝜆) Используя оценки для 𝐼 (𝜆), 𝐼 (𝜆) и
𝐼 (𝜒, 𝜆) из пункта a) леммы 3.3 в [4], и учитывая, что |𝜆| > 𝜏/𝑞 > 𝐿−1, видим, что среди
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этих оценок самой слабой является оценка ≪ 𝑁1/2(𝐿 |𝜆|)−1/2. Тогда, на основании пункта b)
леммы 3.3 из [4] и неравенства Коши, получаем

∫︁
𝑅∖[−𝜏/𝑞, 𝜏/𝑞 ]

4∏︁
𝑖=1

𝐸𝑖𝑑𝜆≪ 𝜙2 (𝑞) [𝜏/𝑞 ]−1

∞∫︁
−∞

|𝐸1𝐸2|𝑑𝜆≪ 𝜙4 (𝑞) [𝜏/𝑞 ]−1,

поскольку

|𝐸𝑖| ≪ |𝐺𝑖 (𝑞) 𝐼 (𝜆)| ≪ 𝜙 (𝑞)𝑁1/2(𝐿 |𝜆|)−1/2 ≪ 𝜙 (𝑞) (𝜏/𝑞)−1/2.

Поэтому имеем оценку

∑︁
𝑞⩽𝑄

𝜙−4 (𝑑/ℎ1 )𝜙−4 (𝑞/ℎ2 )
∑︁

(𝑎,𝑞)=1

∫︁
𝑅∖[−𝜏/𝑞, 𝜏/𝑞 ]

𝑒 (−𝑛𝜆)
4∏︁

𝑖=1

𝐻𝑖 (𝑎, 𝑞, 𝜆)𝑑𝜆≪ 𝑁𝑄−1.

Таким образом,

ℛ1 (𝑛) =
∑︁
𝑞⩽𝑄

1

𝜙4
(︁

𝑑
ℎ1

)︁
𝜙4
(︁

𝑞
ℎ2

)︁ ∑︁
(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝑎)

∞∫︁
−∞

𝑒 (−𝑛𝜆)
4∏︁

𝑖=1

𝐻𝑖 (𝑎, 𝑞, 𝜆)𝑑𝜆+𝑂
(︀
𝑁𝑄−1

)︀
. (15)

4. Особый ряд и особый интеграл задачи

Для исследования особого ряда нам необходимо изучить следующие суммы :

𝑍 (𝑞) := 𝑍 (𝑞, 𝜂1, ..., 𝜂4) :=
∑︁

(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝑎)

4∏︁
𝑖=1

𝐺𝑖 (𝑎, 𝜂𝑖, 𝑞), (16)

𝑌 (𝑞) := 𝑌 (𝑞, 𝜂1, ..., 𝜂4) :=

𝑞∑︁
𝑎=1

𝑒𝑞 (−𝑛𝑎)
4∏︁

𝑖=1

𝐺𝑖 (𝑎, 𝜂𝑖, 𝑞), (17)

где 𝜂𝑖 характер по модулю 𝑞/ℎ2 (𝑞). (17) можно записать в следующем виде:

𝑌 (𝑞, 𝜂1, ..., 𝜂4) = 𝑞
∑︁
(𝑞)

𝜂1 (𝑐1) · · · 𝜂4 (𝑐4). (18)

Здесь запись
∑︀
(𝑞)

− означает суммирование по всем 𝑐1, ... , 𝑐4, удовлетворяющим условиям

1 ⩽ 𝑐1, ... , 𝑐4 ⩽ 𝑞, 𝑐𝑖 ≡ 𝑏𝑖 (mod (𝑑, 𝑞)) , (𝑐𝑖, 𝑞) = 1,
4∑︁

𝑖=1

𝑐2𝑖 ≡ 𝑛 (mod𝑞). (19)

Пусть𝑁 (𝑞)- количество решений сравнения, удовлетворяющие условию (19). Из работы Jianya
Liu и Ming-Chit Liu [3] следует, что если 𝑛 ≡ 4(mod24) и 𝑛 удовлетворяет условию (2), то для
всех 𝑞 выполняется неравенство 𝑁 (𝑞) ⩾ 1. Если все 𝜂𝑖 являются главными характерами, тогда
из (18) получим

𝑌 (𝑞, 𝜂0, ..., 𝜂0) = 𝑞𝑁 (𝑞) . (20)

Кроме того, мы обозначим

𝐴 (𝑞) : = 𝜙−4
(︀
𝑞(𝑑, 𝑞)⊙/ℎ

)︀
𝑍 (𝑞, 𝜂0, ..., 𝜂0) , (21)
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где (𝑑, 𝑞)⊙— имеет те же простые делители, что (𝑑, 𝑞) и (𝑑, 𝑞)⊙
⃦⃦
𝑑 что означает: если 𝑝𝛼‖ (𝑑, 𝑞)⊙

то 𝑝𝛼‖ 𝑑.
Лемма 4.1. Для любого положительного целого числа 𝑞 справедлива оценка

𝜙−4
(︁

𝑑𝑞
ℎ(𝑞)

)︁
𝑍 (𝑞)≪ ℎ4(𝑞)

𝑑4
𝑞−1ℒ−4, где ℒ = log log 𝑑𝑞

ℎ(𝑞)

Доказательство. Предположим, что 𝑞 =
∏︀
𝑝|𝑞
𝑝𝛽𝑝 является разложением числа 𝑞 на простые

множители. Тогда, из леммы 4.1 работы [4], учитывая, что функция 𝑍 (𝑞) является мульти-
пликативной функцией получим:

|𝑍 (𝑞)| =
∏︁
𝑝|𝑞

⃒⃒⃒⃒
⃒⃒⃒ ∑︁
(𝑎,𝑝𝛽𝑝)=1

𝑒

(︂
−𝑛𝑎
𝛽𝑝

)︂ 4∏︁
𝑖=1

𝐺𝑖

(︁
𝑎, 𝜂𝑖, 𝑝

𝛽𝑝

)︁⃒⃒⃒⃒⃒⃒⃒ ⩽∏︁
𝑝|𝑞

𝜙
(︁
𝑝𝛽𝑝

)︁ 4∏︁
𝑖=1

2 (2, 𝑝) 𝑝
𝛽𝑝
2 ≪ 𝑞3.

Теперь принимая во вниманию, что 𝜙 (𝑞)≫ 𝑞/ log log 𝑞 получим утверждение леммы.
Если в лемме 4.4 работы [4] положить 𝜒1 = ... = 𝜒4 = 𝜒0 и 𝛽 = 0, то получим следующее.
Следствие 4.2. Пусть 𝑁 (𝑞), 𝐴 (𝑞) и 𝛼 = 𝛼 (𝑝) определены соответственно, как в (21),

(20) и лемме 4.4 из работы [4]. Тогда справедливы следующие утверждения:
a) Если 𝑝 ⩾ 3, 𝑡 ⩾ 1 + 𝛼, то 𝐴

(︀
𝑝𝑡
)︀

= 0 и если 𝑡 ⩾ 2 + max {2, 𝛼}, то 𝐴
(︀
2𝑡
)︀

= 0;
b) Если 𝑝 ⩾ 3, 𝑡 ⩾ 𝛼, то 𝑝𝑡𝜙−4

(︀
𝑝𝑡
)︀
𝑁
(︀
𝑝𝑡
)︀

= 𝑝𝛼𝜙−4 (𝑝𝛼)𝑁 (𝑝𝛼) ;

c) 𝑡 ⩾ 𝛼′, 𝑎′ = 1 + max {2, 𝛼}, то 2𝑡𝜙−4
(︀
2𝑡
)︀
𝑁
(︀
2𝑡
)︀

= 2𝛼
′
𝜙−4

(︁
𝑝𝛼

′
)︁
𝑁
(︁
𝑝𝛼

′
)︁
.

Далее, обозначим

𝑠 (𝑝) :=
∑︁

0⩽𝑡<𝜃+max{𝜃,𝛼(𝑝)}

𝐴
(︀
𝑝𝑡
)︀

= 𝜙−4
(︁
𝜎
(︁
𝑝𝛼(𝑝)

)︁
𝑝𝛼(𝑝)

)︁
𝑁
(︁
𝜎
(︁
𝑝𝛼(𝑝)

)︁
𝑝𝛼(𝑝)

)︁
𝜎
(︁
𝑝𝛼(𝑝)

)︁
𝑝𝛼(𝑝). (22)

Здесь 𝜎 (𝑞) определено в (2). Теперь упростим 𝑠 (𝑝).
Лемма 4.3. Справедливы следующие утверждения:

a) если 𝑝 ̸= 2 и 𝛼 = 𝛼 (𝑝) ⩾ 1, то 𝑠(𝑝) = 𝜙−4 (𝑝𝛼) 𝑝𝛼;
b)

𝑠(2) =

⎧⎨⎩23, если 𝛼 (2) = 1;

𝜙−5
(︁

2𝛼(2)
)︁

2𝛼(2)+1, если 𝛼 (2) ⩾ 2.

Поэтому 𝑠 (2) = 𝜙−5 (2𝛼) 2𝛼𝜎 (𝑑)
c) если 𝑝 ̸= 2, 𝑝 ∤ 𝑑, то 𝑠 (𝑝) = 1 +𝐴 (𝑝), если, 2 ∤ 𝑑 то 𝑠 (2) = 1 +𝐴 (2) +𝐴

(︀
22
)︀

+𝐴
(︀
23
)︀
.

Доказательство. (a) В силу (22) имеем

𝑠 (𝑝) =
∑︁

0⩽𝑡<𝜃+max{𝜃,𝛼(𝑝)}

𝐴
(︀
𝑝𝑡
)︀

=
∑︁

0⩽𝑡⩽𝜃+max{𝜃,𝛼(𝑝)}

𝜙−4
(︁
𝑝𝑡
(︀
𝑑, 𝑝𝑡

)︀⊙
/ℎ
)︁
𝑍
(︀
𝑝𝑡, 𝜂0, ..., 𝜂0

)︀
=

=
∑︁

0⩽𝑡⩽𝜃+max{𝜃,𝛼(𝑝)}

𝜙−4 (𝑝𝛼)𝑍
(︀
𝑝𝑡
)︀

= 𝜙−4 (𝑝𝛼) 𝑝𝛼

b) Аналогичными рассуждениями при 𝑡 ⩽ 𝛼 получим, что
𝐴
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
2𝑡
)︀
. Если 𝛼 = 1 остаётся рассмотреть случаи 𝑡 = 2, 3.

Поскольку
∑︀

(𝑎,𝑝𝑡)=1

=
𝑝𝑡∑︀
𝑎=1
−

𝑝𝑡∑︀
𝑎=1
𝑝|𝑎

, то

𝐴
(︀
2𝑡
)︀

= 𝜙−4
(︀
2𝑡
)︀ ∑︁
(𝑎,2𝑡)=1

𝑒

(︂
−𝑛𝑎
2𝑡

)︂ 4∏︁
𝑖=1

⎛⎜⎜⎝ 2𝑡∑︁
𝑐𝑖=1

𝑐𝑖≡𝑏𝑖( mod 2)

𝑒

(︂
𝑎𝑐2𝑖
2𝑡

)︂⎞⎟⎟⎠ =
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= 𝜙−4
(︀
2𝑡
)︀ (︀

2𝑡𝑁
(︀
2𝑡
)︀
− 2𝑡−124𝑁

(︀
2𝑡−1

)︀)︀
= 𝜙−4

(︀
2𝑡
)︀

2𝑡𝑁
(︀
2𝑡
)︀
− 𝜙−4

(︀
2𝑡−1

)︀
2𝑡−1𝑁

(︀
2𝑡−1

)︀
,

где 𝑁
(︀
2𝑡
)︀
обозначает количество решений

{︃
𝑐21 + ...+ 𝑐24 ≡ 𝑛

(︀
mod2𝑡

)︀
𝑐𝑖 ≡ 𝑏𝑖 (mod2)

системы, которые удо-

влетворяют условию 1 ⩽ 𝑐𝑖 ⩽ 2𝑡, (𝑐𝑖, 2) = 1 .
Не посредственным вычислением видим, что 𝑁

(︀
23
)︀

= 28, 𝑁 (2) = 1, то есть количество чисел
𝑐𝑖, удовлетворяющих условиям 1 ⩽ 𝑐𝑖 ⩽ 23 и

(︀
𝑐𝑖, 2

3
)︀

= 1, равно 𝜙
(︀
23
)︀

= 22 = 4. Поскольку в
сравнение 𝑐21 + ...+ 𝑐24 ≡ 𝑛

(︀
mod2𝑡

)︀
число неизвестных равно четырём, перебором возможных

значений 𝑐𝑖 и их комбинируя находим, что число решений данного сравнения равно 44 = 28.
Сравнение 𝑐𝑖 ≡ 𝑏𝑖 (mod2) при условии (𝑐𝑖, 2) = 1 имеет единственное решение, следователь-
но, мы учли значения 𝑐𝑖 только один раз, поэтому 𝑁

(︀
23
)︀

= 28. Аналогичными рассужде-
ниями можно прийти к тому, что 𝑁 (2) = 1. Тогда, учитывая, что при 𝑡 ⩽ 𝛼 выполняется
𝐴
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
2𝑡
)︀
, мы имеем:

при 𝑡 = 0, то 𝐴
(︀
20
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
20
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
20
)︀

= 𝜙−4
(︀
21
)︀
𝜙
(︀
20
)︀

= 1,
при 𝑡 = 1, то 𝐴

(︀
21
)︀

= 𝜙−4
(︀
21
)︀
𝜙
(︀
21
)︀

= 𝜙−4
(︀
21
)︀
𝜙
(︀
21
)︀

= 1.
если учитывать, что при 𝑡 > 𝛼 выполняется 𝐴

(︀
2𝑡
)︀

= 𝜙−4
(︀
2𝑡
)︀

2𝑡𝑁
(︀
2𝑡
)︀
−𝜙−4

(︀
2𝑡−1

)︀
2𝑡−1𝑁

(︀
2𝑡−1

)︀
,

то получаем
𝑡 = 2, 𝐴

(︀
22
)︀

= 𝜙−4
(︀
22
)︀

22𝑁
(︀
22
)︀
− 𝜙−4

(︀
21
)︀

21𝑁
(︀
21
)︀
,

𝑡 = 3, 𝐴
(︀
23
)︀

= 𝜙−4
(︀
23
)︀

23𝑁
(︀
23
)︀
− 𝜙−4

(︀
22
)︀

22𝑁
(︀
22
)︀
.

Обобщая это, получаем следующую оценку для 𝑠 (2).

𝑠 (2) = 1+𝐴 (2)+𝐴
(︀
22
)︀

+𝐴
(︀
23
)︀

= 1+1−𝜙−4 (2) 2𝑁 (2)+𝜙−4
(︀
23
)︀

23𝑁
(︀
23
)︀

= 2−2+ 2328

(22)4
= 23.

Если 𝛼 > 1, остается рассмотреть случай 𝑡 = 𝛼+ 1. В этом случае имеем:

𝐴
(︀
2𝛼+1

)︀
= 𝜙−4

(︀
2𝛼+1

)︀ ∑︁
(𝑎,2𝛼+1)=1

𝑒

(︂
−𝑛𝑎
2𝛼+1

)︂ 4∏︁
𝑖=1

⎛⎜⎜⎝ 2𝛼+1∑︁
𝑐𝑖=1

𝑐𝑖≡𝑏𝑖( mod 2𝛼)

𝑒

(︂
𝑎𝑐2𝑖

2𝛼+1

)︂⎞⎟⎟⎠ =

𝜙−4
(︀
2𝛼+1

)︀ (︀
2𝛼+1𝑁

(︀
2𝛼+1

)︀
− 24𝑌 (2𝛼)

)︀
= 𝜙−4

(︀
2𝛼+1

)︀
2𝛼+1𝑁

(︀
2𝛼+1

)︀
− 𝜙−4 (2𝛼) 2𝛼,

где 𝑁
(︀
2𝛼+1

)︀
обозначает количество решений

{︃
𝑐21 + ...+ 𝑐24 ≡ 𝑛

(︀
mod2𝛼+1

)︀
𝑐𝑖 ≡ 𝑏𝑖 (mod2𝛼)

системы, которые

удовлетворяют условию 1 ⩽ 𝑐𝑖 ⩽ 2𝛼+1, (𝑐𝑖, 2) = 1 . Следуя тем же рассуждениям, что при
вычислении 𝑁

(︀
23
)︀
, мы получим 𝑁

(︀
2𝛼+1

)︀
= 24. Если учитывать, что при 𝑡 ⩽ 𝛼 выполняется

𝐴
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
2𝑡
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
2𝑡
)︀
, то

𝑡 = 0, 𝐴
(︀
20
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
20
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
20
)︀

= 𝜙−4 (2𝛼),
𝑡 = 1, 𝐴

(︀
21
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
21
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
21
)︀

= 𝜙−4 (2𝛼),
𝑡 = 2, 𝐴

(︀
22
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
22
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
22
)︀

= 𝜙−4 (2𝛼)
(︀
22 − 2

)︀
,

𝑡 = 3, 𝐴
(︀
23
)︀

= 𝜙−4 (2𝛼)𝑍
(︀
23
)︀

= 𝜙−4 (2𝛼)𝜙
(︀
23
)︀

= 𝜙−4 (2𝛼)
(︀
23 − 22

)︀
,

. . .
𝑡 = 𝛼− 1, 𝐴

(︀
2𝛼−1

)︀
= 𝜙−4 (2𝛼)𝑍

(︀
2𝛼−1

)︀
= 𝜙−4 (2𝛼)𝜙

(︀
2𝛼−1

)︀
= 𝜙−4 (2𝛼)

(︀
2𝛼−1 − 2𝛼

)︀
,

𝑡 = 𝛼, 𝐴 (2𝛼) = 𝜙−4 (2𝛼)𝑍 (2𝛼) = 𝜙−4 (2𝛼)𝜙 (2𝛼) = 𝜙−4 (2𝛼)
(︀
2𝛼 − 2𝛼−1

)︀
,

Если учитывать, что при 𝑡 > 𝛼 выполняется
𝐴
(︀
2𝑡
)︀

= 𝜙−4
(︀
2𝑡
)︀

2𝑡𝑁
(︀
2𝑡
)︀
− 𝜙−4

(︀
2𝑡−1

)︀
2𝑡−1𝑁

(︀
2𝑡−1

)︀
, то получаем

𝑡 = 𝛼+ 1, 𝐴
(︀
2𝛼+1

)︀
= 𝜙−4

(︀
2𝛼+1

)︀
2𝛼+1𝑁

(︀
2𝛼+1

)︀
− 𝜙−4 (2𝛼) 2𝛼

Обобщая это, получаем следующую оценку для 𝑠 (2).
𝑠 (2) = 𝜙−4 (2𝛼) +𝐴 (2) + ...+𝐴 (2𝛼) +𝐴

(︀
2𝛼+1

)︀
= 𝜙−4 (2𝛼) 2𝛼+1.

Утверждение (c) непосредственно следует из равенства (22) и следствия 4.2. В самое деле.
Если 𝑝 ̸= 2, 𝑝 ∤ 𝑑, то 𝑠 (𝑝) = 1 + 𝐴 (𝑝), 0 ⩽ 𝑡 < 𝜃 + max {𝜃, 𝛼 (𝑝)}, 𝜃 = 1 + [2/𝑝 ] = 1 + 0 = 1,
0 ⩽ 𝑡 < 1 + max {1, 𝛼} . По следствию 4.2 (a), при 𝑝 ⩾ 3, 𝑡 ⩾ 1 + 𝛼, так как 𝐴

(︀
𝑝𝑡
)︀

= 0, имеем:



62 И. Аллаков, О. Ш. Имамов

𝑠 (𝑝) =
∑︀

0⩽𝑡<1+𝛼
𝐴
(︀
𝑝𝑡
)︀

= 1 + 𝐴 (𝑝) . Если 2 ∤ 𝑑, то 𝑠 (𝑝) = 1 + 𝐴 (𝑝), 0 ⩽ 𝑡 < 𝜃 + max {𝜃, 𝛼 (𝑝)},

𝜃 = 1 + [2/2 ] = 1 + 1 = 2, 0 ⩽ 𝑡 < 2 + max {2, 𝛼} . По следствию 4.2 (a), при 𝑡 ⩾ 2 + max {2, 𝛼}
так как 𝐴

(︀
2𝑡
)︀

= 0, имеем: 𝑠 (2) =
∑︀

0⩽𝑡<2+max{2,𝛼}
𝐴
(︀
2𝑡
)︀

= 1 +𝐴 (2) +𝐴
(︀
22
)︀

+𝐴
(︀
23
)︀

Лемма 4.4. Справедливы следующие утверждения:
(a) если 𝑝 ∤ 𝑑 то, 𝐴 (𝑝) < 9𝑝−2;
(b)

∏︀
𝑝
𝑠 (𝑝) абсолютно сходящийся и

∏︀
𝑝
𝑠 (𝑝)≫ 𝜙−4 (𝑑) 𝑑𝜎 (𝑑)

(c)
∞∑︀
𝑞=1

(𝑞,𝑟)=1

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞; 𝜂0, ..., 𝜂0) =
∏︀
𝑝∤𝑟
𝑠 (𝑝) = 𝜎(𝑑/(𝑑,𝑟) )𝑑/(𝑑,𝑟)

𝜙4(𝑑/(𝑑,𝑟) )

∏︀
𝑝∤𝑟
𝑝∤𝑑

𝑠 (𝑝);

(d)
∑︀
𝑞⩾𝑦

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞; 𝜂0, ..., 𝜂0)≪ 𝑦−1𝑑−2log9 (𝑦 + 1) .

Доказательство. (a) Если 𝑝 ∤ 𝑑, то ℎ (𝑝) = 1. Пусть 𝑔 квадратные невычет по модулю 𝑝.
Тогда

𝐴 (𝑝) = 𝜙−4 (𝑝)

𝑝−1∑︁
𝑎=1

(︃
𝑒

(︂
−𝑛𝑎
𝑝

)︂ 4∏︁
𝑖=1

(︃
𝑝−1∑︁
𝑐𝑖=1

𝑒

(︂
𝑎𝑐2𝑖
𝑝

)︂)︃)︃
=

=
1

2
𝜙−4 (𝑝)

𝑝−1∑︁
𝑎=1

(︃
𝑒

(︂
−𝑛𝑎2

𝑝

)︂ 4∏︁
𝑖=1

𝐶𝑝

(︀
𝑎2
)︀

+ 𝑒

(︂
−𝑛𝑔𝑎2

𝑝

)︂ 4∏︁
𝑖=1

𝐶𝑝

(︀
𝑔𝑎2
)︀)︃
.

Здесь 𝐶𝑝 (𝑎) =
𝑝−1∑︀
𝑐=1

𝑒
(︁
𝑎𝑐2

𝑝

)︁
. Далее, рассуждаю как доказательстве леммы 9 в работы [10] нахо-

дим

𝐴 (𝑝) =
1

2
𝜙−4 (𝑝)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2 (𝑝− 1)
(︀
𝜆4 + 6𝜆2 + 1

)︀
, если 𝑝 |𝑛,

− 2
(︀
𝜆4 + 10𝜆2 + 1

)︀
, если 𝑝 ∤ 𝑛 и

(︂
𝑛

𝑝

)︂
=1,

2
(︀
3𝜆4 − 2𝜆2 − 1

)︀
если 𝑝 ∤ 𝑛 и

(︂
𝑛

𝑝

)︂
=− 1,

где
(︁
𝑛
𝑝

)︁
− символ Лежандра и

𝜆 =

⎧⎪⎨⎪⎩
√
𝑝 , если 𝑝 ≡ 1 (mod4) ,

0 , если 𝑝 ≡ 2 (mod4) ,

𝑖
√
𝑝, если 𝑝 ≡ −1 (mod4) .

Следовательно, при 𝑝 ̸= 2, 𝑝 ∤ 𝑑 выполняется неравенство |𝐴 (𝑝)| < 9𝑝−2.
(b) На основании леммы 4.3 и леммы 4.4 (a), имеем;∏︀
𝑝
𝑠 (𝑝) =

∏︀
𝑝|𝑑
𝑠 (𝑝)

∏︀
𝑝∤𝑑

(1 +𝐴 (𝑝))≫ 𝜎 (𝑑)𝜙−4 (𝑑) 𝑑.

Сходимость доказывается аналогичным образом.

(c) Пусть 𝑞 = 𝑞′𝑞′′, (𝑞′, 𝑞′′) = 1 и 𝑞′| 𝑑⊙, (𝑞′′, 𝑑) = 1. В силу мультипликативности 𝑍 (𝑞)
имеем

∞∑︁
𝑞=1

(𝑞,𝑟)=1

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞) =

⎛⎜⎜⎜⎝
∞∑︁

𝑞′=1, (𝑞′,𝑟)=1

𝑞′|𝑑⊙

𝜙−4
(︀
𝑑𝑞′/ℎ

)︀
𝑍
(︀
𝑞′
)︀
⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

∞∑︁
𝑞′′=1, (𝑞′′,𝑟)=1

(𝑞′′,𝑑)=1

𝜙−4
(︀
𝑑𝑞′′/ℎ

)︀
𝑍
(︀
𝑞′′
)︀
⎞⎟⎟⎟⎠ .

Отсюда используя следствия 4.2, равенства (22) и леммы 4.3 получим утверждение с).
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(d) Пусть 𝛿 = (log (𝑦 + 1))−1. Поскольку 1 + 𝑛𝑥≪ (1− 𝑥)−𝑛 и 𝜁 (1 + 𝛿) ∼ 𝛿−1 находим

∑︁
𝑞⩾𝑦

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞) ⩽
∑︁
𝑞⩾𝑦

|𝐴 (𝑞)| ≪ 𝑦−1 𝑑

𝜙4 (𝑑)

∏︁
𝑝|𝑑

𝑝𝛼(𝑝)
∏︁
𝑝

(︁
1− 𝑝−1−𝛿

)︁−9
≪ 𝑦−1 𝑑2

𝜙4 (𝑑)
𝛿−9.

Лемма 4.5. Пусть 𝑟𝑖|
(︁
𝑑𝑞
ℎ

)︁
, 𝑖 = 1, ..., 4 и 𝜒𝑖 (mod𝑟𝑖) = 𝜁𝑖

(︁
mod

(︁
𝑟𝑖,

𝑞
ℎ1

)︁)︁
𝜂𝑖

(︁
mod

(︁
𝑟𝑖,

𝑞
ℎ2

)︁)︁
все примитивные характеры, и пусть 𝑟 = [𝑟1, ..., 𝑟4] , тогда справедливы следующие утвер-
ждения:

(a)
∑︀
𝑞⩽𝑄

𝑟|(𝑑𝑞/ℎ )

⃒⃒⃒⃒
𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞, 𝜂1𝜂0, ..., 𝜂4𝜂0)

4∏︀
𝑖=1

𝜁𝑖𝜁0 (𝑏𝑖)

⃒⃒⃒⃒
≪ 𝑟−1ℒ−4 ;

(b) Пусть 𝛼 (𝑝) определено так же, как в лемме 4.4 из работе [4], и пусть 𝑟𝑖 = 𝑟
(1)
𝑖 𝑟

(2)
𝑖 ,(︁

𝑟
(1)
𝑖 , 𝑟

(2)
𝑖

)︁
= 1, причем выполняется 𝑝𝛽

⃦⃦
𝑟
(1)
𝑖 , тогда 𝛽 ⩽ 𝛼 (𝑝), а если 𝑝𝛽

⃦⃦
𝑟
(2)
𝑖 , то 𝛽 ⩽ 𝛼 (𝑝).

Если 𝑑 = 𝑑1𝑑2, (𝑑1, 𝑑2) = 1, 𝑝𝛽
⃦⃦
𝑟 и 𝑝| 𝑑1, то 𝛽 ⩽ 𝛼 (𝑝). Если 𝑝𝛽

⃦⃦
𝑟 и 𝑝| 𝑑2, то 𝛽 > 𝛼 (𝑝). Если

𝑟(1) =
[︁
𝑟
(1)
1 , ..., 𝑟

(1)
4

]︁
и 𝜒𝑖 (mod𝑟𝑖) = 𝜒

(1)
𝑖

(︁
mod𝑟

(1)
𝑖

)︁
𝜒
(2)
𝑖

(︁
mod𝑟

(2)
𝑖

)︁
, то получаем:

ℱ :=
∑︁
𝑞⩽𝑄

𝑟|(𝑑𝑞/ℎ )

𝜙−4

(︂
𝑑𝑞

ℎ

)︂
𝑍 (𝑞, 𝜂1𝜂0, ..., 𝜂4𝜂0)

4∏︁
𝑖=1

𝜁𝑖𝜁0 (𝑏𝑖) =

=

4∏︁
𝑖=1

𝜒
(2)
𝑖 (𝑏𝑖) (mod𝑟2)

𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

·
𝑌
(︀
𝜎
(︀
𝑟(1)
)︀
𝑟(1)
)︀

𝜙4
(︀
𝜎
(︀
𝑟(1)
)︀
𝑟(1)
)︀ ∏︁

𝑝∤𝑑
𝑝∤𝑟

𝑠 (𝑝) +𝑂
(︀
𝑄−1log9𝑄

)︀
.

Доказательство. Утверждения (a) непосредственно следует из леммы 4.1. Докажем (b).
Воспользуемся мультипликативности 𝑍 (𝑞) и 𝑌 (𝑞). Пусть 𝑑 = 𝑑′𝑑′′, 𝑞 = 𝑞′𝑞′′, (𝑑′′, 𝑟) = 1,
(𝑞′′, 𝑟) = 1 и 𝑑′|𝑟⊙, 𝑞′|𝑟⊙. Здесь 𝑞| 𝑟⊙ означает, что каждый простой множитель 𝑞 является
делителем 𝑟. Для удобства обозначим ℎ′′ = ℎ′′ (𝑞), ℎ′ = ℎ′ (𝑞), ℎ′′𝑖 = ℎ′′𝑖 (𝑞), ℎ′𝑖 = ℎ′𝑖 (𝑞). В
соответствии с (10) и тем, что 𝑟𝑖| (𝑑𝑞/ℎ ), имеем:

ℱ :=
∑︁

𝑞′⩽𝑄, 𝑟′|𝑑′𝑞′/ℎ′

𝑞′|𝑟∞, 𝑑′|𝑟∞

𝜙−4

(︂
𝑑′𝑞′

ℎ′

)︂
𝑍
(︀
𝑞′, 𝜂1𝜂0, ..., 𝜂4𝜂0

)︀ 4∏︁
𝑖=1

𝜁𝑖𝜁0 (𝑏𝑖)×

×
∑︁
𝑞′′⩽𝑄/𝑞′

(𝑞′′,𝑟)=1, (𝑑′′,𝑟)=1

𝜙−4

(︂
𝑑′′𝑞′′

ℎ′′

)︂
𝑍
(︀
𝑞′′, 𝜂0, ..., 𝜂0

)︀
=: ℱ1ℱ2. (23)

В силу (c) и (d) леммы 4.4, имеем:

ℱ2 =

⎛⎜⎜⎜⎜⎜⎜⎝
∞∑︁
𝑞′′=1

(𝑞′′,𝑟)=1,
(𝑑′′,𝑟)=1

−
∑︁

𝑞′′⩾𝑄/𝑞′

⎞⎟⎟⎟⎟⎟⎟⎠
1

𝜙4
(︁
𝑑′′𝑞′′

ℎ′′

)︁𝑍 (︀𝑞′′, 𝜂0, ..., 𝜂0)︀ =
𝜎 (𝑑′′) 𝑑′′

𝜙4 (𝑑′′)

∏︁
𝑝∤𝑟
𝑝∤𝑑′′

𝑠 (𝑝) +𝑂

(︂
𝑞′log9𝑄

𝑄𝑑′′2

)︂
.

(24)
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Таким образом, согласно лемме 4.1 и пункту (a) леммы 4.5, из равенства (23) и (24) следует

ℱ = ℱ1𝜙
−4
(︀
𝑑′′
)︀
𝜎
(︀
𝑑′′
)︀
𝑑′′
∏︁
𝑝∤𝑟
𝑝∤𝑑′′

𝑠 (𝑝) +𝑂

⎛⎜⎜⎜⎝ ∑︁
𝑞′⩽𝑄

𝑟|𝑑′𝑞′/ℎ′

𝑞′𝑄−1
(︀
𝑑′′
)︀−2

log9𝑄
(︀
𝑞′
)︀−1ℒ−4

⎞⎟⎟⎟⎠ =

= ℱ1𝜙
−4
(︀
𝑑′′
)︀
𝜎
(︀
𝑑′′
)︀
𝑑′′
∏︁
𝑝∤𝑟
𝑝∤𝑑′′

𝑠 (𝑝) +𝑂
(︁
𝑄−1

(︀
𝑑′′
)︀−2

𝜏 (𝑑) log9𝑄
)︁
. (25)

Поскольку далее в доказательстве будет показано, что число 𝑞′ будет меньше функции числа
делителей 𝜏 (𝑑). Предположим, что 𝑞′ = 𝑚′𝑚′′, где (𝑚′′, 𝑑) = 1 и 𝑚′| (𝑑′)⊙, а также 𝑟𝑖 = 𝑟′𝑖𝑟

′′
𝑖,

при этом (𝑟′′, 𝑑) = 1 и 𝑟′| (𝑑′)⊙. Понятно, что 𝑚′| (𝑟, 𝑑)⊙ и выполняются следующие соотноше-
ния: 𝜁𝑖 (mod (𝑟𝑖, 𝑞

′/ℎ′1 )) = 𝜁 ′𝑖 (mod (𝑟′𝑖, 𝑞
′/ℎ′1 )), 𝜂𝑖 (mod (𝑟𝑖, 𝑞

′/ℎ′2 )) =
= 𝜂′𝑖 (mod (𝑟′𝑖,𝑚

′/ℎ2 (𝑚′) )) 𝜂′′𝑖 (mod (𝑟′′𝑖,𝑚
′′/ℎ2 (𝑚′′) )) Воспользовавшись тем, что 𝑍 (𝑞) яв-

ляется мультипликативной функцией, получаем:

ℱ1 =
∑︁

𝑚′′⩽𝑄
𝑟′′|𝑚′′

𝜙−4
(︀
𝑚′′)︀𝑍 (︀𝑚′′, 𝜂′′1, ..., 𝜂

′′
4

)︀ 4∏︁
𝑖=1

𝜁𝑖𝜁0 (𝑏𝑖)×

×
∑︁
𝑞′⩽𝑄

𝑟′|𝑚′𝑑′/ℎ′

𝜙−4

(︂
𝑑′𝑞′

ℎ′

)︂
𝑍
(︀
𝑚′, 𝜂′1𝜂0, ..., 𝜂

′
4𝜂0
)︀ 4∏︁
𝑖=1

𝜁 ′𝑖𝜁0 (𝑏𝑖) =: 𝐺1𝐺2. (26)

В рассуждениях леммы 3.8 работы [15], используя (15), и на основании леммы 4.4 из работы
[4], получаем, что если выполняется условие 𝜎 (𝑟′′) 𝑟′′ ⩽ 𝑄, то 𝐺1 = 𝜙−4 (𝜎 (𝑟′′) 𝑟′′)𝑌 (𝜎 (𝑟′′) 𝑟′′).
В действительности, мы можем предположить, что 𝜎 (𝑟) 𝑟 ⩽ 𝑄 если же 𝜎 (𝑟) 𝑟 > 𝑄, то, на
основании леммы 4.1 и части (a) леммы 4.5, получаем оценки:
ℱ1 ≪ 𝑄−1ℒ, 𝜙−4 (𝜎 (𝑟′′) 𝑟′′)𝑌 (𝜎 (𝑟′′) 𝑟′′)𝐺2 ≪ (𝑟′𝑟′′)−1ℒ 2 ≪ 𝑄−1ℒ 2. Из этого и из (26) следует

ℱ1 = 𝜙−4
(︀
𝜎
(︀
𝑟′′
)︀
𝑟′′
)︀
𝑌
(︀
𝜎
(︀
𝑟′′
)︀
𝑟′′
)︀
𝐺2 +𝑂

(︀
𝑄−1ℒ 2

)︀
(27)

Кроме того, мы можем предположить, что 𝜎 (𝑟′) 𝑟′ ⩽ 𝑄/𝑚′′ ; в противном случае, если
𝜎 (𝑟′) 𝑟′ > 𝑄/𝑚′′ , то согласно части (a) леммы 4.5, имеем 𝐺2 ≪ 𝑄−1(𝑚′′)−1ℒ. Тогда, в си-
лу леммы 4.1, ℱ1 ≪

∑︀
𝑚′′⩽𝑄
𝑟′′|𝑚′′

𝑄−1ℒ 2 ≪ 𝑄−1ℒ 2, поскольку, как и в доказательстве леммы 3.8 из

работы [15], 𝑚′′ = 𝑢𝑟′′. Следовательно, сумма по 𝜎 (𝑟′) 𝑟′ > 𝑄/𝑚′′ входит в остаточный член.
Теперь упростим 𝐺2 при условии 𝜎 (𝑟′) 𝑟′ ⩽ 𝑄/𝑚′′ . Поскольку 𝑚′| (𝑑′)⊙ и 𝑚′| (𝑟′)⊙ явля-

ются выражениями для 𝑚′| (𝑟, 𝑑)⊙ |𝑟⊙ , 𝑑⊙, мы можем записать 𝑑′ = 𝑝𝛼1
1 · · · 𝑝

𝛼𝑡
𝑡 𝑟′ = 𝑝𝛽1

1 · · · 𝑝
𝛽𝑡
𝑡 ,

𝑚′ = 𝑝𝑠11 · · · 𝑝
𝑠𝑡
𝑡 . Здесь 𝑝

𝛼𝑖
𝑖 ‖ 𝑑, 𝑝

𝛽𝑖
𝑖

⃦⃦⃦
𝑟 va 𝛼𝑖, 𝛽𝑖 > 0. Из условия 𝑝𝛽𝑖

𝑖

⃒⃒⃒⃒
𝑝
𝑠𝑖
𝑖 𝑝

𝛼𝑖
𝑖

ℎ(𝑝𝑠𝑖𝑖 )
, если 𝛽𝑖 > 𝛼𝑖, то 𝑠𝑖 > 𝛽𝑖;

если 𝛽𝑖 ⩽ 𝛼𝑖, то 𝑠𝑖 ⩾ 0. Таким образом, мы получаем 𝜁 ′𝑖 (mod (𝑟′𝑖, 𝑑
′|ℎ1 (𝑚′))) =

=
∏︀

𝛽𝑗⩽𝛼𝑗

𝑠𝑗⩽𝛼𝑗

𝜁𝑖𝑗

(︁
mod𝑝

𝛽𝑗

𝑗

)︁
, 𝜂′𝑖 (mod (𝑟𝑖, 𝑚

′|ℎ2 (𝑚′))) =
∏︀

𝛽𝑗⩽𝛼𝑗
𝑠𝑗>𝛼𝑗

𝜂𝑖𝑗

(︁
mod𝑝

𝛽𝑗

𝑗

)︁ ∏︀
𝛽𝑗>𝛼𝑗

𝜂𝑖𝑗

(︁
mod𝑝

𝛽𝑗

𝑗

)︁
Пусть

𝑢∏︀
𝑗=1

𝜒𝑖𝑗

(︁
mod𝑝

𝛽𝑗

𝑗

)︁
= 𝜁 ′𝑖 𝜂

′
𝑖 (mod𝑟′𝑖), тогда можно записать

𝜒𝑖𝑗 =

⎧⎪⎨⎪⎩
𝜁𝑖𝑗 , если 𝛽𝑗 ⩽ 𝛼𝑗 , 𝑠𝑗 ⩽ 𝛼𝑗 ,

𝜂𝑖𝑗 , если 𝛽𝑗 ⩽ 𝛼𝑗 , 𝑠𝑗 > 𝛼𝑗 ,

𝜂𝑖𝑗 , если 𝛽𝑗 > 𝛼𝑗 .
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На основании лемм 4.2 и 4.4 работы [4], а также равенства (26), получаем

𝐺2 = 𝑊2

∏︁
𝑝𝑗 ̸=2
𝛽𝑗>𝛼𝑗

𝜙−4
(︁
𝑝
𝛽𝑗

𝑗

)︁
𝑌
(︁
𝑝
𝛽𝑗

𝑗 ; 𝜒1𝑗𝜂0, ..., 𝜒4𝑗𝜂0

)︁ ∏︁
𝑝𝑗 ̸=2
𝛽𝑗⩽𝛼𝑗

𝑊𝑝𝑗 (28)

Здесь 𝑊𝑝𝑗 = 𝜙−4
(︁
𝑝
𝛼𝑗

𝑗

)︁(︂ 𝛼𝑗∑︀
𝑡=0

𝑍
(︁
𝑝𝑡𝑗 ; 𝜂0, ..., 𝜂0

)︁ 4∏︀
𝑖=1

𝜒𝑖𝑗𝜁0 (𝑏𝑖)

)︂
и в силу пунктов (b) и (c) леммы

4.4 работы [4] имеем

𝑊2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, если 2 ∤ (𝑟, 𝑑) ,

𝜙−4
(︁

2𝛽2+1
)︁
𝑌
(︁

2𝛽2+1
)︁
, если 2| (𝑟, 𝑑) , 𝛽2 > 𝛼2 > 0,

𝜙−4 (2)

(︃
1∑︁

𝑡=0

𝑍
(︀
2𝑡; 𝜂0, ..., 𝜂0

)︀ 4∏︁
𝑖=1

𝜒𝑖2𝜁0 (𝑏𝑖)

)︃
+

+

3∑︁
𝑡=2

𝜙−4
(︀
2𝑡
)︀
𝑍
(︀
2𝑡; 𝜒12𝜂0, ..., 𝜒42𝜂0

)︀
, если 2| (𝑟, 𝑑) , 𝛽2 ⩽ 𝛼2 = 1,

𝜙−4 (2𝛼)

(︃
𝛼∑︁

𝑡=0

𝑍
(︀
2𝑡; 𝜂0, ..., 𝜂0

)︀ 4∏︁
𝑖=1

𝜒𝑖2𝜁0 (𝑏𝑖)

)︃
+

+ 𝜙−4
(︀
2𝛼+1

)︀
𝑍
(︀
2𝛼+1; 𝜒12𝜂0, ..., 𝜒42𝜂0

)︀
, если 2| (𝑟, 𝑑) , 𝛽2 ⩽ 𝛼2, 𝛼2 > 1.

Мы оцениваем 𝑊2 при 2| (𝑟, 𝑑), 𝛽2 ⩽ 𝛼2 и 𝑊𝑝𝑗 при 𝛽𝑗 ⩽ 𝛼𝑗 . Рассуждая аналогично доказатель-
ству леммы 4.4 из работы [4] и исходя из равенства (11), получаем, что при 𝑡 ⩽ 𝛼 (𝑝) и (𝑏𝑖, 𝑑) = 1

выполняется
4∏︀

𝑖=1
𝜁𝑖𝑗𝜁0 (𝑏𝑖)𝑍

(︁
𝑝𝑡𝑗

)︁
=

4∏︀
𝑖=1

𝜒𝑖𝑗 (𝑏𝑖)𝜙
(︀
𝑝𝑡
)︀
. Тогда при 𝑊𝑝𝑗 =

4∏︀
𝑖=1

𝜒𝑖𝑗 (𝑏𝑖)𝜙
−4
(︀
𝑝𝛼(𝑝)

)︀
𝑝𝛼(𝑝)

и 2| (𝑟, 𝑑) имеем следующее равенство:

𝑍
(︀
2𝛼2+1

)︀
=

∑︁
(𝛼, 2𝛼2+1)=1

𝑒
(︁
− 𝑛𝑎

2𝛼2+1

)︁ 4∏︁
𝑖=1

𝑒

(︂
𝑎𝑐2𝑖

2𝛼2+1

)︂
𝜒𝑖2𝜂0 (𝑐𝑖) =

= 𝑌
(︀
2𝛼2+1

)︀
− 2𝛼224

4∏︁
𝑖=1

𝜒𝑖2 (𝑏𝑖) =
(︀
2𝛼2+1𝑁

(︀
2𝛼2+1

)︀
− 2𝛼2+4

)︀ 4∏︁
𝑖=1

𝜒𝑖2 (𝑏𝑖).

Таким образом, при 𝛼2 > 1 из доказательства утверждения (b) леммы 4.3 видно, что

𝑁
(︀
2𝛼2+1

)︀
= 24 и следовательно, получаем 𝑊2 =

4∏︀
𝑖=1

𝜒𝑖2 (𝑏𝑖)𝜙
−4 (2𝛼2) 2𝛼2+1. Если 𝛼2 = 1, то

𝛽2 = 1, поскольку 0 < 𝛽2 ⩽ 𝛼2 и следовательно,

𝑊2 = 𝜙−4 (2)

(︃
1∑︁

𝑡=0

𝑍
(︀
2𝑡; 𝜂0, ..., 𝜂0

)︀ 4∏︁
𝑖=1

𝜒𝑖2 (𝑏𝑖)

)︃
+

3∑︁
𝑡=2

𝜙−4
(︀
2𝑡
)︀
𝑍
(︀
2𝑡; 𝜒12𝜂0, ..., 𝜒42𝜂0

)︀
=

=
4∏︁

𝑖=1

𝜒𝑖2 (𝑏𝑖)
(︀
1 +𝐴 (2) +𝐴

(︀
22
)︀

+𝐴
(︀
23
)︀)︀

= 23
4∏︁

𝑖=1

𝜒𝑖2 (𝑏𝑖)

Последнее равенство следует из доказательства утверждения (b) леммы 4.3. Поэтому при
2 ∤ (𝑟, 𝑑) получаем

𝑊2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4∏︁

𝑖=1

𝜒𝑖2 (𝑏𝑖)
𝜎 (2𝛼2) 2𝛼2

𝜙4 (2𝛼2)
, если 𝛼2 ⩾ 𝛽2,

𝜙−4
(︁

2𝛽2+1
)︁
𝑌
(︁

2𝛽2+1
)︁
, если 𝛼2 < 𝛽2.

(29)
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Тогда, на основании равенств (25)-(29), получаем равенство

ℱ =
4∏︀

𝑖=1
𝜒
(2)
𝑖 (𝑏𝑖) (mod𝑟2)

𝜎(𝑑1)𝑑1
𝜙4(𝑑1)

· 𝑌 (𝜎(𝑟(1))𝑟(1))
𝜙4(𝜎(𝑟(1))𝑟(1))

∏︀
𝑝∤𝑑
𝑝∤𝑟

𝑠 (𝑝) + 𝑂
(︀
𝑄−1log9𝑄

)︀
. Здесь остаточный член

следует из леммы 4.4 работы [4] и пункта (a) леммы 4.5.
Лемма 4.6. Для любых комплексных чисел 𝜌𝑖, 0 < Re 𝜌𝑖 ⩽ 1, 𝑖 = 1, ..., 4, выполняется

следующее равенство

∞∫︁
−∞

𝑒 (−𝑛𝜂)

4∏︁
𝑖=1

⎛⎝ 𝑁1∫︁
𝐿1

𝑥𝜌𝑖−1𝑒
(︀
𝜂𝑥2
)︀
𝑑𝑥

⎞⎠𝑑𝜂 =
𝑁

24

∫︁
𝐷

4∏︁
𝑖=1

(𝑁𝑥𝑖)
(𝜌𝑖−1)/2𝑥

−1/2
𝑖 𝑑𝑥1...𝑑𝑥3. (30)

где 𝑥4 := 𝑛𝑁−2
1 −

3∑︀
𝑖=1

𝑥𝑖 и

𝐷 := {(𝑥1, ..., 𝑥3) : 𝐿/𝑁 ⩽ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ⩽ 1} . (31)

Кроме того, имеет место равенство∫︁
𝐷

(︃
4∏︁

𝑖=1

𝑥
−1/2
𝑖

)︃
𝑑𝑥1𝑑𝑥2𝑑𝑥3 ≫ 1. (32)

Доказательство. Доказывается путем рассуждений, аналогичных доказательству леммы 4.9
из работы [4].

5. Оценка интеграла ℛ1(𝑛) и завершение доказательства теоремы

Теперь постараемся получить необходимую нижнюю оценку для ℛ1(𝑛). Как видно из (13),

произведение
4∏︀

𝑖=1
𝐻𝑖 (𝑎, 𝑞, 𝜆) представляет собой сумму из 34 слагаемого. Эти слагаемые мы

разобьём на следующие три категории.

(C1):
4∏︀

𝑖=1
𝐺𝑖(𝑎, 𝜂0, 𝑞)𝐼(𝜆) слагаемое;

(C2): 65 слагаемых, в каждом из которых множитель 𝐹𝑖 (𝑎, 𝑞, 𝜆) входит по крайней мере один
раз;
(C3): 15 оставшихся слагаемых.
Для удобства обозначим

𝒯𝑖 =
∑︁
𝑞⩽𝑄

𝜙−4 (𝑑𝑞/ℎ )
∑︁

(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝛼)

∞∫︁
−∞

𝑒 (−𝑛𝜆) { сумма слагаемых в (𝐶𝑖) } 𝑑𝜆, (33)

при 𝑖 = 1, 2, 3. На основании (15) имеем

ℛ1 (𝑛) = 𝒯1 + 𝒯2 + 𝒯3 +
(︀
𝑁𝑄−1

)︀
(34)

Мы будем выбирать 𝑚1,𝑚2, ... различных чисел из множества {1, ... , 4}. Введём следующие
обозначения:

𝑃 (𝑚1,𝑚2, ...) := 𝑁2−4

∫︁
𝐷

(︃
4∏︁

𝑖=1

𝑥
−1/2
𝑖

)︃
(𝑁𝑥𝑚1)(𝛽−1)/2 (𝑁𝑥𝑚2)(𝛽−1)/2 ... 𝑑𝑥1𝑑𝑥2𝑑𝑥3, (35)
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и

Δ (𝑚1,𝑚2, ...) := 𝜒̃ (𝑛𝑚1) 𝜒̃ (𝑛𝑚2) ... (36)

Здесь область 𝐷 определяется с помощью (31), а 𝜒̃ и 𝛽 обозначают, соответственно, исключи-
тельные характеры и исключительные нули. Пусть

𝑃0 := 𝑁2−4

∫︁
𝐷

(︃
4∏︁

𝑖=1

𝑥
−1/2
𝑖

)︃
𝑑𝑥1𝑑𝑥2𝑑𝑥3. (37)

Из (32), (35) и (37) следует справедливость равенства

|𝑃 (𝑚1,𝑚2, ...)| ⩽ 𝑃0 ≪ 𝑁. (38)

Лемма 5.1. Справедливо следующее равенство.

𝒯1 = 𝜙−4 (𝑑)𝜎 (𝑑) 𝑑
∏︁
𝑝∤𝑑

𝑠 (𝑝)𝑃0 +𝑂
(︀
𝑁𝑑−2𝑄−1log9𝑄

)︀
.

Доказательство. На основании (33)

𝒯1 =
∑︁
𝑞⩽𝑄

𝜙−4 (𝑑𝑞/ℎ )
∑︁

(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝛼)
4∏︁

𝑖=1

𝐺𝑖(𝑎, 𝜂0, 𝑞)

∞∫︁
−∞

𝑒 (−𝑛𝜆)
4∏︁

𝑖=1

𝐼 (𝜆)𝑑𝜆.

Согласно равен(37) указанный выше интеграл равен 𝑃0. В силу (16) две суммы в приведённом
выше равенстве равны

∑︀
𝑞⩽𝑄

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞). На основании пунктов (c) и (d) леммы 4.4 можем

писать следующее.

∑︁
𝑞⩽𝑄

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞) = 𝜙−4 (𝑑)𝜎 (𝑑) 𝑑
∏︁
𝑝∤𝑑

𝑠 (𝑝) +𝑂

⎛⎝∑︁
𝑞>𝑄

|𝐴 (𝑞)|

⎞⎠ =

= 𝜙−4 (𝑑)𝜎 (𝑑) 𝑑
∏︁
𝑝∤𝑑

𝑠 (𝑝) +𝑂
(︀
𝑄−1𝑑−2log9𝑄

)︀
.

Из этого и равенства (38) следует доказательство леммы.

Лемма 5.2. Если существует исключительный нуль 𝛽, а параметры 𝑟1 и 𝑑1 определя-
ются так, как в утверждении (b) леммы 4.5, и если положить 𝑟(1) = 𝑟1, то выполняются
утверждения:
(a)

𝒯3 =
𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

· 𝜎 (𝑟1) 𝑟1
𝜙4 (𝜎 (𝑟1) 𝑟1)

∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝)×
∑︁

(𝜎(𝑟1)𝑟1)

(︃
−

4∑︁
𝑖=1

Δ (𝑖)𝑃 (𝑖) + . . .

· · ·+
∑︁

1⩽𝑖<𝑗⩽4

Δ (𝑖, 𝑗)𝑃 (𝑖, 𝑗)− · · ·+ Δ (1, 2, 3, 4)𝑃 (1, 2, 3, 4)

⎞⎠+𝑂

(︂
𝑁 log9𝑄

𝑄

)︂
.

(b) 𝒯3 ≪ 𝑁𝑟1
−1ℒ
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Доказательство. На основании (13) 15 слагаемых из (C3) можно разделить на 5 типов в
зависимости от количества множителей 𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞) 𝐼 (𝜆). Слагаемое типа с 𝑘 множителя-

ми имеет вид (−1)𝑘𝛿𝑞

(︂
𝑘∏︀

𝑖=1
𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞) 𝐼 (𝜆)

)︂(︃
4∏︀

𝑖=𝑘+1

𝐺𝑖 (𝑎, 𝜂0, 𝑞) 𝐼 (𝜆)

)︃
. Если 𝒯3,𝑘 обознача-

ет вклад такого слагаемого в 𝒯3, то на основании (33) получаем следующее.

𝒯3,𝑘 = (−1)𝑘

⎛⎜⎜⎝∑︁
𝑞⩽𝑄
𝑟|𝑞

𝜙−4 (𝑑𝑞/ℎ )
∑︁

(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝛼)

𝑘∏︁
𝑖=1

𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞)

4∏︁
𝑖=𝑘+1

𝐺𝑖 (𝑎, 𝜂0, 𝑞)

⎞⎟⎟⎠×

×
∞∫︁

−∞

𝑒 (−𝑛𝜆) 𝐼
𝑘

(𝜆) 𝐼4−𝑘 (𝜆) 𝑑𝜆 =: (−1)𝑘𝑊𝐵.

Интеграл по (30) равен 𝑃 (1, ... , 𝑘) . Согласно (16), 𝑊 представляет собой следующий сингу-
лярный ряд: 𝑊 =

∑︀
𝑞⩽𝑄
𝑟|𝑞

𝜙−4 (𝑑𝑞/ℎ )𝑍 (𝑞, 𝜂𝜂0, ..., 𝜂𝜂0, 𝜂0, ..., 𝜂0) 𝜁𝜁0 · ... · 𝜁𝜁0 · 𝜁0 · ... · 𝜁0. Учитывая,

что в пункте (b) леммы 4.5 выполняется∑︁
𝑞⩽𝑄

𝑟|𝑑𝑞/ℎ

𝜙−4

(︂
𝑑𝑞

ℎ

)︂
𝑍 (𝑞, 𝜂1𝜂0, ..., 𝜂4𝜂0)

4∏︁
𝑖=1

𝜁𝑖𝜁0 (𝑏𝑖) =

=
4∏︁

𝑖=1

𝜒
(2)
𝑖 (𝑏𝑖) (mod𝑟2)

𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

·
𝑌
(︀
𝜎
(︀
𝑟(1)
)︀
𝑟(1)
)︀

𝜙4
(︀
𝜎
(︀
𝑟(1)
)︀
𝑟(1)
)︀ ∏︁

𝑝∤𝑑
𝑝∤𝑟

𝑠 (𝑝) +𝑂
(︀
𝑄−1log9𝑄

)︀
.

(36) равенство и 𝑌 (𝜎𝑟1) = 𝜎𝑟1
∑︀

(𝜎𝑟1)

..., получаем выражение для

𝒯3,𝑘 = (−1)𝑘
𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

· 𝜎 (𝑟1) 𝑟1
𝜙4 (𝜎 (𝑟1) 𝑟1)

∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝)
∑︁

(𝜎(𝑟1)𝑟1)

Δ (1, ..., 𝑘)𝑃 (1, ..., 𝑘)+𝑂
(︀
𝑁𝑄−1log9𝑄

)︀
.

Таким образом, суммируя вклады по всем 𝑘, получаем утверждение (a). Утверждение (b)
следует из леммы 4.1.

Определим Ω следующим образом: Ω =

⎧⎨⎩
(︁

1− 𝛽
)︁

log 𝑇, если существует 𝛽,

1, в противном случае.

Из следствия 4.2, леммы 4.3 и равенства (22) получаем следующие результаты.∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝) = 𝜎
(︀
𝑟′′
)︀
𝑟′′𝜙−4

(︀
𝜎
(︀
𝑟′′
)︀
𝑟′′1
)︀
𝑁
(︀
𝜎
(︀
𝑟′′
)︀
𝑟′′1
)︀
, (39)

𝜎 (𝑟′1) 𝑟
′
1

𝜙4 (𝜎 (𝑟′1) 𝑟′1)
𝑁
(︀
𝜎
(︀
𝑟′1
)︀
𝑟′
)︀

=
𝜎 (𝑑2) 𝑑2

𝜙4 (𝜎 (𝑑2) 𝑑2)
𝑁 (𝜎 (𝑑2) 𝑑2) =

𝜎 (𝑑2) 𝑑2
𝜙4 (𝑑2)

. (40)

Здесь 𝑟′′𝑟′ = 𝑟,(𝑟′′, 𝑟′) = 1, (𝑟′′, 𝑑) = 1, 𝑟′| 𝑑⊙, 𝑟′1 , 𝑑 |(𝑟, 𝑑) имеют одинаковые простые мно-
жители, и степень каждого простого делителя числа 𝑑2 меньше степени соответствующего
делителя в 𝑟′1. Таким образом, мы можем записать 𝒯1 в следующем виде.

𝒯1 =
𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

· 𝜎 (𝑟1) 𝑟1
𝜙4 (𝜎 (𝑟1) 𝑟1)

∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝)
∑︁

(𝜎(𝑟1)𝑟1)

𝑃0 +𝑂
(︀
𝑁𝑑−2𝑄−1log9𝑄

)︀
.
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Используя выражение для 𝒯3 из утверждения (a) леммы 5.2, получаем

𝒯1 + 𝒯3 =
𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

· 𝜎 (𝑟1) 𝑟1
𝜙4 (𝜎 (𝑟1) 𝑟1)

∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝)𝑁2−4
∑︁

(𝜎(𝑟1)𝑟1)

∫︁
𝐷

(︃
4∏︁

𝑖=1

𝑥
−1/2
𝑖

)︃
×

×
4∏︁

𝑖=1

(︁
1− 𝜒̃(𝑁𝑥𝑖)

(𝛽−1)/2
)︁
𝑑𝑥1𝑑𝑥2𝑑𝑥3 +𝑂

(︀
𝑁𝑄−1log9𝑄

)︀
. (41)

Остаётся оценить интеграл. Так как
4∏︀

𝑖=1

(︁
1− 𝜒̃(𝑁𝑥𝑖)

(𝛽−1)/2
)︁

=
4∏︀

𝑖=1

(︁
1− 𝐿(𝛽−1)/2

)︁
является

голоморфной в области 𝐷, при этом 𝑥𝑖 ⩾ 𝐿/𝑁 . Таким образом, получаем следующее:

1− 𝐿
𝛽−1
2 ⩾ 1− exp

(︂
−1

2

(︁
1− 𝛽

)︁
log𝑁

)︂
⩾ min

{︂
1

2
,

1

4

(︁(︁
1− 𝛽

)︁
log𝑁

)︁}︂
⩾ Ω.

В этом случае главный член в (41) имеет следующий вид:

≫ Ω4𝜎 (𝑑1) 𝑑1
𝜙4 (𝑑1)

· 𝜎 (𝑟1) 𝑟1
𝜙4 (𝜎 (𝑟1) 𝑟1)

∏︁
𝑝∤𝑑
𝑝∤𝑟1

𝑠 (𝑝)
∑︁

(𝜎(𝑟1)𝑟1)

𝑃0.

Поэтому, на основании (39) и (40), справедлива следующая.
Лемма 5.3.

𝒯1 + 𝒯3 ⩾ Ω4𝜙−4 (𝑑)𝜎 (𝑑) 𝑑
∏︁
𝑝∤𝑑

𝑠 (𝑝)𝑃0 +𝑂
(︀
𝑁𝑄−1log9𝑄

)︀
.

Теперь оценим 𝒯2.
Лемма 5.4.

𝒯2 ≪ Ω4 exp
(︁
−𝑐/
√
𝛿
)︁
𝜙−4 (𝑑)𝜎 (𝑑) 𝑑

∏︁
𝑝∤𝑑

𝑠 (𝑝)𝑃0 +𝑂
(︀
𝑁𝑄−1log9𝑄

)︀
.

Доказательство. Поскольку выполняется равенство (13) и (14), в каждом слагаемом из
(C2) присутствует множитель вида

∑︀
𝜁𝜂

𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞) 𝐼 (𝜁𝜂, 𝜆) . Действительно, мы ограничим-

ся указанием метода оценки для типичного слагаемого вида

𝛿𝑞

⎛⎝ 2∏︁
𝑖=1

∑︁
𝜁𝜂

𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞) 𝐼 (𝜁𝜂, 𝜆)

⎞⎠𝐺3 (𝑎, 𝜂0, 𝑞) 𝐼 (𝜆)𝛽 (𝑏4)𝐺4 (𝑎, 𝜂, 𝑞) 𝐼 (𝜆) .

Вклад этого слагаемого в 𝒯2 обозначим через 𝜅. Согласно (33),

𝜅 =
∑︁
𝑞⩽𝑄
𝑟|𝑑𝑞/ℎ

𝛿𝑞𝜙
−4 (𝑑𝑞/ℎ)

∑︁
(𝑎,𝑞)=1

𝑒𝑞 (−𝑛𝑎)𝐺3 (𝑎, 𝜂0, 𝑞) 𝜁 (𝑏4)𝐺4 (𝑎, 𝜂, 𝑞)×

×

⎛⎝ 2∏︁
𝑖=1

∑︁
𝜁𝜂

𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞)

⎞⎠ ∑︁
|𝛾|⩽𝑇

∞∫︁
−∞

𝑒 (−𝑛𝜆)

⎛⎝ 2∏︁
𝑖=1

𝑁1∫︁
𝐿1

𝑥𝜌𝑖−1𝑒
(︀
𝜆𝑥2

)︀
𝑑𝑥

⎞⎠×
×

⎛⎝ 𝑁1∫︁
𝐿1

𝑒
(︀
𝜆𝑥2

)︀
𝑑𝑥

⎞⎠⎛⎝ 𝑁1∫︁
𝐿1

𝑥𝛽−1𝑒
(︀
𝜆𝑥2

)︀
𝑑𝑥

⎞⎠ 𝑑𝜆.
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В соответствии с (30),
∞∫︀

−∞
...𝑑𝜆 равно 𝑁

24

∫︀
𝐷

(︂
4∏︀

𝑖=1
𝑥
−1/2
𝑖

)︂(︂
2∏︀

𝑖=1
(𝑁𝑥𝑖)

(𝜌𝑖−1)/2

)︂
(𝑁𝑥𝑖)

𝛽−1
2 𝑑𝑥1𝑑𝑥2𝑑𝑥3.

Как известно [13], каждый характер интегрируется (т.е. получается) с помощью единствен-
ного примитивного характера, и наоборот, для каждого характера 𝜒* (mod𝑟) и для каждого
делителя 𝑟 числа 𝑞 существует единственный характер 𝜒 (mod𝑞), индуцированный характером
𝜒*. Кроме того, функция Дирихле 𝐿 (𝑠, 𝜒*) и 𝐿 (𝑠, 𝜒) имеют нули с положительной действи-
тельной частью, кроме тривиальных. Соответственно, переставив порядок суммирования в 𝜅,
мы можем писать 𝜅 следующим образом:

𝜅 = 𝑁2−4

∫︁
𝐷

(︃
4∏︁

𝑖=1

𝑥
−1/2
𝑖

)︃
(𝑁𝑥4)

(𝛽−1)/2

⎛⎝ 2∏︁
𝑖=1

∑︁
𝑟𝑖⩽𝑑𝑄

∑︁
*

𝜒𝑖≡𝜁𝑖𝜂𝑖( mod 𝑟𝑖)

∑︁
|𝛾|⩽𝑇

′
(𝑁𝑥𝑖)

(𝜌𝑖−1)/2

⎞⎠×
×
∑︁
𝑞⩽𝑄
𝑟|𝑑𝑞/ℎ

𝜙−4 (𝑑𝑞/ℎ)
∑︁

(𝑎,𝑞)=1

𝐺3 (𝑎, 𝜂0, 𝑞) 𝜁𝜁0 (𝑏4)𝐺4 (𝑎, 𝜂𝜂0, 𝑞)

(︃
2∏︁

𝑖=1

𝜁 (𝑏𝑖)𝐺𝑖 (𝑎, 𝜂, 𝑞)

)︃
𝑑𝑥1𝑑𝑥2𝑑𝑥3.

(42)
Здесь

∑︀ *− означает сумму по всем примитивным характерам по модулю 𝑟𝑖, а 𝑟 = [𝑟1, 𝑟2, 𝑟] .
В соответствии с леммой 4.5, внутренняя сумма

∑︀
𝑞⩽𝑄
𝑟|𝑑𝑞/ℎ

равна выражению

2∏︀
𝑖=1

𝜒
(2)
𝑖 (𝑏𝑖)𝜒̃

(2)
𝑖 (𝑏𝑖)𝜙

−4 (𝑑1)𝜎 (𝑑1) 𝑑1 ·
𝑌 (𝜎(𝑟(1))𝑟(1))
𝜙4(𝜎(𝑟(1))𝑟(1))

∏︀
𝑝∤𝑑,𝑟

𝑠 (𝑝) +𝑂
(︀
𝑁𝑑−2𝑄−1log9𝑄

)︀
. Здесь 𝑑1 и 𝑟

(1)

определяются так же, как в пункте (b) леммы 4.5. В силу того, что 𝑌 (𝜎 (𝑟1) 𝑟1) ⩽
⩽ 𝜎 (𝑟1) 𝑟1𝑁 (𝜎 (𝑟1) 𝑟1) комбинируя это с (39) и (40), получаем следующее:⃒⃒⃒⃒

⃒⃒⃒⃒ ∑︁
𝑞⩽𝑄
𝑟|𝑑𝑞/ℎ

...

⃒⃒⃒⃒
⃒⃒⃒⃒ ⩽ 𝜙−4 (𝑑)𝜎 (𝑑) 𝑑

∏︁
𝑝∤𝑑

𝑠 (𝑝) +𝑂
(︀
𝑁𝑑−2𝑄−1log9𝑄

)︀
.

На основе идеи [16] и доказательства леммы 6.2 из [15], с применением метода большого сито,
для любого числа 𝑐 и любого действительного числа 𝑦 ⩾ 𝑁1 справедливо неравенство:∑︁

𝑞⩽𝑇

∑︁
*

𝜒(modq)

∑︁
|𝛾|⩽𝑇

′
𝑦𝛽−1 ≪ Ω4 exp

(︁
−𝑐/
√
𝛿
)︁
.

Используя это в кратной сумме из (42) и комбинируя с (31), мы получаем доказательство лем-
мы. Объединяя полученные выше результаты и используя равенство (34), мы можем получить
оценку для ℛ1 (𝑛) . Для этого рассмотрим два случая.

1-случай. Eсли не существует 𝛽-исключительный нуль 𝐿-функции Дирихле или же он
существует и модуль соответствующего исключительного характера 𝑟 > 𝑄1/8. Из леммы 5.1
и части (b) леммы 5.2, а также из лемм 5.4 при достаточно малом 𝛿, получим:

ℛ1 (𝑛) ⩾
1

2
𝜙−4 (𝑑)𝜎 (𝑑) 𝑑

∏︁
𝑝∤𝑑

𝑠 (𝑝)𝑃0 +𝑂
(︁
𝑁𝑄−1/8log9𝑄

)︁
. (43)

Тогда, согласно леммы 4.4 (a), имеем: ℛ1 (𝑛)≫ 𝑁
(︀
𝑄5/42 𝑑1/2

)︀−1
. Здесь 𝑑 ⩽ 𝑄1/21.

2-случай. Если существует 𝛽-исключительный нуль 𝐿-функции Дирихле и модуль соот-
ветствующего исключительного характера 𝑟 ⩽ 𝑄1/8. Тогда, исполдьзуля на леммы 5.3 и 5.4 и
при достаточно малом 𝛿, получим:

ℛ1 (𝑛) ⩾
1

2
Ω4𝜙−4 (𝑑)𝜎 (𝑑) 𝑑

∏︁
𝑝∤𝑑

𝑠 (𝑝)𝑃0 +𝑂
(︀
𝑁𝑄−1log9𝑄

)︀
. (44)



О сумме квадратов четырёх простых чисел из арифметической прогрессии 71

Отсюда, учитывая, что Ω≫
(︁
𝑟

1
2 log2𝑟

)︁−1
log 𝑇≫𝑄−1/16log−1𝑄, имеем: ℛ1 (𝑛)≫𝑁

(︀
𝑄1/3𝑑1/2

)︀−1
.

Из оценки (43), (44) и (7) следуют, что ℛ1 (𝑛) > |ℛ2 (𝑛)|. Таким образом, наша теорема
доказана.

6. Доказательство следствие

Используя равенство (5), для ℛ (𝑛) получим:

ℛ (𝑛) ⩽ 𝑆𝑑 (𝑛) log4𝑁 +𝑂
(︁
𝑁

3/2
1 log𝑁

)︁
. (45)

Согласно равенству (6), имеем: ℛ (𝑛) > ℛ1 (𝑛) − |ℛ2 (𝑛)|. Используя оценки ℛ1 (𝑛) и ℛ2 (𝑛),

а также (45), получим: ℛ1 (𝑛) − |ℛ2 (𝑛)| ⩽ 𝑆𝑑 (𝑛) log4𝑁 + 𝑂
(︁
𝑁

3/2
1 log𝑁

)︁
. Отсюда следует:

𝑆𝑑 (𝑛) ⩾ ℛ1(𝑛)−|ℛ2(𝑛)|
log4𝑁

− 𝑂
(︁
𝑁

3/2
1 log−3𝑁

)︁
и следовательно, 𝑆𝑑 (𝑛) ≫ 𝑁

𝑄1/3𝑑1/2log4𝑁
. Пользуясь

тем, что 𝑄 = 𝑁21𝛿, а также условиями 𝑛 ≡ 4 (mod24), 𝐿 < 𝑛 ⩽ 𝑁 , получим, что для всех 𝑛

за исключением не более, чем 𝐸𝑑(𝑁) ≪ 𝑁
(︀
𝑄15/14 𝑑

)︀−1
значений из них справедлива оценка:

𝑆𝑑 (𝑛)≫ 𝑛1−7𝛿
(︀
𝑑1/2log4𝑛

)︀−1
. Следствие доказано.
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Аннотация

Настоящая работа посвящена исследованию особенностей операторов Нийенхейса —
фундаментальных объектов нийенхейсовой геометрии. Хотя тензор Нийенхейса был вве-
дён Альбертом Нийенхейсом ещё в 1951 году, активное развитие эта область получила
сравнительно недавно благодаря серии работ А.В. Болсинова, А.Ю. Коняева и В.С. Мат-
веева.

В размерности два известна классификация линейных операторов Нийенхейса — опера-
торов, действующих на линейном пространстве, компоненты которых линейно зависят от
координат. Существует важное взаимно однозначное соответствие между линейными опе-
раторами Нийенхейса и левосимметрическими алгебрами, что делает их классификацию
эквивалентной задачей.

Несмотря на кажущуюся простоту, задача остаётся сложной даже для малых размер-
ностей и может быть решена лишь при определённых дополнительных ограничениях. В
данной работе исследуются трёхмерные линейные операторы Нийенхейса (или, что то же
самое, трёхмерные левосимметрические алгебры) при условии функциональной независи-
мости коэффициентов характеристического многочлена. Полная классификация операто-
ров с таким дополнительным условием была получена недавно, и дает список из восьми
операторов.

Основной целью данной статьи является изучение особенностей таких операторов. Осо-
бой точкой называется точка, в любой окрестности которой изменяется алгебраический
тип оператора (жорданова нормальная форма). В работе определены особые точки для
рассматриваемого класса операторов Нийенхейса и построены их множества в трехмер-
ном пространстве.

Ключевые слова: оператор Нийенхейса, левосимметрическая алгебра, особые точки.
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Abstract

This work is devoted to the study of singularities of Nijenhuis operators – fundamental
objects of Nijenhuis geometry. Although the Nijenhuis tensor was introduced by Albert
Nijenhuis back in 1951, this field received active development relatively recently thanks to
a series of works by A.V. Bolsinov, A.Yu. Konyaev, and V.S. Matveev.

In dimension two, the classification of linear Nijenhuis operators, operators acting on a
linear space, whose components linearly depend on coordinates, is known. There exists an
important one-to-one correspondence between linear Nijenhuis operators and left-symmetric
algebras, which makes their classification an equivalent problem.

Despite its apparent simplicity, the problem remains challenging even for small dimensions
and can be solved only under certain additional constraints. This paper investigates three-
dimensional linear Nijenhuis operators (or, equivalently, three-dimensional left-symmetric
algebras) under the condition of functional independence of the characteristic polynomial
coefficients. A complete classification of operators with this additional condition was recently
obtained, yielding a list of eight operators.

The main objective of this paper is to study the singularities of such operators. A singular
point is defined as a point in any neighbourhood of which the algebraic type of the operator
(Jordan normal form) changes. The paper determines singular points for the considered class
of Nijenhuis operators and constructs their sets in three-dimensional space.

Keywords: Nijenhuis operator, left-symmetric algebra, singular points.
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1. Введение

В работе [2] была поставлена задача классификации особых точек операторов Нийенхей-
са. В теории операторов Нийенхейса выделяют несколько типов особенностей: точки, в любой
окрестности которых алгебраический тип оператора меняется, называются особыми, а точки,
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где нарушается условие линейной независимости дифференциалов коэффициентов характери-
стического многочлена, называются вырожденными. И те, и другие особенности представля-
ют интерес, и в данной статье подробно рассмотрены особенности первого типа и определены
точки второго типа.

Операторы, особенности которых мы будем изучать, были классифицированы в статье
[1, теорема 2] и представляют собой полный список всех возможных трёхмерных линейных
операторов Нийенхейса, коэффициенты характеристических многочленов которых являются
функционально независимыми.

В размерности два полный список линейных операторов Нийенхейса без дополнительных
условий был получен А.Ю. Коняевым в статье [3]. В двумерном случае множество особых то-
чек операторов устроено достаточно просто — это прямая. Для трёхмерного случая возникают
более интересные множества.

2. Определения

Определение 1. Пусть 𝑃 — операторное поле на гладком многообразии 𝑀 . Кручение
Нийенхейса 𝑁𝑃 определяется на паре векторных полей 𝑣, 𝑤 следующим образом:

𝑁𝑃 (𝑣, 𝑤) = [𝑃𝑣, 𝑃𝑤] + 𝑃 2[𝑣, 𝑤]− 𝑃 [𝑃𝑣,𝑤]− 𝑃 [𝑣, 𝑃𝑤],

где [ , ] обозначает стандартный коммутатор векторных полей.

Определение 2. Операторное поле 𝑃 называется оператором Нийенхейса, если тензор
Нийенхейса 𝑁𝑃 тождественно равен нулю, т.е. 𝑁𝑃 ≡ 0.

Мы будем рассматривать линейные операторы Нийенхейса на вещественных аффинных
пространствах размерности три, т.е. такие операторные поля 𝑃 , для которых 𝑁𝑃 ≡ 0 и
которые линейно зависят от координат 𝑥1, 𝑥2, 𝑥3: 𝑃 𝑘

𝑖 = 𝑎𝑘𝑖𝑗𝑥
𝑗, где 𝑎𝑘𝑖𝑗 ∈ R.

Определение 3. Точка 𝑎 ∈ 𝑀 называется точкой общего положения, если алгебраи-
ческий тип оператора 𝑃 , т.е. структура жордановой нормальной формы, не меняется в
некоторой окрестности 𝑈(𝑎) точки 𝑎.

Точка 𝑎 ∈𝑀 называется особой, если она не является точкой общего положения.

Определение 4. Точка 𝑎∈𝑀 называется дифференциально невырожденной, если диффе-
ренциалы 𝑑𝑓1, 𝑑𝑓2, 𝑑𝑓3 коэффициентов характеристического многочлена 𝜒(𝑡)=det(𝑡 · Id− 𝑃 )=
= 𝑡3 − 𝑓1𝑡2 + 𝑓2𝑡− 𝑓3 оператора Нийенхейса линейно независимы в точке 𝑎.

Точка 𝑎 ∈𝑀 называется вырожденной, если она не является дифференциально невырож-
денной.

3. Результаты

Сформулируем теорему классификации линейных операторов Нийенхейса из статьи [1].

Теорема 1. Любой трехмерный линейный оператор Нийенхейса 𝑃 с почти всюду функ-
ционально независимыми инвариантами в некотором базисе имеет один из видов, представ-
ленных в таблице 1, причем каждый из этих 8 операторов не может быть сведен к другим
линейными заменами координат.

Комментарий к таблице 1. В четвертом столбце указана алгебра Ли, ассоциированная с
левосимметрической алгеброй, соответствующей данному оператору Нийенхейса 𝑃 из третьего
столбца (т.е. алгебра Ли со структурными константами 𝑐𝑘𝑖𝑗 = 𝑎𝑘𝑖𝑗−𝑎𝑘𝑗𝑖). Обозначения для алгебр
Ли взяты из статьи [5].
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Таблица 1: Трехмерные линейные операторы Нийенхейса с функционально независимыми
инвариантами

№ Инварианты Оператор Нийенхейса 𝑃 Алгебра Ли

I

𝑓1 = 𝑥
𝑓2 = −𝑦2 − 𝑧2 + 1

4𝑥
2

𝑓3 = − 1
2𝑥𝑧

2 − 𝑦𝑧2

⎛⎝ 1
2𝑥 2𝑦 2𝑧
1
2𝑦

1
2𝑥 −𝑧

1
4𝑧 − 1

2𝑧 0

⎞⎠ 𝐴3,11

II

𝑓1 = 𝑥
𝑓2 = −𝑦2 − 𝑧2 + 1

3𝑥
2

𝑓3= 1
27𝑥

3+ 2
3
√
3
𝑧3− 2

√
3

3 𝑦2𝑧− 1
3𝑥𝑦

2− 1
3𝑥𝑧

2

⎛⎝ 1
3𝑥 2𝑦 2𝑧
1
3𝑦

1
3𝑥−

1√
3
𝑧 − 1√

3
𝑦

1
3𝑧 − 1√

3
𝑦 1

3𝑥+ 1√
3
𝑧

⎞⎠ 𝐴3,10

III

𝑓1 = 𝑥
𝑓2 = −𝑦2 − 𝑧2 + 1

3𝑥
2

𝑓3= 1
27𝑥

3+ 2
3
√
3
𝑧3+

√
3
3 𝑦

2𝑧− 1
3𝑥𝑦

2− 1
3𝑥𝑧

2

⎛⎝ 1
3𝑥 2𝑦 2𝑧
1
3𝑦

1
3𝑥−

1√
3
𝑧 1

2
√
3
𝑦

1
3𝑧

2√
3
𝑦 1

3𝑥+ 1√
3
𝑧

⎞⎠ 𝐴3,11

IV

𝑓1 = 𝑥
𝑓2 = 𝑦2 − 𝑧2

𝑓3 = (𝑦 − 𝑧)2(2𝑦 − 𝑥)

⎛⎝𝑥 −2𝑦 2𝑧
𝑦 𝑥− 3𝑦 −𝑥+ 2𝑦 + 𝑧
𝑦 𝑥− 4𝑦 + 𝑧 −𝑥+ 3𝑦

⎞⎠ 𝐴3,11

V

𝑓1 = 𝑥
𝑓2 = 𝑦2 − 𝑧2
𝑓3 = (𝑦 + 𝑧)3

⎛⎝ 𝑥 −2𝑦 2𝑧
1
2𝑦 −

1
6𝑧 − 3

2 (𝑦 + 𝑧) − 3
2 (𝑦 + 𝑧)

− 1
6𝑦 + 1

2𝑧
3
2 (𝑦 + 𝑧) 3

2 (𝑦 + 𝑧)

⎞⎠ 𝐴3,5

VI

𝑓1 = 𝑥
𝑓2 = 𝑦2 − 𝑧2 + 1

4𝑥
2

𝑓3 = 1
2𝑥𝑦

2 + 𝑦2𝑧

⎛⎝ 1
2𝑥 −2𝑦 2𝑧
1
4𝑦 0 − 1

2𝑦
1
2𝑧 𝑦 1

2𝑥

⎞⎠ 𝐴3,11

VII

𝑓1 = 𝑥
𝑓2 = 𝑦2 − 𝑧2 + 1

3𝑥
2

𝑓3= 1
27𝑥

3− 2
3
√
3
𝑧3− 2

√
3

3 𝑦2𝑧+ 1
3𝑥𝑦

2− 1
3𝑥𝑧

2

⎛⎝ 1
3𝑥 −2𝑦 2𝑧
1
3𝑦

1
3𝑥+ 1√

3
𝑧 1√

3
𝑦

1
3𝑧 − 1√

3
𝑦 1

3𝑥−
1√
3
𝑧

⎞⎠ 𝐴3,10

VIII

𝑓1 = 𝑥
𝑓2 = 𝑦2 − 𝑧2 + 1

3𝑥
2

𝑓3= 1
27𝑥

3− 2
3
√
3
𝑧3+

√
3
3 𝑦

2𝑧+ 1
3𝑥𝑦

2− 1
3𝑥𝑧

2

⎛⎝ 1
3𝑥 −2𝑦 2𝑧
1
3𝑦

1
3𝑥+ 1√

3
𝑧 − 1

2
√
3
𝑦

1
3𝑧

2√
3
𝑦 1

3𝑥−
1√
3
𝑧

⎞⎠ 𝐴3,11

Рассмотрим характеристический многочлен оператора Нийенхейса 𝑃 ,𝜒(𝑡)=𝑑𝑒𝑡(𝑡 ·𝐼𝑑−𝑃 )=
= 𝑡3 − 𝑓1𝑡2 + 𝑓2𝑡 − 𝑓3. Дискриминант этого кубического многочлена выражается через коэф-
фициенты следующим образом: 𝐷 = 𝑓21 𝑓

2
2 + 18𝑓1𝑓2𝑓3 − 27𝑓23 − 4𝑓32 − 4𝑓31 𝑓3. Тогда множество

в R3, где дискриминант 𝐷 = 0, будет состоять в точности из особых точек. Найдем его для
каждого из операторов и графически изобразим в пространстве. Также укажем для каждого
случая жордановы нормальные формы (объединяя их по алгебраическому типу, см. опре-
деление 3) и множество вырожденных точек (см. определение 4). Во всех случаях в области
𝐷 < 0 оператор имеет одно вещественное и пару комплексно-сопряженных (невещественнных)
собственных значений.

В случае I дискриминант имеет вид 𝐷 = 1
4(−𝑦(𝑥 + 2𝑦) + 𝑧2)2((𝑥 − 2𝑦)2 + 16𝑧2). Тогда

множество нулей дискриминанта имеет вид

1

4
(−𝑦(𝑥+ 2𝑦) + 𝑧2)2((𝑥− 2𝑦)2 + 16𝑧2) = 0.

Решением этого уравнения является объединение следующих множеств:[︃
𝑧2 = 𝑦(𝑥+ 2𝑦)− конус,
𝑥− 2𝑦 = 𝑧 = 0− прямая.

Жорданова нормальная форма имеет вид

�

⎛⎝−2𝑦 0 0
0 1

2(𝑥+ 2𝑦) 0
0 0 1

2(𝑥+ 2𝑦)

⎞⎠ на конусе;
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�

⎛⎝0 0 0
0 0 0
0 0 2𝑦

⎞⎠ на прямой;

�

⎛⎝1
2(𝑥+ 2𝑦) 0 0

0 1
4(𝑥−2𝑦−

√︀
(𝑥−2𝑦)2+16𝑧2) 0

0 0 1
4(𝑥−2𝑦+

√︀
(𝑥−2𝑦)2+16𝑧2)

⎞⎠ в области 𝐷 > 0.

Рис. 1: Случаи I (слева) и II (справа)

Множество вырожденных точек имеет вид[︃
𝑧2 = 𝑦(𝑥+ 2𝑦)− конус,
𝑧 = 0− плоскость.

В случае II дискриминант имеет вид 𝐷 = 4𝑦2(𝑦2 − 3𝑧2)2. Тогда множество нулей дискри-
минанта имеет вид

4𝑦2(𝑦2 − 3𝑧2)2 = 0.

Решением этого уравнения является объединение следующих множеств:⎡⎢⎣ 𝑦 = 0− плоскость,
𝑦 −
√

3𝑧 = 0− плоскость,
𝑦 +
√

3𝑧 = 0− плоскость.

Жорданова нормальная форма имеет вид

�

⎛⎝ 1
3
𝑥 0 0
0 1

3
𝑥 0

0 0 1
3
𝑥

⎞⎠ на прямой пересечения 𝑦 = 0, 𝑧 = 0;

�

⎛⎝ 1
3
(𝑥−

√
3𝑧) 0 0

0 1
3
(𝑥−

√
3𝑧) 0

0 0 1
3
(𝑥+ 2

√
3𝑧)

⎞⎠ на плоскости 𝑦 = 0;

�

⎛⎝ 1
3
(𝑥− 4

√
3𝑧) 0 0

0 1
3
(𝑥+ 2

√
3𝑧) 0

0 0 1
3
(𝑥+ 2

√
3𝑧)

⎞⎠ на паре плоскостей 𝑦 ±
√
3𝑧 = 0;

�

⎛⎝ 1
3
(𝑥− 3𝑦 −

√
3𝑧) 0 0

0 1
3
(𝑥+ 3𝑦 −

√
3𝑧) 0

0 0 1
3
(𝑥+ 2

√
3𝑧)

⎞⎠ в области 𝐷 > 0.
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Множество вырожденных точек имеет вид⎡⎢⎣ 𝑦 = 0− плоскость,
𝑦 −
√

3𝑧 = 0− плоскость,
𝑦 +
√

3𝑧 = 0− плоскость.

В случае III дискриминат имеет вид 𝐷 = 𝑦4(4𝑦2 + 3𝑧2). Тогда

4𝑦4(4𝑦2 + 3𝑧2) = 0,[︃
𝑦 = 0− плоскость,
𝑦 = 𝑧 = 0− прямая.

Жорданова нормальная форма имеет вид

�

⎛⎝ 1
3
(𝑥−

√
3𝑧) 0 0

0 1
3
(𝑥−

√
3𝑧) 0

0 0 1
3
(𝑥+ 2

√
3𝑧)

⎞⎠ на плоскости;

�

⎛⎝ 1
3
𝑥 0 0
0 1

3
𝑥 0

0 0 1
3
𝑥

⎞⎠ на прямой;

�

⎛⎝ 1
3
(𝑥−

√
3𝑧) 0 0

0 1
6
(2𝑥+

√
3𝑧 − 3

√︀
4𝑦2 + 3𝑧2) 0

0 0 1
6
(2𝑥+

√
3𝑧 + 3

√︀
4𝑦2 + 3𝑧2)

⎞⎠ в области 𝐷 > 0.

Рис. 2: случаи III и VII

Множество вырожденных точек имеет вид

𝑦 = 0− плоскость.

В случае IV дискриминант имеет вид 𝐷 = 4(𝑦 − 𝑧)2(𝑥− 2𝑦 + 𝑧)2((𝑥+ 𝑦 − 𝑧)2 − 8𝑦(𝑦 − 𝑧)).
Тогда

4(𝑦 − 𝑧)2(𝑥− 2𝑦 + 𝑧)2((𝑥+ 𝑦 − 𝑧)2 − 8𝑦(𝑦 − 𝑧)) = 0,⎡⎢⎣ 𝑦 − 𝑧 = 0− плоскость,
𝑥− 2𝑦 + 𝑧 = 0− плоскость,

(𝑥+ 𝑦 − 𝑧)2 − 8𝑦(𝑦 − 𝑧) = 0− конус.

Заметим, что конус касается плоскости 𝑦− 𝑧 = 0 по прямой 𝑥 = 0, 𝑦− 𝑧 = 0, а также касается
плоскости 𝑥− 2𝑦 + 𝑧 = 0 по прямой 𝑥− 2𝑦 + 𝑧 = 0, 𝑦 − 2𝑧 = 0. Жорданова нормальная форма
имеет вид

�

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠ на прямой пересечения 𝑥 = 0, 𝑦 − 𝑧 = 0;
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�

⎛⎝𝑧 0 0
0 𝑧 1
0 0 𝑧

⎞⎠ на прямой пересечения 𝑥− 2𝑦 + 𝑧 = 0, 𝑦 − 2𝑧 = 0;

�

⎛⎝0 1 0
0 0 0
0 0 𝑥

⎞⎠ на плоскости 𝑦 − 𝑧 = 0 без прямой пересечения;

�

⎛⎝𝑥− 𝑦 0 0
0 𝑥− 𝑦 0
0 0 −𝑥+ 2𝑦

⎞⎠ на плоскости 𝑥− 2𝑦 + 𝑧 = 0 без прямой пересечения;

�

⎛⎝𝑦 − 𝑧 0 0
0 1

2(𝑥− 𝑦 + 𝑧) 1
0 0 1

2(𝑥− 𝑦 + 𝑧)

⎞⎠ на конусе без прямой пересечения;

�

⎛⎝𝑦 − 𝑧 0 0
0 1

2(𝑥− 𝑦 + 𝑧 −
√
𝑎) 0

0 0 1
2(𝑥− 𝑦 + 𝑧 +

√
𝑎)

⎞⎠ в области 𝐷 > 0 (выделена желтым на

рис. 3), где 𝑎 = (𝑥+ 𝑦 − 𝑧)2 − 8𝑦(𝑦 − 𝑧).

Рис. 3: случай IV

Множество вырожденных точек имеет вид[︃
𝑦 − 𝑧 = 0− плоскость,

𝑥− 2𝑦 + 𝑧 = 0− плоскость.

В случаеV дискриминант имеет вид𝐷 = −(𝑦+𝑧)2(4𝑥3𝑦−𝑥2𝑦2−18𝑥𝑦3+31𝑦4+4𝑥3𝑧+2𝑥2𝑦𝑧−
− 18𝑥𝑦2𝑧 + 100𝑦3𝑧 − 𝑥2𝑧2+ +18𝑥𝑦𝑧2 + 162𝑦2𝑧2 + 18𝑥𝑧3 + 116𝑦𝑧3 + 23𝑧4). Тогда

−(𝑦 + 𝑧)2(4𝑥3𝑦 − 𝑥2𝑦2 − 18𝑥𝑦3 + 31𝑦4 + 4𝑥3𝑧 + 2𝑥2𝑦𝑧 − 18𝑥𝑦2𝑧 + 100𝑦3𝑧 − 𝑥2𝑧2+
+18𝑥𝑦𝑧2 + 162𝑦2𝑧2 + 18𝑥𝑧3 + 116𝑦𝑧3 + 23𝑧4) = 0⎡⎢⎣ 𝑦 + 𝑧 = 0− плоскость,

4𝑥3𝑦 − 𝑥2𝑦2 − 18𝑥𝑦3 + 31𝑦4 + 4𝑥3𝑧 + 2𝑥2𝑦𝑧 − 18𝑥𝑦2𝑧 + 100𝑦3𝑧 − 𝑥2𝑧2+
+18𝑥𝑦𝑧2 + 162𝑦2𝑧2 + 18𝑥𝑧3 + 116𝑦𝑧3 + 23𝑧4 = 0.

Заметим, что плоскость касается поверхности по прямым 𝑥 = 0, 𝑦 + 𝑧 = 0 и 𝑦 = 0, 𝑧 = 0.
Жорданова нормальная форма имеет вид
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�

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠ на прямой пересечения 𝑥 = 0, 𝑦 + 𝑧 = 0;

�

⎛⎝0 0 0
0 0 0
0 0 𝑥

⎞⎠ на прямой пересечения 𝑦 = 0, 𝑧 = 0;

�

⎛⎝0 1 0
0 0 0
0 0 𝑥

⎞⎠ на плоскости 𝑦 + 𝑧 = 0 без прямых пересечения;

� на поверхности без прямых пересечения жорданова нормальная форма имеет диагональ-
ный вид.

На рис. 4 (слева) область, где𝐷 > 0, выделена желтым. Множество вырожденных точек имеет
вид

𝑦 + 𝑧 = 0− плоскость.

Рис. 4: случаи V (слева) и VI (справа)

В случае VI дискриминант имеет вид 𝐷 = 1
4(𝑥 + 4𝑦 − 2𝑧)(𝑥 − 4𝑦 − 2𝑧)(𝑦2 + 𝑧(𝑥 + 2𝑧))2.

Тогда

(𝑥+ 4𝑦 − 2𝑧)(𝑥− 4𝑦 − 2𝑧)(𝑦2 + 𝑧(𝑥+ 2𝑧))2 = 0,⎡⎢⎣𝑥+ 4𝑦 − 2𝑧 = 0− плоскость,
𝑥− 4𝑦 − 2𝑧 = 0− плоскость,
𝑦2 + 𝑧(𝑥+ 2𝑧) = 0− конус.

Заметим, что плоскости касаются конуса по прямым 𝑥 + 4𝑦 − 2𝑧 = 0, 𝑦 − 2𝑧 = 0 и
𝑥− 4𝑦 − 2𝑧 = 0, 𝑦 + 2𝑧 = 0. Жорданова нормальная форма имеет вид

�

⎛⎝−𝑦 1 0
0 −𝑦 0
0 0 −𝑦

⎞⎠ на прямой пересечения 𝑥+ 4𝑦 − 2𝑧 = 0, 𝑦 − 2𝑧 = 0;

�

⎛⎝𝑦 1 0
0 𝑦 0
0 0 𝑦

⎞⎠ на прямой пересечения 𝑥− 4𝑦 − 2𝑧 = 0, 𝑦 + 2𝑧 = 0;
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�

⎛⎝−𝑦 1 0
0 −𝑦 0
0 0 −2(𝑦 − 𝑧)

⎞⎠ на плоскости 𝑥+ 4𝑦 − 2𝑧 = 0 без прямой пересечения;

�

⎛⎝𝑦 1 0
0 𝑦 0
0 0 2(𝑦 + 𝑧)

⎞⎠ на плоскости 𝑥− 4𝑦 − 2𝑧 = 0 без прямой пересечения;

�

⎛⎝−2𝑧 0 0
0 1

2(𝑥+ 2𝑧) 0
0 0 1

2(𝑥+ 2𝑧)

⎞⎠ на конусе без прямых пересечения;

�

⎛⎝1
2𝑥+ 𝑧 0 0

0 1
4(𝑥− 2𝑧 −

√︀
(𝑥− 2𝑧)2 − 16𝑦2) 0

0 0 1
4(𝑥− 2𝑧 +

√︀
(𝑥− 2𝑧)2 − 16𝑦2)

⎞⎠ в области

𝐷 > 0 (выделена желтым на рис. 4 справа).

Множество вырожденных точек имеет вид[︃
𝑦 = 0− плоскость,

𝑦2 + 𝑧(𝑥+ 2𝑧) = 0− плоскость.

В случае VII дискриминант имеет вид 𝐷 = −4(𝑦3 + 3𝑦𝑧2)2. Тогда

−4(𝑦3 + 3𝑦𝑧2)2 = 0,[︃
𝑦 = 0− плоскость,
𝑦 = 𝑧 = 0− прямая.

Жорданова нормальная форма имеет вид

�

⎛⎝1
3(𝑥− 2

√
3𝑧) 0 0

0 1
3(𝑥+

√
3𝑧) 0

0 0 1
3(𝑥+

√
3𝑧)

⎞⎠ на плоскости;

�

⎛⎝1
3𝑥 0 0
0 1

3𝑥 0
0 0 1

3𝑥

⎞⎠ на прямой.

Множество вырожденных точек имеет вид[︃
𝑦 = 0− плоскость,
𝑦 = 𝑧 = 0− прямая.

В случае VIII дискриминант имеет вид 𝐷 = 𝑦4(3𝑧2 − 4𝑦2). Тогда

𝑦4(3𝑧2 − 4𝑦2) = 0,⎡⎢⎣ 𝑦 = 0− плоскость,
√

3𝑧 − 2𝑦 = 0− плоскость,
√

3𝑧 + 2𝑦 = 0− плоскость.

Жорданова нормальная форма имеет вид
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�

⎛⎝1
3𝑥 0 0
0 1

3𝑥 0
0 0 1

3𝑥

⎞⎠ прямой пересечения 𝑦 = 0, 𝑧 = 0;

�

⎛⎝1
3(𝑥− 2

√
3𝑧) 0 0

0 1
3(𝑥+

√
3𝑧) 0

0 0 1
3(𝑥+

√
3𝑧)

⎞⎠ на плоскости 𝑦 = 0 без прямой пересечения;

�

⎛⎝1
6(2𝑥−

√
3𝑧) 1 0

0 1
6(2𝑥−

√
3𝑧) 0

0 0 1
3(𝑥+

√
3𝑧)

⎞⎠ на паре плоскостей без прямой пересечения;

�

⎛⎝1
3(𝑥+

√
3𝑧) 0 0

0 1
6(2𝑥−

√
3𝑧 − 3

√︀
−4𝑦2 + 3𝑧2) 0

0 0 1
6(2𝑥−

√
3𝑧 + 3

√︀
−4𝑦2 + 3𝑧2)

⎞⎠ в области

𝐷 > 0 (выделена желтым на рис. 5).

Рис. 5: случай VIII

Множество вырожденных точек имеет вид

𝑦 = 0.

Предложение 1. Любые два оператора Нийенхейса из теоремы 1 имеют различные ал-
гебраические типы (см. определение 3) в следующем смысле: не существует гомеоморфизма
пространства R3 в себя, сохраняющего алгебраический тип оператора Нийенхейса.

Доказательство. Выше найдено множество особых точек для каждого из восьми опера-
торов (см. рис. 1—5) и найден знак дискриминанта в дополнении к этому множеству (на
некоторых из рисунков область 𝐷 > 0 показана желтым). Нетрудно видеть, что существует
гомеоморфизм пространства R3 в себя, совмещающий множества особых точек (𝐷 = 0) только
для следующих пар случаев: II и VIII, III и VIII, IV и VI. Но при таком геомеоморфизме
не будет сохраняться знак 𝐷 для каждой из этих пар случаев. 2
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Аннотация

В работе для 𝑠⩾3 описывается алгоритм построения последовательностей
𝑃𝐻(𝑠, 𝑎⃗, 𝑁)𝑖 — 𝑠-мерных оптимальных коэффициентов 𝑎⃗ = (1, 𝑎, 𝑎2 (mod 𝑁), . . . , 𝑎𝑠−1

(mod 𝑁)) по модулю N, таких что 𝑎𝑠 ≡ ±1 (mod 𝑁). Строится последовательность, для ко-
торой выполнено, что погрешность численного вычисления интеграла от граничной функ-
ции класса 𝐸2

𝑠 ℎ(𝑥⃗) = 3𝑠
∏︀𝑠

𝑖=1(1− 2𝑥𝑖)
2 по паралеллепипедальным сеткам 𝑀 (⃗𝑎,𝑁) на кубе

[0, 1)𝑠 убывает с ростом 𝑁 .

Ключевые слова: теоретико-числовой метод в приближенном анализе, параллепипе-
дальные сетки.
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Abstract

In this paper, for 𝑠 ⩾ 3, we describe an algorithm for constructing sequences 𝑃𝐻(𝑠, 𝑎⃗, 𝑁)𝑖 —
𝑠-dimensional optimal coefficients 𝑎⃗ = (1, 𝑎, 𝑎2 (mod 𝑁), . . . , 𝑎𝑠−1 (mod 𝑁)) modulo N, such
that 𝑎𝑠 ≡ ±1 (mod 𝑁). We construct a sequence such that the error in numerically calculating
the integral of the boundary function of class 𝐸2

𝑠 ℎ(𝑥⃗) = 3𝑠
∏︀𝑠

𝑖=1(1− 2𝑥𝑖)
2 over parallelepiped

grids 𝑀 (⃗𝑎,𝑁) on the cube [0, 1)𝑠 decreases with increasing 𝑁 .
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1. Введение

Одним из главных объектов исследований в теоретико-числовом методе Н. М. Коробова
являются параллелепипедальные сетки и квадратурные формулы на них, предложенные в
1959 году [1, 2]:

𝑀(𝑎1, . . . , 𝑎𝑠−1;𝑁) =

{︂(︂
𝑘

𝑁
,

{︂
𝑘𝑎1
𝑁

}︂
, . . . ,

{︂
𝑘𝑎𝑠−1

𝑁

}︂)︂⃒⃒⃒⃒
𝑘 = 0, . . . , 𝑁 − 1

}︂
, (1)

1∫︁
0

. . .

1∫︁
0

𝑓(𝑥1, . . . , 𝑥𝑠)𝑑𝑥0 . . . 𝑑𝑥𝑠−1 =
1

𝑁

𝑁−1∑︁
𝑘=0

𝑓

(︂
𝑘

𝑁
,

{︂
𝑘𝑎1
𝑁

}︂
, . . . ,

{︂
𝑘𝑎𝑠−1

𝑁

}︂)︂
+𝑅𝑁 (𝑓) (2)
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на классах периодических функций 𝐸𝛼
𝑠 (𝐶) c параметром гладкости 𝛼 > 1, задаваемых абсо-

лютно сходящимся рядом Фурье

𝑓(𝑥1, . . . , 𝑥𝑠) =
∑︁

(𝑚1,...,𝑚𝑠)∈Z𝑠

𝐶(𝑚1, . . . ,𝑚𝑠)

(𝑚1 . . .𝑚𝑠)𝛼
𝑒2𝜋𝑖(𝑚1𝑥1+...+𝑚𝑠𝑥𝑠), (3)

где для 𝑥 ∈ R, 𝑥 = max{1, |𝑥|} и для всех (𝑚1, . . . ,𝑚𝑠) ̸= (0, . . . , 0) выполняется неравенство
|𝐶(𝑚1, . . . ,𝑚𝑠)| ⩽
⩽ 𝐶, где 𝐶 некоторая константа. Для них в работе [3] была поставлена задача о поиске
наборов целых чисел (𝑎1, . . . , 𝑎𝑠−1) по модулю натурального 𝑁 , для которых погрешность
квадратурной формулы 𝑅𝑁 (𝑓) была бы как можно меньше в том или ином смысле. Такие
наборы называются оптимальными коэффициентами.

Начиная с работы Э. Главки [4] вопрос о нахождении оптимальных коэффициентов связан
с изучением свойств решёток решений линейного сравнения.

Параллелепипедальные сетки применимы на классе дифференцируемых функций 𝐻𝛼
𝑠 с

помощью простейших периодизаций функций, подробнее см. глава 1, параграфы 2, 4 [5], либо
гладких периодизаций, предложенных И. Ф. Шарыгиным [6]. Периодизации можно приме-
нять не к функциям, а к сеткам (смотри [7]). В работе [8] рассмотрен вопрос о применение
параллелепипедальных сеток для интегрирования функций ограниченной вариации.

Для оценки качества квадратурных формул есть два классических метода. Первый под-
ход это — нахождение точной верхней грани нормы функционала погрешности численного
интегрирования

sup
𝑓∈𝐸𝛼

𝑠 (𝐶)
|𝑅𝑁 (𝑓)|. (4)

Более подробную информацию на эту тему см. в монографии С. М. Никольского [9]. Второй
подход основан на вероятностных методах, его мы затрагивать не будем. Для классов функций
𝐸𝛼

𝑠 (𝐶) Н.М. Коробовым [10] введена граничная функция класса

𝑓0 = 𝐶
∑︁

(𝑚1,...,𝑚𝑠)∈Z𝑠

𝑒2𝜋𝑖(𝑚1𝑥1+...+𝑚𝑠𝑥𝑠)

(𝑚1 . . .𝑚𝑠)𝛼
, (5)

на которой достигается точная верхняя грань нормы функционала погрешности численно-
го интегрирования. Эти функции использовались еще в [5]. Для нахождения оптимальных
коэффициентов будем использовать граничную функцию класса 𝐸2

𝑠 (𝐶)

ℎ(𝑥1, . . . , 𝑥𝑠) = 3𝑠
𝑠∏︁

𝑖=1

(1− 2𝑥𝑖)
2. (6)

2. Решётки, ассоциированные с однородными линейными срав-

нениями

Пусть 𝑁 — натуральное, большее 1. Обозначим через Λ(𝑎1, 𝑎2, . . . , 𝑎𝑠−1;𝑁) целочислен-
ную решётку, состоящую из всех целых точек (𝑚0, . . . ,𝑚𝑠−1), удовлетворяющих линейному
сравнению

𝑚0 + 𝑎1𝑚1 + . . .+ 𝑎𝑠−1𝑚𝑠−1 ≡ 0 (mod 𝑁). (7)

Далее, 𝑠 — делитель 𝜙(𝑁) и целое 𝑎 ∈ (1, 𝑁/2] удовлетворяет сравнению

𝑎𝑠 ≡ 1 (mod 𝑁),
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а

𝑎𝑖 ̸≡ 1 (mod 𝑁), 0 < 𝑖 < 𝑠.

Тогда 𝑎 принадлежат показателю 𝑠 по модулю 𝑁 и

1, 𝑎, 𝑎2, . . . , 𝑎𝑠−1

— различные вычеты по модулю 𝑁 .
Теперь рассмотрим случай, когда 2𝑠 — делитель 𝜙(𝑁) и целое 𝑎 удовлетворяет сравнению

𝑎𝑠 ≡ −1 (mod 𝑁),

а

𝑎𝑖 ̸≡ 1 (mod 𝑁), 0 < 𝑖 < 2𝑠.

Тогда 𝑎 принадлежат показателю 2𝑠 по модулю 𝑁 и

1, 𝑎, 𝑎2, . . . , 𝑎2𝑠−1

— различные вычеты по модулю 𝑁 . Более подробно о показателях смотри [11] глава 6.
Положим

𝑁1 = [(𝑁 − 1)/2], 𝑁2 = [𝑁/2],

𝑎1 = 𝑎, 𝑎2 ≡ 𝑎2 (mod 𝑁), . . . , 𝑎𝑠−1 ≡ 𝑎𝑠−1 (mod 𝑁), где 𝑎𝑖 ∈ [−𝑁1, 𝑁2]. (8)

Замечание 1. Так как решётка Λ(𝑎1, 𝑎2, . . . , 𝑎𝑠−1;𝑁) при замене знаков у некоторых 𝑎𝑖
на противоположный не меняется с точностью до симметрии относительно гиперплоско-
стей размерности 𝑠− 1, то можно положить

𝑠
√
𝑁 − 1 ⩽ 𝑎 ⩽ 𝑁/2. (9)

Замечание 2. Параметры решётки Λ(𝑎1, 𝑎2, . . . , 𝑎𝑠−1;𝑁)

𝑎1 = 𝑎, 𝑎2 ≡ 𝑎2 (mod 𝑁), . . . , 𝑎𝑠−1 ≡ 𝑎𝑠−1 (mod 𝑁), где 𝑎𝑖 ∈ [−𝑁1, 𝑁2],

такие что
𝑎𝑠 ≡ ±1 (mod 𝑁) и 𝑎𝑖 ̸≡ 1 (mod 𝑁), 0 < 𝑖 < 𝑠,

и параметры решётки Λ(𝑎*1, 𝑎
*
2, . . . , 𝑎

*
𝑠−1;𝑁)

𝑎*1 = 𝑎𝑖 (mod 𝑁), 𝑎*2 ≡ 𝑎2𝑖 (mod 𝑁), . . . , 𝑎*𝑠−1 ≡ 𝑎𝑖(𝑠−1) (mod 𝑁), где 𝑎*𝑖 ∈ [−𝑁1, 𝑁2],

такие что
𝑎𝑖𝑠 ≡ ±1 (mod 𝑁) и 𝑎𝑖𝑘 ̸≡ 1 (mod 𝑁), 0 < 𝑘 < 𝑠,

задают одну и туже решетку Λ(𝑎1, 𝑎2, . . . , 𝑎𝑠−1;𝑁) с точностью до симметрии относи-
тельно гиперплоскостей размерности 𝑠− 1.

Гиперболический параметр решётки, задается равенством

𝑞(Λ) = min
𝑚⃗∈Λ, 𝑚̸⃗=0⃗

𝑚0 . . .𝑚𝑠−1, (10)

где 𝑚 = max{1, |𝑚|}. Подробнее смотрите монографию [12].
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Замечание 3. Для 𝑠-мерного гиперболического параметра выполняются неравенства

𝑞(Λ(𝑎1, 𝑎2, . . . , 𝑎𝑠−1;𝑁)) ⩽ min
0<𝑖<𝑠

𝑞(Λ(𝑎𝑖;𝑁)). (11)

𝑞(Λ(𝑎1, 𝑎2, . . . , 𝑎𝑠−1;𝑁)) ⩽ min
0<𝑖,𝑗<𝑠,𝑖̸=𝑗

𝑞(Λ(𝑎𝑖 − 𝑎𝑗 ;𝑁)). (12)

𝑞(Λ(𝑎;𝑁)) ⩽ 𝑎. (13)

Поэтому на параметры решётки Λ(𝑎1, 𝑎2, . . . , 𝑎𝑠−1;𝑁), наилучшие относительно инте-
грирования,

𝑎1 = 𝑎, 𝑎2 ≡ 𝑎2 (mod 𝑁), . . . , 𝑎𝑠−1 ≡ 𝑎𝑠−1 (mod 𝑁), где 𝑎𝑖 ∈ [−𝑁1, 𝑁2],

такие что
𝑎𝑠 ≡ ±1 (mod 𝑁) и 𝑎𝑖 ̸≡ 1 (mod 𝑁), 0 < 𝑖 < 𝑠,

можно наложить ограничения:

|𝑎𝑖| > 𝐶(𝑁), 0 < 𝑖 < 𝑠, |𝑎𝑖 − 𝑎𝑗 | > 𝐶(𝑁), 0 < 𝑖, 𝑗 < 𝑠, 𝑖 ̸= 𝑗, (14)

где 𝐶(𝑁) = 𝑁/𝑙𝑛𝑠(𝑁) — оценка из работы [15].
Вычислить гиперболический параметр 𝑠-мерной решётки решений линейного сравнения

можно за 𝑂((𝑙𝑛(𝑁))𝑠−1) операций [13], а условие (14) можно проверять за 𝑂(𝑙𝑛(𝑁)) операций
[14].

3. Последовательность параллелепипедальных сеток с убыва-

ющей погрешностью численного интегрирования граничной

функции класса

Последовательность 𝑠-мерных оптимальных коэффициентов 𝑃𝐻(𝑠, 𝑎1, . . . , 𝑎𝑠−1;𝑁)𝑖 стро-
им следующим образом:

1. Перебираем 𝑎 с условием замечания 1 и 2. Находим различные с точностью до переста-
новки наборы (𝑎1, . . . , 𝑎𝑠−1) по модулю 𝑁 , такие что 𝑎1 принадлежит показателю 𝑠 или 2𝑠 по
модулю 𝑁 .

2. Для полученных наборов проверяем условия замечания 3, если они выполнены, то вычис-
ляем интеграл от функции ℎ(𝑥1, . . . , 𝑥𝑠) по квадратурной формуле 2. Нас будет интересовать
набор для которого |𝑅𝑁 (ℎ)| минимальный.

3. Из полученных наборов строим убывающую по |𝑅𝑁 (ℎ)| с ростом 𝑁 последовательность.
Последовательности оптимальных коэффициентов для 𝑠 = 3, . . . , 11, 𝑁 ⩽ 106 см. по адресу

https://poivs.tsput.ru/ru/Count/TMK/BestCoeffs. Ниже приведены выборки из этих последо-
вательностей.
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s=3 s=4 s=5

𝑁 𝑎 𝑅𝑁 (ℎ) 𝑁 𝑎 𝑅𝑁 (ℎ) 𝑁 𝑎 𝑅𝑁 (ℎ)

18 7 0,857601

52 23 0,165817

74 27 0,096179 73 22 0,605890

98 31 0,064119 97 47 0,424429

155 56 0,029865 226 95 0,128203 262 73 0,540898

436 45 0,005508 457 170 0,045586 453 19 0,270954

584 81 0,003518 562 221 0,031911 568 25 0,198168

837 253 0,001894 825 307 0,019506 852 25 0,120193

1220 319 0,000887 1360 251 0,008337 1212 589 0,072506

4122 1967 0,000124 3298 937 0,002322 3275 859 0,018334

5562 881 6,90E-05 7735 2192 0,000573 6262 2205 0,006880

8180 2099 3,43E-05 8352 2071 0,000532 8168 1697 0,004630

29419 5612 3,61E-06 10656 4841 0,000332 21220 381 0,001091

36087 8831 2,61E-06 32697 4591 5,21E-05 33550 1961 0,000595

66707 18162 8,65E-07 72761 9569 1,44E-05 55748 20411 0,000264

87863 36081 4,89E-07 87975 33418 1,07E-05 85244 24125 0,000126

117061 47090 3,00E-07 190320 86243 2,60E-06 130724 39371 7,09E-05

361044 82151 3,80E-08 498435 169387 5,12E-07 383532 61489 1,24E-05

742442 236367 9,97E-09 598946 246915 4,18E-07 663985 264566 5,30E-06

861498 407485 7,49E-09 876641 36291 2,15E-07 928378 48791 3,21E-06

s=6 s=7 s=8

𝑁 𝑎 𝑅𝑁 (ℎ) 𝑁 𝑎 𝑅𝑁 (ℎ) 𝑁 𝑎 𝑅𝑁 (ℎ)

629 208 0,782899

925 193 0,486496

1385 182 0,294259 1766 71 0,91419

3281 1109 0,100260 4118 1039 0,330884 5440 937 0,943521

5645 1427 0,049279 6223 1786 0,202369 6113 1178 0,813778

8321 606 0,029442 8193 553 0,149511 8273 2742 0,571604

11115 1114 0,020559 12470 1269 0,086316 10081 1064 0,461922

32513 12473 0,004564 38756 7307 0,020557 35153 8875 0,107398

56290 22147 0,002098 59222 13315 0,011725 60736 14695 0,053958

91104 34447 0,001061 86706 10871 0,007377 84913 7336 0,036507

113269 33665 7,58E-04 107691 17693 0,005486 116497 6297 0,024833

373469 138835 1,29E-04 351189 784 1,08E-03 334849 5503 0,006616

762565 279426 4,52E-05 659402 96619 4,51E-04 689089 187847 2,53E-03

973245 74611 3,13E-05 777287 356124 3,60E-04 780640 199123 2,20E-03

s=9 s=10 s=11

𝑁 𝑎 𝑅𝑁 (ℎ) 𝑁 𝑎 𝑅𝑁 (ℎ) 𝑁 𝑎 𝑅𝑁 (ℎ)

17164 8129 0,917022

34067 6643 0,427520 52824 19997 0,917562

61362 23117 0,218938 59675 15254 0,806003

80271 9188 0,162477 103525 34788 0,436024 152948 55323 0,994392

336987 106117 0,029954 336025 60097 0,118757 333524 10809 0,427936

552026 245945 1,65E-02 585173 171372 6,30E-02 553528 9521 2,48E-01

806246 362827 9,98E-03 782936 6537 4,48E-02 796764 6887 1,64E-01
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Для оценки качества квадратурной формул с оптимальными коэффициентами можно ис-
пользовать нижнию оценку полученную И.Ф. Шарыгиным в работе [17]

𝑅𝑁 (𝑓) > 𝑂

(︂
𝑙𝑛𝑠−1(𝑁)

𝑁𝛼

)︂
.

Ниже на рисунках приведено отношение погрешности численного интегрирования 𝑅𝑁 (ℎ)
к числу точек для оптимальных коэффициентов полученных разными методами

𝐶(𝑁) = 𝑅𝑁 (ℎ)
𝑁2

𝑙𝑛𝑠−1(𝑁)
.

Рис. 1: Для размерности 𝑠 = 3 по горизонтальной оси в логарифмической шкале число точек
𝑁 , по вертикальной 𝐶(𝑁), синие точки соответствуют набором оптимальных коэффициентов

полученными по алгоритму из данной статьи, оранжевые — приведенным в статье [18]

Рис. 2: Для размерности 𝑠 = 4 по горизонтальной оси в логарифмической шкале число точек
𝑁 , по вертикальной 𝐶(𝑁), синие точки соответствуют набором оптимальных

коэффициентов полученными по алгоритму из данной статьи, оранжевые — приведенным в
статье [18], серые — приведенным в статье [19].
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Ниже приведены результаты статистической обработки 𝑅𝑁 (ℎ) ⩽ 1 для наборов оптималь-
ных коэффициентов, соответствующих показателям 𝑠 и 2𝑠 по модулю𝑁 . Методом наименьших
квадратов вычислены коэффициенты 𝐶 и 𝛽 для размерностей 𝑠 = 3, . . . , 10.

𝑅𝑁 (ℎ) ≈ 𝐶 𝑙𝑛
𝛽(𝑁)

𝑁2
.

𝑠 𝐶 𝛽

3 26,092225 2,094288

4 16,611884 3,528775

5 6,3581984 4,961214

6 2,0202589 6,308449

7 0,4167914 7,707383

8 0,0781266 9,045447

9 0,0155859 10,27278

10 4,549E-03 11,29249

4. Заключение

В работе представлен эвристический алгоритм поиска оптимальных коэффициентов, даю-
щий наилучший из известных в смысле минимизации функционала погрешности численного
интегрирования ℎ-функции. Отметим что для размерности 𝑠 = 3 получен результат близкий
к нижней оценки.
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Аннотация

Работа посвящена рассмотрению многокубитовых и многокудитовых квантовых систем
в чистых состояниях, их описанию с точки зрения разбиения на непересекающиеся мно-
жества запутанных кубитов (кудитов) — наборы запутанности, представлена формула
логарифмической запутанности многокубитовых и многокудитовых квантовых систем в
чистых и смешанных состояниях. С помощью методов искусственного интеллекта произ-
ведена классификация многокубитовых систем, учитывающая максимальное по вектору
состояния значение мгновенной запутанности и логарифмическую запутанность, построе-
ны диаграммы распределения этих характеристик в зависимости от факторизации вектора
состояния системы на наборы запутанности. Построена формула средней по ансамблю ло-
гарифмической запутанности для многокубитовых и многокудитовых квантовых систем в
чистых состояниях.
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Abstract

The work is devoted to the consideration of multi-qubit and multi-qudit quantum systems
in pure states, their description in terms of partitioning into non-overlapping sets of entangled
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qubit and multi-qudit quantum systems in pure and mixed states is presented. Using artificial
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maximum instantaneous entanglement value and logarithmic entanglement, diagrams of the
distribution of these characteristics depending on the factorization of the system state vector
into sets of entanglement are constructed. A formula for the ensemble-averaged logarithmic
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1. Введение

Огромную роль в современной физике, например, в квантовой криптографии, квантовых
вычислениях и при исследовании процессов на атомарном уровне, играет явление квантовой
запутанности [1, 3, 4, 5, 2, 6, 7, 8]. Это явление описывает зависимость характеристик двух
квантовых систем, при котором измерение состояния одной из систем мгновенно влияет на
состояние другой.

Квантовую систему в чистом состоянии можно характеризовать вектором состояния |Ψ⟩,
которое образовано суперпозицией состояний |𝑖⟩, 𝑖 = 0, 2𝑛−1

2 [9, 10, 12, 11, 14, 13]. Квантовая
система называется запутанной, если её вектор состояния непредставим в виде тензорного
произведения векторов состояния подсистем:

|Ψ⟩ ≠ |Ψ1⟩ ⊗ |Ψ2⟩ . (1)

Примером запутанных состояний являются состояния Гринберга-Хорна-Цайлингера [15]:

|Ψ1,2⟩ =
1√
2

(|000⟩ ± |111⟩) . (2)

Если квантовая система находится в смешанном состоянии, то её можно описать с помощью
матрицы плосности 𝜌, для систем в чистых состояниях матрица плотности 𝜌 выражается
через вектор состояния как:

𝜌 = |Ψ⟩ ⟨Ψ| . (3)

Элементы матрицы, стоящие на главной диагонали, задают вероятности обнаружить систе-
му в одном из состояний суперпозиции, поэтому они неотрицательны. Запутанность системы
из двух кубитов (A,B) можно найти по формуле [16]:

𝜏 = 4 𝑑𝑒𝑡𝜌𝐴 = 4 𝑑𝑒𝑡𝜌𝐵, (4)

где 𝜌𝐴, 𝜌𝐵 - матрицы плотности подсистем A и B.
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Интересной задачей является задача определения запутанности квантовой системы из трёх
и более кубитов или для систем с большим чем два числом уровней - кудитов. Сначала необ-
ходимо найти ответ на более простой вопрос: как по вектору состояния системы в чистом
состоянии понять, запутана она или нет? В работе представлено решение задачи фактори-
зации вектора состояния системы на векторы состояния подсистем, алгоритм, позволяющий
по исходному вектору состояния системы ответить на вопрос, построены формула средней по
ансамблю логарифмической запутанности для многокубитовых и многокудитовых систем в
чистых состояниях и формула логарифмической запутанности для многокубитовых и много-
кудитовых систем в чистых и смешанных состояниях.

2. Алгоритм разбиения системы в чистом состоянии на наборы

запутанности

В основе определения наборов запутанности квантовой системы лежит запутанность двух
кубитов (кудитов) (A, B), два кубита (кудита) принадлежат разным наборам запутанности,
если возможно определить такое разбиение системы на подсистемы, что:

1. Кубиты (кудиты) A и B находятся в разных наборах.

2. Состояние каждой из подсистем чистое.

Если такого разбиения нет, тогда кубиты A и B лежат в одном наборе запутанности. Тогда
можно построить алгоритм факторизации вектора состояния на наборы запутанности:

1. Отделение незапутанных кубитов:

а) Если на k-м месте всех векторов столбцов с ненулевыми коэффициентами стоят
только нули (единицы), то k-й кубит незапутан.

b) Если на m-м месте всех векторов столбцов с ненулевыми коэффициентами стоит
одинаковое число нулей и единиц и отношение не равных нулю коэффициентов
при одинаковых столбцах, образованных после вычёркивания m-й цифры, к об-
разованным после вычёркивания m-й цифры постоянно, то m-й кубит незапутан
с остальными.

2. Поиск пар запутанных кубитов:

Пусть 𝑐0 - сумма коэффициентов вектора состояния, у которых на i-м и j-м местах
стоят нули, 𝑐1 - сумма коэффициентов, у которых на i-м месте стоит ноль, а на j-м
- единица, 𝑐2 - сумма коэффициентов, у которых на i-м месте стоит единица, а на j-
м ноль, 𝑐3 - сумма коэффициентов, у которых на i-м и j-м местах стоят единицы.
Тогда i-й и j-й кубиты образуют пару запутанности, если выполняется равенство:

𝑐0𝑐3 = 𝑐1𝑐2. (5)

3. Объединение пар запутанных кубитов в наборы запутанности по свойству транзитивно-
сти запутанности [17]:

Если i-й кубит запутан с j-м кубитом, а j-й кубит запутан с k-м кубитом, то кубиты
i, j и k входят в один набор запутанности.

Работу алгоритма можно показать на примере трёхкубитовой системы с вектором состояния:

|Ψ3⟩ = (𝑎0 |00⟩𝐴𝐵 + 𝑎1 |01⟩𝐴𝐵 + 𝑎2 |10⟩𝐴𝐵 + 𝑎3 |11⟩𝐴𝐵)⊗ (𝑏0 |0⟩𝐶 + 𝑏1 |1⟩𝐶) , (6)
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где 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑏0 и 𝑏1 - вещественные числа, удовлетворяющие условиям нормировки:

3∑︁
𝑖=0

1∑︁
𝑗=0

|𝑎𝑖𝑏𝑗 |2 = 1;
3∑︁

𝑖=0

|𝑎𝑖|2 = 1
1∑︁

𝑖=0

|𝑏𝑖|2 = 1. (7)

Вектор состояния системы можно переписать в виде:

|Ψ3⟩ = 𝑎0𝑏0 |000⟩𝐴𝐵𝐶 + 𝑎0𝑏1 |001⟩𝐴𝐵𝐶 + 𝑎1𝑏0 |010⟩𝐴𝐵𝐶 + 𝑎1𝑏1 |011⟩𝐴𝐵𝐶 +

+𝑎2𝑏0 |100⟩𝐴𝐵𝐶 + 𝑎2𝑏1 |101⟩𝐴𝐵𝐶 + 𝑎3𝑏0 |110⟩𝐴𝐵𝐶 + 𝑎3𝑏1 |111⟩𝐴𝐵𝐶 . (8)

Следует проверить, есть ли в системе незапутанные кубиты. Можно начать проверку с кубита
A, для этого необходимо найти отношения коэффициентов, стоящих при столбцах, образован-
ных после вычёркивания |0⟩𝐴 к коэффициентам, стоящих при тех же стобцах, полученных
после вычёркивания |1⟩𝐴:

𝑎0𝑏0
𝑎2𝑏0

;
𝑎0𝑏1
𝑎2𝑏1

;
𝑎1𝑏0
𝑎3𝑏0

;
𝑎1𝑏1
𝑎3𝑏1

. (9)

Видно, что эти соотношения равны друг другу, когда 𝑎0𝑎3 = 𝑎1𝑎2, что соответствует ситуации,
когда кубиты A и B незапутаны.

Для кубита B отношения коэффициентов имеет вид:

𝑎0𝑏0
𝑎1𝑏0

;
𝑎0𝑏1
𝑎1𝑏1

;
𝑎2𝑏0
𝑎3𝑏0

;
𝑎2𝑏1
𝑎3𝑏1

. (10)

Кубит B незапутан, когда выполняется такое же равенство, как и для кубита A:

𝑎0𝑎3 = 𝑎1𝑎2. (11)

Осталось рассмотреть кубит C. Отношения коэффициентов для этого кубита записываются
как:

𝑎0𝑏0
𝑎0𝑏1

;
𝑎1𝑏0
𝑎1𝑏1

;
𝑎2𝑏0
𝑎2𝑏1

;
𝑎3𝑏0
𝑎3𝑏1

. (12)

Эти отношения попарно равны друг другу, поэтому кубит C незапутан с кубитами A и B.

Следующим шагом является поиск запутанных пар кубитов. Можно начать с проверки
пары кубитов A и B на запутанность, для этого необходимо найти сумму коэффициентов век-
тора состояния при |00⟩𝐴𝐵 - 𝑐0, сумму коэффициентов при |01⟩𝐴𝐵 - 𝑐1, сумму коэффициентов
при |10⟩𝐴𝐵 - 𝑐2 и сумму коэффициентов при |11⟩𝐴𝐵 - 𝑐3:

𝑐0 = 𝑎0(𝑏0 + 𝑏1); 𝑐1 = 𝑎1(𝑏0 + 𝑏1) 𝑐2 = 𝑎2(𝑏0 + 𝑏1); 𝑐3 = 𝑎3(𝑏0 + 𝑏1). (13)

Отсюда с учётом второго условия алгоритма (5) следует, что кубиты A и B образуют пару
запутанности, когда выполняется равенство:

𝑎0𝑎3 = 𝑎1𝑎2. (14)

Таким образом, продемонстрирована работа построенного в работе алгоритма на примере
системы из трёх кубитов, в приложении приведена реализация этого алгоритма в среде про-
граммирования Python.

Алгоритм факторизации вектора состояния на наборы запутанности можно обобщить на
случай кудита с 𝑑 уровнями:

1. Отделение незапутанных кудитов:
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а) Если цифра на k-м месте всех векторов столбцов с ненулевыми коэффициентами
для всех векторов одинаковая, то k-й кудит незапутан.

b) Если на m-м месте всех векторов столбцов с ненулевыми коэффициентами стоит
одинаковое количество различных цифр и отношение не равных нулю коэффици-
ентов при одинаковых столбцах, образованных после вычёркивания m-й цифры,
к образованным после вычёркивания m-й цифры постоянно, то m-й кудит незапу-
тан с остальными.

2. Поиск пар запутанных кудитов:

Пусть 𝑥𝑎𝑖𝑏𝑗 - коэффициент вектора состояния |𝑎𝑏⟩𝑖𝑗 (𝑎, 𝑏 ∈ {0, 1, ..., 𝑑 − 1}), образо-
ванного свёрткой вектора состояния |Ψ⟩ по всем кудитам кроме 𝑖-го и 𝑗-го, тогда
i-й и j-й кубиты образуют пару запутанности, если выполняется равенство:⃒⃒⃒⃒

⃒⃒⃒⃒ 𝑥0𝑖0𝑗 𝑥0𝑖1𝑗 ... 𝑥0𝑖(𝑑−1)𝑗

𝑥1𝑖0𝑗 𝑥1𝑖1𝑗 ... 𝑥0𝑖(𝑑−1)𝑗

... ... ... ...
𝑥(𝑑−1)𝑖0𝑗 𝑥(𝑑−1)𝑖1𝑗 ... 𝑥(𝑑−1)𝑖(𝑑−1)𝑗

⃒⃒⃒⃒
⃒⃒⃒⃒ = 0. (15)

3. Объединение пар запутанных кудитов в наборы запутанности по свойству транзитивно-
сти запутанности [17]:

Если i-й кудит запутан с j-м кудитом, а j-й кудит запутан с k-м кудитом, то кудиты
i, j и k входят в один набор запутанности.

3. Логарифмическая запутанность

Для многокубитовых и многокудитовых квантовых систем с 𝑑 уровнями в чистых и сме-
шанных состояниях логарифмическую запутанность можно определить по формуле:

𝜏 =
𝑑𝑑

𝑛

𝑛∑︁
𝑖=1

(𝜌𝑖 · log𝑛 𝑞𝑖), (16)

где 𝜌𝑖 - матрица плотности 𝑖-го кубита ; 𝑞𝑖 - количество кудитов в наборе с 𝑖-м кудитом.
Среднюю по ансамблю логарифмическую запутанность можно найти интегрируя вектор

состояния квантовой системы по мере 𝑑Ω:

𝜏 =

∫︁
Ω

det 𝜌𝐴𝑑Ω, (17)

где 𝑑Ω = 1
(2𝜋)𝑑𝑛

𝑑𝑛−1∏︀
𝑖=0

𝑑𝜑𝑖
𝑑𝑛−2∏︀
𝑗=0

𝑑 sin2𝑑𝑛−2−2𝑗 𝜃𝑗 , 0 ⩽ 𝜑𝑖 ⩽ 2𝜋, 0 ⩽ 𝜃𝑗 ⩽ 2𝜋.

Можно получить среднюю по ансамблю логарифмическую запутанность для квантовой
системе из 𝑛 кудитов с 𝑑 уровнями:

𝜏 = 𝑑𝑑−1 (𝑑𝑛−1 − 1)!𝑑𝑛!

(𝑑𝑛−1 − 𝑑)!(𝑑𝑛 + 𝑑− 1)!
. (18)

В среде программирования Python построим теоретический и экспериментальный, получен-
ный в ходе моделирования произвольных векторов состояния квантовых систем, графики
зависимости запутанности от числа кудитов для квантовых систем, разным цветом показаны
характеристики векторов состояния квантовых систем с различным числом уровней.
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(a) Теоретическая зависимость средней
по ансамблю систем логарифмической

запутанности от числа кудитов в
системе

(b) Экспериментальная зависимость
средней по ансамблю систем

логарифмической запутанности от
числа кудитов в системе

Рис. 1: Графики зависимости средней по ансамблю систем логарифмической запутанности
от числа кудитов в системе

При усреднении по большему числу систем точность будет выше. Значение средней запу-
танности стремится к единице.

4. Моделирование векторов состояния и классификация систем

с различными наборами запутанности с помощью регрессион-

ного метода k ближайших соседей

Каждую систему в чистом состоянии можно охарактеризовать с помощью распределения
кубитов по наборам запутанности. Например, для системы с вектором состояния (8) распре-
деление по наборам запутанности запишется как A,B - C, если кубиты A и B запутаны, и
A-B-C, если кубиты незапутаны. Для упрощения математической модели представим, что
кубиты неразличимы, т.е. ситуация A,B - C равносильна ситуации A,С - B (здесь запутаны
кубиты A и C, и незапутан кубит B). Эти две ситуации можно объединить в один случай:
(1-2). Для трёхкубитовой системы возможны три варианта разбиения:

1. Система незапутана: (1-1-1).

2. Запутаны два кубита в системе: (1-2) или (2-1).

3. Запутаны все кубиты: (3).

Для k-го кубита системы из n кубитов можно определить мгновенную запутанность:

𝜏 = 4
2𝑛−1−2∑︁
𝑖=0

2𝑛−1−1∑︁
𝑗=𝑖+1

⃒⃒⃒⃒
𝑥2𝑘𝑖 𝑥2𝑘𝑖+2𝑘−1

𝑥2𝑘𝑗 𝑥2𝑘𝑗+2𝑘−1

⃒⃒⃒⃒2
. (19)

В программной среде Python было смоделировано 1000 случайных векторов состояния со слу-
чайными коэффициентами и случайным разбиением по наборам запутанности, для каждого
из них найдена логарифмическая запутанность и максимальная по состоянию мгновенную
запутанность, затем построены графики распределения их по разбиениям на наборы запутан-
ности. С помощью регрессионного метода k ближайших соседей (при k = 2) вектора состояния
систем были классифицированы по вариантам разбиений.
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Для последовательности изложения следует начать с простого случая генерации векто-
ров состояния двухкубитовых систем. В этом случае возможны два варианта распределения
наборов запутанности: (1-1) - кубиты незапутаны и (2) - кубиты запутаны, в первом вариан-
те максимальная запутанность равна нулю (точки, соответствующие незапутанным системам
выделены фиолетовым на рисунке 1a), во втором случае запутанность первого кубита рав-
на запутанности второго кубита и равна логарифмической запутанности системы, поэтому
на графике в пределе при стремлении числа итераций к бесконечности получится прямая,
точки прямой выделены жёлтым на рисунке 1a. Классификация векторов состояния по двум
вариантам распределения наборов представлена на рисунке 1b, вариант (1-1) обозначен нулём,
(2) - единицей.

(a) Точечный график распределения
векторов состояния

(b) Классификация систем
регрессионым knn - методом

Рис. 2: Классификация векторов состояния по наборам запутанности для двух кубитов

Смоделированы векторы состояния трёхкубитовых систем для указанных в начале пара-
графа вариантов разбиений, полученный график с классификацией векторов состояния по на-
борам запутанности представлен на рисунке 3, точность классификации составила ≈ 99.9%
.

(a) Точечный график распределения
векторов состояния

(b) Классификация систем
регрессионым knn - методом

Рис. 3: Классификация трёхкубитовых систем: 0 - (1-1-1); 1 - (1-2); 2 - (3)

Для систем из четырёх кубитов возможны пять вариантов распределения запутанности:

1. Система незапутана: (1-1-1-1).

2. Два кубита запутаны и два незапутаны: (1-1-2).



Алгоритм факторизации вектора состояния квантовой системы 101

3. Кубиты запутаны по два: (2-2).

4. Запутаны три кубита: (1-3).

5. Запутаны все кубиты в системе: (4).

Классификация векторов состояния по разбиениям на наборы запутанности показана на ри-
сунке 4. Точность ниже чем для трёхкубитовых систем, она составила ≈ 97.2 %.

(a) Точечный график распределения векторов
состояния

(b) Классификация систем регрессионным
knn-методом

Рис. 4: Классификация четырёхкубитовых систем: 0 - (1-1-1-1); 1 - (1-1-2); 2 - (1-3); 3 - (2-2);
4 - (4)

Для пятикубитовых систем варианты разбиений и классификация представлены на рисун-
ке 5.

(a) Точечный график распределения
векторов состояния

(b) Классификация систем
регрессионым knn - методом

Рис. 5: Классификация пятикубитовых систем: 0 - (1-1-1-1-1); 1 - (1-1-1-2); 2 - (1-1-3); 3 -
(1-2-2); 4 - (1-4); 5 - (2-3); 6 - (5)

Здесь точность классификации составила ≈ 94%.
Число вариантов разбиения вектора состояния n-кубитовой системы на наборы запутан-

ности можно определить по формуле:

𝑛−1∑︁
𝑖=1

1

𝑚!

𝑚∑︁
𝑖=0

(−1)𝑖𝐶𝑖
𝑚(𝑚− 𝑖)𝑛, (20)
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где 𝑚 - число подсистем (наборов запутанности), на которые факторизуется вектор состояния
системы. Из этой формулы видно, что число вариантов разбиения растёт сверхполиномиально,
поэтому точность классифиции систем с большим числом кубитов будет низкой.

5. Заключение

Основными результатами работы являются:

1. Введение понятия наборов запутанности квантовых систем из двух и более кубитов (ку-
дитов), а также построение алгоритма разбиения чистых систем на эти наборы для си-
стем из кубитов или кудитов с 𝑑 уровнями.

2. Построение формулы логарифмической запутанности для многокубитовых и многоку-
дитовых квантовых систем в чистых и смешанных состояниях:

𝜏 =
𝑑𝑑

𝑛

𝑛∑︁
𝑖=1

(𝜌𝑖 · log𝑛 𝑞𝑖), (21)

где 𝜌𝑖 - матрица плотности 𝑖-го кубита ; 𝑞𝑖 - количество кудитов в наборе с 𝑖-м кудитом.

3. Получение формулы для средней по ансамблю логарифмической запутанности по ан-
самблю для кудитов в системах с 𝑑 уровнями:

𝜏 = 𝑑𝑑−1 (𝑑𝑛−1 − 1)!𝑑𝑛!

(𝑑𝑛−1 − 𝑑)!(𝑑𝑛 + 𝑑− 1)!
. (22)

4. В среде программирования Python смоделировано 1000 случайных векторов состояния
со случайными коэффициентами и случайным разбиением по наборам запутанности,
для каждого из них найдена логарифмическая запутанность и максимальная по состоя-
нию мгновенную запутанность, построены графики распределения их по разбиениям на
наборы запутанности и с помощью регрессионного метода k ближайших соседей вектора
состояния систем классифицированы по вариантам разбиений. Моделирование прове-
дено для чистых систем с различным числом кубитов, системы с количеством кубитов
не рассматривались, так как с ростом числа кубитов сверхэкспоненциально растёт число
возможных вариантов разбиения системы на наборы запутанности.
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Приложение 

import random 

import numpy as np 

import math 

import cmath 

import scipy.linalg as la 

def nSkobka(i): 

 n1 = [] 

 while i > 0: 

 k = random.randint(1,i) 

 i = i - k 

 n1.append(k) 

 return(n1) 

def RandVec(n1): 

 for j in range(0,len(n1)): 

  v = np.sqrt(np.random.uniform(0, 1, 2**n1[j])) * np.exp(1.j * 

np.random.uniform(0, 2 * np.pi, 2**n1[j])) 

 #Норма случайного вектора состояния 

 norm = np.linalg.norm(v) 

 #Нормировка случайного вектора состояния 

 const = 1/norm 

 v = const*v 

 if j == 0: 

 V = v 

 else: 

  V = np.kron(V,v) 

 return(V) 

n=12 

nStates=2**n 

l = nSkobka(n) 

print(l) 

c = RandVec(l) 

#print(c) 

# Отделение незапутанных кубитов 

i=0 

k=0 

num=[] 

CNotZero=[] 

for i in range(0,nStates): 

 if c[i]!=0: 

 k=k+1 

 num.append(i) 

 CNotZero.append(c[i]) 

b=[] 

i=0 

for i in range(0,k): 

 b.append(bin(int(num[i]))[2:]) 

i=0 
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for i in range(0,k): 

 while len(str(b[i]))!=n: 

  b[i]='0'+b[i] 

 b[i] = [int(a) for a in b[i]] 

#print(b) 

NotEnt=[] 

i=0 

j=0 

for j in range(0,n): 

 easyq=0 

 for i in range(1,k): 

 if b[i][j]!=b[0][j]: 

  easyq=1 

 if easyq==0: 

 NotEnt.append(j+1) 

i=0 

j=0 

f=[[0]*k for _ in range(0,n)] 

for i in range(0,n): 

 for j in range(0,k): 

 f[i][j]=b[j][i] 

  j=j+1 

 i=i+1 

iNot_Ent=0 

for iNot_Ent in range(0,n): 

 if iNot_Ent+1 not in NotEnt: 

 C_nol=[] 

 c_nol_koeff=[] 

 C_one=[] 

 c_one_koeff=[] 

 i=0 

 f_three=[] 

 for i in range(0,n): 

 if i!=iNot_Ent: 

 f_three.append(f[i]) 

 i=i+1 

 i=0 

 j=0 

 h3=[[0]*(n-1) for _ in range(0,k)] 

 for i in range(0,n-1): 

 for j in range(0,k): 

 h3[j][i]=f_three[i][j] 

  j=j+1 

 i=i+1 

 i3=0 

 k0=0 

 k1=0 

 for i3 in range(0,k): 
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 if b[i3][iNot_Ent]==0: 

 k0=k0+1 

 C_nol.append(h3[i3]) 

 c_nol_koeff.append(CNotZero[i3]) 

 if b[i3][iNot_Ent]==1: 

 k1=k1+1 

 C_one.append(h3[i3]) 

 c_one_koeff.append(CNotZero[i3]) 

 i3=i3+1 

 if k0==k1: 

 c_One_koeff=[] 

 #print(C_nol) 

 #print(C_one) 

 j=0 

 i=0 

 k3=0 

 for j in range(0,k0): 

 for i in range(0,k0): 

 if C_one[i]==C_nol[j]: 

 c_One_koeff.append(c_one_koeff[i]) 

  k3=k3+1 

 i=i+1 

  j=j+1 

 #print(k3) 

 #print(c_One_koeff) 

 #print(c_nol_koeff) 

 if k3==k0: 

 Delen=c_One_koeff[0]/c_nol_koeff[0] 

 Delen = round(Delen.real, 8) + round(Delen.imag, 8) * 

1j 

 i=1 

 kdel=0 

 for i in range(1,k0): 

 Del = c_One_koeff[i]/c_nol_koeff[i] 

 Del = round(Del.real, 8) + round(Del.imag, 8) * 1j 

 if Del!=Delen: 

  kdel=kdel+1 

 if kdel==0: 

 if iNot_Ent not in NotEnt: 

 NotEnt.append(iNot_Ent) 

 iNot_Ent=iNot_Ent+1 

#print(NotEnt) 

if len(NotEnt)==n: 

 print('Система не запутана') 

else: 

 Ent=[] 

 z=list(range(n)) 

 i=0 
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 for i in NotEnt: 

z.remove(i)

 m=combinations(z,2) 

 M=[] 

 for ii in m: 

  M.append(ii) 

 len_M=len(M) 

 i7=0 

 for i7 in range(0,len_M): 

 one=M[i7][0] 

 two=M[i7][1] 

 a0=0 

 a1=0 

 a2=0 

 a3=0 

 for i3 in range(0,k): 

 if (b[i3][one]==0) and (b[i3][two]==0): 

 #if (CNotZero[i3]+a0)!=0: 

 a0=a0+CNotZero[i3] 

 if (b[i3][one]==0) and (b[i3][two]==1): 

 #if (CNotZero[i3]+a1)!=0: 

 a1=a1+CNotZero[i3] 

 if (b[i3][one]==1) and (b[i3][two]==0): 

 #if (CNotZero[i3]+a2)!=0: 

 a2=a2+CNotZero[i3] 

 if (b[i3][one]==1) and (b[i3][two]==1): 

 #if (CNotZero[i3]+a3)!=0: 

 a3=a3+CNotZero[i3] 

 a0a3 = a0*a3 

 a0a3 = round(a0a3.real, 8) + round(a0a3.imag, 8) * 1j 

 a1a2 = a1*a2 

 a1a2 = round(a1a2.real, 8) + round(a1a2.imag, 8) * 1j 

 if a0a3!=a1a2: 

  Ent.append(M[i7]) 

 i7=i7+1 

 #print(Ent) 

 k1=n-len(NotEnt) 

 k2=len(Ent) 

 ent=[] 

 i=0 

 for i in range(0,n): 

 if i not in ent: 
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 qub=[] 

 j=0 

 for j in range(0,k2): 

 if i in Ent[j]: 

 i1=0 

 for i1 in range(0,2): 

 qub.append(Ent[j][i1]+1) 

  ent.append(Ent[j][i1]) 

 if len(qub)!=0: 

 qub=list(set(qub)) 

 print('Запутаны кубиты ',qub) 

Алгоритм факторизации вектора состояния квантовой системы 109
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Аннотация

Гельфонд получил результат о равномерной распределенности сумм цифр 𝑏-ичных раз-
ложений натуральных чисел по классам вычетов по произвольному модулю 𝑑. Позднее
Ламбергер и Тусвальднер, используя глубокие оценки тригонометрических сумм, получи-
ли налог теоремы Гельфонда, в котором вместо 𝑏-ичных разложений используются раз-
ложения по линейным рекуррентным последовательностям, удовлетворяющим условию
Парри и некоторому дополнительному условию на коэффициенты. В статье мы даем но-
вое, более простое и самозамкнутое доказательство теоремы Ламбергера – Тусвальднера.
Наше доказательство носит чисто комбинаторный характер и требует только условия Пар-
ри. Кроме того, мы даем достаточно простую явную формулу для показателя степени в
остаточном члене. В отличие от результата Ламбергера – Тусвальднера, полученный нами
показатель зависит только от 𝑑 и порядка линейной рекуррентной последовательности, но
не от ее коэффициентов. Однако наш результат не включает равнораспределенность по
модулю 𝑑 сумм цифр натуральных чисел, пробегающих арифметические прогрессии, что
также было доказано Ламбергером и Тусвальднером.

В конце работы кратко обсуждаются некоторые нерешенные задачи.
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Abstract

Gelfond obtained a result on the uniform distribution of sums of digits of 𝑏-ary expansions
of natural numbers over residue classes modulo 𝑑 for an arbitrary 𝑑. Later, Lamberger and
Thuswaldner, using deep estimates of trigonometric sums, obtained an analogue of Gelfond’s
theorem, in which instead of 𝑏-ary expansions, expansions over linear recurrent bases satisfying
the Parry condition and some additional condition on the coefficients, are used. In this paper,
we give a new, simpler and self-contained, proof of the Lamberger-Tkuswaldner theorem. Our
proof is purely combinatorial and require only Parry condition. In addition, we give a quite
simple explicit formula for the exponent in the remainder term. In contrast to the Lamberger-
Thuswaldner result, obtained exponent depends only on 𝑑 and the order of the linear recurrent
sequence, but not on its coefficients. However, our result does not include the equidistribution
of the sums of the digits modulo 𝑑 of natural numbers running from an arbitrary arithmetic
progression, which was also proved by Lamberger and Thuswaldner.

At the end of the paper, some unsolved problems are briefly discussed.
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1. Введение

Пусть

𝑛 =

𝑏(𝑛)∑︁
𝑖=0

𝑏𝑖(𝑛)𝑏𝑘,

где 𝑏𝑖(𝑛) ∈ {0, 1 . . . , 𝑏−1}, 𝑏(𝑛) = max{𝑘 : 𝑏𝑘 ≤ 𝑛} – разложение 𝑛 в 𝑏-ичной системе счисления.
Пусть

𝑁
(𝑏)
𝑑,𝑎(𝑋) = ♯

⎧⎨⎩𝑚 < 𝑋 :

𝑏(𝑚)∑︁
𝑖=0

𝑏𝑖(𝑛) ≡ 𝑎 (mod 𝑑)

⎫⎬⎭
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– количество натуральных чисел, не превосходящих 𝑋, для которых сумма цифр 𝑏-ичного
разложения принадлежит заданному классу вычетов по модулю 𝑑. Известно, что при условии
взаимной простоты 𝑑 и 𝑏− 1 существует постоянная 𝜇 < 1 (зависящая от 𝑏) такая, что

𝑁
(𝑏)
𝑑,𝑎(𝑋) =

𝑋

𝑑
+𝑂(𝑛𝜇).

Данный результат был доказан Файном [1] в случае, когда 𝑑 – простое число и А.О. Гельфон-
дом [2] в общем случае.

Данный результат в дальнейшем изучался во многих направлениях. Среди них можно
выделить перенос результатов на случай, когда рассматриваются суммы цифр разложений
чисел, пробегающих некоторую последовательность (например, в упомянутых работах Файна
и Гельфонда 𝑚 могло также пробегать арифметическую прогрессию), изучение совместного
распределения сумм цифр нескольких натуральных чисел (см., например [3]), изучение ана-
логов задачи Гельфонда для разложений по линейным рекуррентным последовательностям.

Рассмотрим класс линейных рекуррентных последовательностей {𝑇𝑛}, удовлетворяющих
условиям:

1. {𝑇𝑛} является линейной рекуррентной последовательностью порядка 𝑟, то есть суще-
ствуют целые числа 𝑎𝑖 ⩾ 0 (1 ⩽ 𝑖 < 𝑟) и 𝑎𝑟 > 0 такие, что для каждого 𝑛 ⩾ 0

𝑇𝑛+𝑟 = 𝑎1𝑇𝑛+𝑟−1 + 𝑎2𝑇𝑛+𝑟−2 + . . .+ 𝑎𝑟𝑇𝑛. (1)

2. Начальные условия определяются следующим образом:

𝑇0 = 1 и 𝑇𝑛 ⩾ 𝑎1𝑇𝑛−1 + 𝑎2𝑇𝑛−2 + . . .+ 𝑎𝑛𝑇0 + 1

при 1 ⩽ 𝑛 < 𝑟. (2)

3. Коэффициенты 𝑎1, 𝑎2, ..., 𝑎𝑟 удовлетворяют условию Парри [4], то есть

(𝑎𝑠, 𝑎𝑠+1, . . . , 𝑎𝑟) ≼ (𝑎1, 𝑎2, . . . , 𝑎𝑟−𝑠+1) (3)

для 1 < 𝑠 ⩽ 𝑑, где ≼ обозначает лексикографический порядок.

Замечание 1. Условие Парри для последовательности {𝑇𝑛} может быть переписано
следующим образом: при всех 𝑛 ⩾ 0 и 1 ⩽ 𝑘 < 𝑟 справедливо неравенство

𝑇𝑛+𝑟−𝑘 >
𝑟∑︁

𝑖=𝑘+1

𝑎𝑖𝑇𝑛+𝑟−𝑖.

Любое натуральное число 𝑁 можно представить в виде

𝑁 =

𝑡(𝑁)∑︁
𝑖=0

𝑡𝑖(𝑁)𝑇𝑖, (4)

где 𝑡(𝑁) = max{𝑖 : 𝑇𝑖 ⩽ 𝑁}, 𝑡𝑖(𝑁) ∈ Z, 𝑡𝑖(𝑁) ⩾ 0, причем коэффициенты 𝑡𝑖(𝑁) подбираются
так, что для любого 𝑖 ⩾ 0 было справедливо неравенство

0 ⩽ 𝑁 −
𝑡(𝑁)∑︁
ℎ=𝑖

𝑡ℎ(𝑁)𝑇ℎ < 𝑇𝑖. (5)

Данное условие означает, что разложение (4) получается по жадному алгоритму.
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Различные задачи о суммах цифр подобных разложений изучались, в частности, в [5]–[8].
Нас будет интересовать аналог задачи Гельфонда.

Пусть 𝑁
(𝑇 )
𝑑,𝑎 (𝑋) — количество натуральных чисел, меньших 𝑋, для которых сумма коэф-

фициентов разложения (4) с условием (5) сравнима с 𝑎 по модулю 𝑑, то есть

𝑁
(𝑇 )
𝑑,𝑎 (𝑋) = ♯

⎧⎨⎩𝑚 < 𝑋 :

𝑡(𝑚)∑︁
𝑖=0

𝑡𝑖(𝑚) ≡ 𝑎 (mod 𝑑)

⎫⎬⎭ .

Нас интересуют асимптотические результаты вида

𝑁
(𝑇 )
𝑑,𝑎 (𝑋) =

𝑋

𝑑
+𝑂(𝑛𝜇).

Подобный результат впервые был получен при 𝑑 = 2 в работе [9]. Некоторые более тонкие
результаты об остаточном члене можно найти в [10]. В случае простейшей линейной рекур-
рентной последовательности – последовательности Фибоначчи, еще более тонкие результаты
содержатся в [11].

Общий результат об аналоге задачи Гельфонда для произвольного 𝑑 при дополнительном
условии взаимной простоты 𝑑 и 𝑎1 + . . .+ 𝑎𝑟 − 1 был получен в фундаментальной работе [12].
Более того, в ней был получен ряд других важных результатов, в частности, был рассмотрен
аналог задачи Гельфонда в случае, когда числа пробегают арифметическую прогрессию.

В основе доказательства из [12] лежал глубокий и имеющие многочисленные приложения

результат об оценке тригонометрической суммы
∑︀

𝑚<𝑋 𝑒2𝜋𝑖(
𝑎
𝑏

∑︀𝑡(𝑚)
𝑖=0 𝑡𝑖(𝑚)+𝑦𝑚), доказательство

которого, среди прочего, использовало сложные результаты из [13].

Отметим, что константа 𝜇 в результатах из [9] и [12] зависела от 𝑑 и линейной рекуррентной
последовательности. В случае 𝑑 = 2 методами из [9] и [10] можно получить достаточно простое
описание константы 𝜇 в виде отношения логарифмов максимумов модулей некоторых явно
выписываемых алгебраических уравнений. В случае произвольного 𝑑 работа [12] по сути тоже
содержит некоторый эффективный алгоритм вычисления константы 𝜇, однако этот алгоритм
чрезвычайно сложен (даже его описание заняло бы несколько страниц) и не был реализован
ни для одной линейной рекуррентной последовательности.

В настоящей работе мы даем новое, более простое, доказательство аналога теоремы Гель-
фонда в случае разложений по линейным рекуррентным последовательностям. Наше доказа-
тельство носит чисто комбинаторный характер и не использует оценок тригонометрических
сумм. Кроме того, оно позволяет получить достаточно простую формулу для показателя сте-
пени в остаточном члене. Более того, наш результат, в отличие от [12], не требует условия 𝑑 и
𝑎1+ . . .+𝑎𝑟−1, а показатель степени остаточного члена зависит только от модуля 𝑑 и порядка
линейного рекуррентного соотношения, но не зависит от самого соотношения.

2. Основной текст статьи

Положим 𝜀𝑑,𝑎(𝑚) равным единице, если сумма цифр соответствующего разложения 𝑚
сравнима с 𝑎 по модулю 𝑑, и равным − 1

𝑑−1 в противном случае, то есть

𝜀𝑑,𝑎(𝑚) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, если

𝑡(𝑚)∑︀
𝑖=0

𝑡𝑖(𝑚) ≡ 𝑎 (mod 𝑑),

− 1
𝑑−1 , если

𝑡(𝑚)∑︀
𝑖=0

𝑡𝑖(𝑚) ≡/ 𝑎 (mod 𝑑).
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Лемма 1. Имеет место явная формула

𝑁
(𝑇 )
𝑑,𝑎 (𝑋) =

𝑋−1∑︁
𝑚=0

(︂
𝜀𝑑,𝑎(𝑚) +

1

𝑑− 1

)︂
· 𝑑− 1

𝑑
.

Справедливость данного утверждения следует из определения 𝜀𝑑,𝑎(𝑚).

Определим величины

𝑆𝑑,𝑎(𝑋) =

𝑋−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) и 𝑆*
𝑑,𝑎(𝑛) = 𝑆𝑑,𝑎(𝑇𝑛) =

𝑇𝑛−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚).

Для 𝑆*
𝑑,𝑎(𝑛) справедлива лемма.

Лемма 2. Имеет место явная формула

𝑑−1∑︁
𝑎=0

𝑆*
𝑑,𝑎(𝑛) = 0.

Доказательство. Из определения 𝜀𝑑,𝑎(𝑚) следует очевидное равенство
𝑑−1∑︀
𝑎=0

𝜀𝑑,𝑎(𝑚) = 0,

поэтому в силу определения 𝑆*
𝑑,𝑎(𝑛) получаем

𝑑−1∑︁
𝑎=0

𝑆*
𝑑,𝑎(𝑛) =

𝑑−1∑︁
𝑎=0

𝑇𝑛−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) =

𝑇𝑛−1∑︁
𝑚=0

𝑑−1∑︁
𝑎=0

𝜀𝑑,𝑎(𝑚) = 0.

Лемма 2 доказана.

Обозначим через 𝐻(𝑛 + 𝑟) множество целых неотрицательных чисел, меньших 𝑇𝑛+𝑟, то
есть

𝐻(𝑛+ 𝑟) = {𝑚 : 𝑚 ∈ Z, 0 ⩽ 𝑚 < 𝑇𝑛+𝑟} .

Из условий (1) и (3) следует, что 𝑎1 ⩾ 1, 𝑎𝑟 ⩾ 1 и 𝑎𝑠 ⩾ 0 при 1 < 𝑠 < 𝑟, поэтому можно
утверждать:

0 < 𝑎1𝑇𝑛+𝑟−1 ⩽
2∑︁

ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ ⩽
3∑︁

ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ ⩽ . . . ⩽
𝑟−1∑︁
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ <

𝑟∑︁
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ.

Разобьем множество 𝐻(𝑛 + 𝑟) на непересекающиеся подмножества 𝐻𝑠(𝑛 + 𝑟) следующим
образом:

𝐻1(𝑛+ 𝑟) = {𝑚 : 𝑚 ∈ Z, 0 ⩽ 𝑚 < 𝑎1𝑇𝑛+𝑟−1} ;
𝐻𝑠(𝑛+ 𝑟) = ∅, если 𝑎𝑠 = 0 и 1 < 𝑠 < 𝑟;

𝐻𝑠(𝑛+ 𝑟) =

{︂
𝑚 : 𝑚 ∈ Z,

𝑠−1∑︀
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ ⩽ 𝑚 <
𝑠∑︀

ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ

}︂
, если 𝑎𝑠 ̸= 0 и 2 ⩽ 𝑠 ⩽ 𝑟.

(6)

Возможны два случая: 𝑎1 > 1 и 𝑎1 = 1. При 𝑎1 > 1 промежуток 0 ⩽ 𝑚 < 𝑎1𝑇𝑛+𝑟−1

разделим на 𝑎1 частей и введем множества

𝐻1
𝑗 (𝑛+ 𝑟) = {𝑚 : 𝑚 ∈ Z, (𝑗 − 1)𝑇𝑛+𝑟−1 ⩽ 𝑚 < 𝑗𝑇𝑛+𝑟−1} , (7)

где 1 ⩽ 𝑗 ⩽ 𝑎1. Если 𝑎1 = 1, то будем полагать 𝐻1
1 (𝑛+ 𝑟) = 𝐻1(𝑛+ 𝑟).
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Для каждого непустого множества𝐻𝑠(𝑛+𝑟) также рассмотрим два случая: 𝑎𝑠 > 1 и 𝑎𝑠 = 1.
В том случае, когда 𝑎𝑠 > 1 множество 𝐻𝑠(𝑛+ 𝑟) разобьем на 𝑎𝑠 подмножеств 𝐻

𝑠
𝑗 (𝑛+ 𝑟):

𝐻𝑠
𝑗 (𝑛+ 𝑟) =

{︃
𝑚 : 𝑚 ∈ Z,

𝑠−1∑︁
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ + (𝑗 − 1)𝑇𝑛+𝑟−𝑠 ⩽ 𝑚 <

𝑠−1∑︁
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−ℎ + 𝑗𝑇𝑛+𝑟−𝑠

}︃
,

где 1 ⩽ 𝑗 ⩽ 𝑎𝑠. При 𝑎𝑠 = 1 будем считать, что 𝐻𝑠
1(𝑛+ 𝑟) = 𝐻𝑠(𝑛+ 𝑟).

Очевидно, что у всех чисел𝑚 ∈ 𝐻(𝑛+𝑟), а, следовательно, у𝑚 ∈ 𝐻𝑠(𝑛+𝑟), где 1 ⩽ 𝑠 ⩽ 𝑟, а
также и 𝑚 ∈ 𝐻𝑠

𝑗 (𝑛+𝑟), где 1 ⩽ 𝑠 ⩽ 𝑟, 1 ⩽ 𝑗 ⩽ 𝑎𝑠, при ℎ ⩾ 𝑛+𝑟 все коэффициенты разложения
(4) равны нулю, то есть 𝑡ℎ(𝑚) = 0 при ℎ ⩾ 𝑛+ 𝑟, поэтому условие (5) можно записать как

0 ⩽ 𝑚−
𝑛+𝑟−1∑︁
ℎ=𝑖

𝑡ℎ(𝑚)𝑇ℎ < 𝑇𝑖 (8)

при всех 0 ⩽ 𝑖 ⩽ 𝑛+ 𝑟 − 1.

Лемма 3. Если 𝑚 ∈ 𝐻1
𝑗 (𝑛+ 𝑟), где 1 ⩽ 𝑗 ⩽ 𝑎1, то в разложении (4) числа 𝑚 коэффици-

ент 𝑡𝑛+𝑟−1(𝑚) равен 𝑗 − 1. Если 𝑚 ∈ 𝐻𝑠
𝑗 (𝑛 + 𝑟), где 2 ⩽ 𝑠 ⩽ 𝑟, 1 ⩽ 𝑗 ⩽ 𝑎𝑠, и 𝐻

𝑠(𝑛 + 𝑟) ̸= ∅,
то в представлении (4) числа 𝑚 будут следующие коэффициенты: 𝑡𝑛+𝑟−1(𝑚) = 𝑎1, . . . ,
𝑡𝑛+𝑟−𝑠+1(𝑚) = 𝑎𝑠−1, 𝑡𝑛+𝑟−𝑠(𝑚) = 𝑗 − 1.

Утверждение леммы 3 получается из определения множества 𝐻𝑠
𝑗 (𝑛+ 𝑟) и условия (8).

Лемма 4. Пусть 𝑡𝑖(𝑚) — коэффициенты разложения числа 𝑚 по последовательности
{𝑇𝑛}. Если 0 ⩽ 𝑘 < 𝑎𝑖 (при 1 ⩽ 𝑖 ⩽ 𝑟), 0 ⩽ 𝑚′ < 𝑇𝑛+𝑟−𝑖 и 𝑛 ⩾ 0, то для

𝑚 =
𝑖−1∑︁
ℎ=1

𝑎ℎ𝑇𝑛+𝑟−𝑖 + 𝑘𝑇𝑛+𝑟−𝑖 +𝑚′

выполняются равенства

𝑡𝑙(𝑚) = 𝑡𝑙(𝑚
′) при 0 ⩽ 𝑙 < 𝑛+ 𝑟 − 𝑖,

𝑡𝑛+𝑟−𝑖(𝑚) = 𝑘,
𝑡𝑙(𝑚) = 𝑎𝑛+𝑟−𝑙 при 𝑛+ 𝑟 − 𝑖 < 𝑙 < 𝑛+ 𝑟.

Кроме того, для произвольного 𝑚0 и 𝑗 ⩽ 𝐿 = 𝑡(𝑚0), 𝑘 < 𝑡𝑗(𝑚0) и 𝑚
′ < 𝑇𝑗, то для

𝑚 = 𝑡𝐿(𝑚0)𝑇𝐿 + 𝑡𝐿−1(𝑚0)𝑇𝐿−1 + . . .+ 𝑡𝑗+1(𝑚0)𝑇𝑗+1 + 𝑘𝑇𝑗 +𝑚′

справедливы равенства
𝑡𝑙(𝑚) = 𝑡𝑙(𝑚

′) при 0 ⩽ 𝑙 < 𝑗,
𝑡𝑗(𝑚) = 𝑘,

𝑡𝑙(𝑚) = 𝑡𝑙(𝑚0) при 𝑗 < 𝑙 ⩽ 𝐿.

Замечание 2. Данное утверждение с дополнительным условием о взаимной простоте
ненулевых коэффициентов 𝑎𝑖 сформулировано и доказано в статье [8] (лемма 3.2), причем
при доказательстве этой леммы авторы условие взаимной простоты ненулевых 𝑎𝑖 не ис-
пользовали.

Обозначим 𝐼 = {𝑠 : 1 ⩽ 𝑠 ⩽ 𝑟, 𝑎𝑠 ̸= 0}, 𝑃𝑠 =
𝑠∑︀

𝑖=1
𝑎𝑖, 𝑃0 = 0, 𝑎⊖ 𝑙 = (𝑎− 𝑙)mod𝑑, то есть 𝑎⊖ 𝑙

— единственное целое 𝑔 такое, что 0 ⩽ 𝑔 < 𝑑 и 𝑔 ≡ 𝑎− 𝑙 (mod 𝑑).
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Лемма 5. При всех 𝑛 ⩾ 0 имеет место рекуррентное соотношение

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

∑︁
𝑠∈𝐼

𝑎𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠). (9)

Доказательство. Согласно определению

𝑆*
𝑑,𝑎(𝑛+ 𝑟) = 𝑆𝑑,𝑎(𝑇𝑛+𝑟) =

𝑇𝑛+𝑟−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) =
∑︁

𝑚∈𝐻(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚).

Множество 𝐻(𝑛+ 𝑟) можно представить как объединение непересекающихся подмножеств
𝐻𝑠(𝑛+ 𝑟), где 1 ⩽ 𝑠 ⩽ 𝑟, некоторые из которых могут быть пустыми, поэтому, учитывая (6),
имеем:

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

∑︁
𝑠∈𝐼

∑︁
𝑚∈𝐻𝑠(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚) =
∑︁

𝑚∈𝐻1(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚) +
∑︁
𝑠∈𝐼,
𝑠>1

∑︁
𝑚∈𝐻𝑠(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚). (10)

Возможны два случая: 𝑎1 = 1 и 𝑎1 > 1. Если 𝑎1 = 1, то по определению 𝐻1(𝑛+ 𝑟) = 𝐻1
1 (𝑛+ 𝑟).

Если 𝑎1 > 1, то 𝐻1(𝑛 + 𝑟) представим как объединение непересекающихся множеств
𝐻1

𝑗 (𝑛 + 𝑟), где 1 ⩽ 𝑗 ⩽ 𝑎1, определяемых как (7). Пусть 𝑚 ∈ 𝐻1
𝑗 (𝑛 + 𝑟), где 2 ⩽ 𝑗 ⩽ 𝑎1.

Будем полагать, что сумма коэффициентов разложения (4) числа 𝑚 сравнима с 𝑎 по модулю

𝑑, то есть
𝑡(𝑚)∑︀
𝑖=0

𝑡𝑖(𝑚) ≡ 𝑎 (mod 𝑑). Согласно лемме 4, для каждого𝑚 ∈ 𝐻1
𝑗 (𝑛+𝑟), где 2 ⩽ 𝑗 ⩽ 𝑎1,

найдется 𝑚′ ∈ 𝐻1
1 (𝑛+ 𝑟) такое, что

𝑡(𝑚)∑︁
𝑖=0

𝑡𝑖(𝑚)−
𝑡(𝑚′)∑︁
𝑖=0

𝑡𝑖(𝑚
′) = 𝑡𝑛+𝑟−1(𝑚) = 𝑗 − 1,

в соответствии с утверждением леммы 3. В таком случае сумма коэффициентов разложения

(4) числа 𝑚′ будет сравнима с 𝑎− (𝑗 − 1) по модулю 𝑑, то есть
∞∑︀
𝑖=0

𝑡𝑖(𝑚
′) ≡ 𝑎− (𝑗 − 1) (mod 𝑑).

В силу определения 𝜀𝑑,𝑎(𝑚) и того, что 𝑚 ∈ 𝐻1
𝑗 (𝑛+ 𝑟), где 2 ⩽ 𝑗 ⩽ 𝑎1, а 𝑚

′ ∈ 𝐻1
1 (𝑛+ 𝑟), можно

утверждать, что 𝜀𝑑,𝑎(𝑚) = 𝜀𝑑,𝑎⊖(𝑗−1)(𝑚
′) или 𝜀𝑑,𝑎(𝑚) = 𝜀𝑑,𝑎⊖(𝑃0+(𝑗−1))(𝑚

′).

В таком случае, при 𝑎1 ⩾ 1 первое слагаемое в формуле (10) примет вид

∑︁
𝑚∈𝐻1(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚) =

𝑎1∑︁
𝑗=1

∑︁
𝑚∈𝐻1

𝑗 (𝑛+𝑟)

𝜀𝑑,𝑎(𝑚) =

𝑎1∑︁
𝑗=1

𝑇𝑛+𝑟−1−1∑︁
𝑚=0

𝜀𝑑,𝑎⊖(𝑃0+(𝑗−1))(𝑚
′) =

=

𝑎1∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃0+(𝑗−1))(𝑛+ 𝑟 − 1). (11)

Рассмотрим теперь второе слагаемое суммы из формулы (10). Пусть 𝐻𝑠(𝑛 + 𝑟) ̸= ∅ и сумма
коэффициентов представления (4) числа 𝑚 ∈ 𝐻𝑠

𝑗 (𝑛+ 𝑟), где 2 ⩽ 𝑠 ⩽ 𝑟 и 1 ⩽ 𝑗 ⩽ 𝑎𝑠, сравнима

с 𝑎 по модулю 𝑑. Тогда согласно лемме 4 в множестве 𝐻1
1 (𝑛 + 𝑟 − 𝑠 + 1) найдется число 𝑚′

такое, что
𝑡(𝑚)∑︁
𝑖=0

𝑡𝑖(𝑚)−
𝑡(𝑚′)∑︁
𝑖=0

𝑡𝑖(𝑚
′) =

𝑛+𝑟−1∑︁
𝑖=𝑛+𝑟−𝑠

𝑡𝑖(𝑚).
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Воспользуемся утверждением леммы 3 для 𝑚 ∈ 𝐻𝑠
𝑗 (𝑛+ 𝑟) и получим, что

𝑛+𝑟−1∑︁
𝑖=𝑛+𝑟−𝑠

𝑡𝑖(𝑚) =
𝑠−1∑︁
𝑖=1

𝑎𝑖 + (𝑗 − 1) = 𝑃𝑠−1 + (𝑗 − 1).

Следовательно,
𝑡(𝑚′)∑︁
𝑖=0

𝑡𝑖(𝑚
′) ≡ 𝑎− (𝑃𝑠−1 + (𝑗 − 1)) (mod 𝑑).

Вновь воспользуемся определением 𝜀𝑑,𝑎(𝑚) и получим, что если𝑚 ∈ 𝐻𝑠
𝑗 (𝑛+𝑟), а𝑚′ ∈ 𝐻1

1 (𝑛+𝑟−
− 𝑠+ 1), то 𝜀𝑑,𝑎(𝑚) = 𝜀𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑚

′) при всех 2 ⩽ 𝑠 ⩽ 𝑟, 𝑠 ∈ 𝐼 и 1 ⩽ 𝑗 ⩽ 𝑎𝑠.
В таком случае, второе слагаемое равенства (10) может быть представлено как

∑︁
𝑠∈𝐼,
𝑠>1

∑︁
𝑚∈𝐻𝑠(𝑛+𝑟)

𝜀𝑑,𝑎(𝑚) =
∑︁
𝑠∈𝐼,
𝑠>1

𝑎𝑠∑︁
𝑗=1

∑︁
𝑚′∈𝐻1

1 (𝑛+𝑟−𝑠+1)

𝜀𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑚
′) =

=
∑︁
𝑠∈𝐼,
𝑠>1

𝑎𝑠∑︁
𝑗=1

𝑆𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑇𝑛+𝑟−𝑠) =
∑︁
𝑠∈𝐼,
𝑠>1

𝑎𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠). (12)

Подставляя равенства (2) и (2) в формулу (10), приходим к выводу, что

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

∑︁
𝑠∈𝐼

𝑎𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠).

Таким образом, лемма 5 полностью доказана.
По условию коэффициенты 𝑎𝑠 не ограничены сверху, поэтому число слагаемых во внут-

ренней сумме (9) может быть любым. Воспользуемся леммой 2 и ограничим число слагаемых
в сумме по 𝑗 в равенстве (9). Будем полагать

𝑎′𝑠 =

⎧⎨⎩
0 при 𝑎𝑠 = 0,

𝑎𝑠mod𝑑 при 𝑎𝑠 ≡/ 0 (mod 𝑑),
𝑑 при 𝑎𝑠 ̸= 0 и 𝑎𝑠 ≡ 0 (mod 𝑑).

(13)

Из леммы 5 вытекает следующий результат.

Лемма 6. При всех 𝑛 ⩾ 0 имеет место рекуррентное соотношение

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

∑︁
𝑠∈𝐼

𝑎′𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠). (14)

Доказательство. Пусть 𝑎𝑠 ⩾ 1 тогда представим 𝑎𝑠 как 𝑘𝑑+𝑎′𝑠, где 𝑘 ⩾ 0. В этом случае

𝑎𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖𝑗(𝑚) =

𝑘−1∑︁
𝑖=0

(𝑖+1)𝑑∑︁
𝑙=𝑖𝑑+1

𝑆*
𝑑,𝑎⊖𝑙(𝑚) +

𝑘𝑑+𝑎′𝑠∑︁
𝑙=𝑘𝑑+1

𝑆*
𝑑,𝑎⊖𝑙(𝑚) =

𝑎′𝑠∑︁
𝑙=1

𝑆*
𝑑,𝑎⊖𝑙(𝑚),

так как из леммы 2 следует, что
(𝑖+1)𝑑∑︀
𝑙=𝑖𝑑+1

𝑆*
𝑑,𝑎⊖𝑙(𝑚) =

𝑑∑︀
𝑙=1

𝑆*
𝑑,𝑎⊖𝑙(𝑚) = 0.

Из последнего равенства и рекуррентной формулы (9) следует утверждение леммы 6.
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В соотношении (14) 𝑎 может принимать любое значение из множества {0, 1, . . . , 𝑑 − 1}.
Очевидно, что 𝑎 ⊖ (𝑃𝑠−1 + (𝑗 − 1)), где 𝑗 ∈ {1, 2, . . . , 𝑎′𝑠}, пробегает некоторое подмножество
множеста {0, 1, . . . , 𝑑 − 1}, поэтому при 𝑛 ⩾ 1 к слагаемому 𝑆*

𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛 + 𝑟 − 1) мож-

но применить равенство (14), и, следовательно, выразить 𝑆*
𝑑,𝑎(𝑛+ 𝑟) через 𝑆*

𝑑,𝑎(𝑛+ 𝑟− 𝑠), где
2 ⩽ 𝑠 ⩽ 𝑟+1. Если 𝑛 ⩾ 2, то воспользовавшись соотношением (14) для слагаемого 𝑆*

𝑑,𝑎(𝑛+𝑟−2),
сможем представить 𝑆*

𝑑,𝑎(𝑛 + 𝑟) через 𝑆*
𝑑,𝑎(𝑛 + 𝑟 − 𝑠), где 3 ⩽ 𝑠 ⩽ 𝑟 + 2. Выполняя это преоб-

разование конечное число раз (𝑘 раз) при 𝑛 ⩾ 𝑘 можно получить выражение для 𝑆*
𝑑,𝑎(𝑛 + 𝑟)

через 𝑆*
𝑑,𝑎(𝑛 + 𝑟 − 𝑘 − 𝑠), где 1 ⩽ 𝑠 ⩽ 𝑟. Выразить этот итерационный процесс с помощью

рекуррентной формулы можно, если равенство (14) переписать как

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

𝑟∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,0(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑠), (15)

где

𝜉𝑠𝑙,0(𝑛+ 𝑟) =

{︂
0 если 𝑠 ∈ 𝐼, или, если 𝑠 ∈ 𝐼 и 𝑎′𝑠 ⩽ 𝑙 ⊖ 𝑃𝑠−1 < 𝑑,
1 если 𝑠 ∈ 𝐼 и 0 ⩽ 𝑙 ⊖ 𝑃𝑠−1 < 𝑎′𝑠.

(16)

Лемма 7. Для любого целого 𝑘 ⩾ 0 и 𝑛 ⩾ 𝑘 справедливо равенство

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

𝑟∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑘(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘 − 𝑠), (17)

где

𝜉𝑠𝑙,𝑘+1(𝑛+ 𝑟) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜒1(𝑠)

𝑎′𝑠∑︀
𝑗=1

𝜉1𝑙⊖(𝑃𝑠−1+(𝑗−1)),𝑘(𝑛+ 𝑟) + 𝜉𝑠+1
𝑙,𝑘 (𝑛+ 𝑟) при 1 ⩽ 𝑠 < 𝑟,

𝑎′𝑟∑︀
𝑗=1

𝜉1𝑙⊖(𝑃𝑟−1+(𝑗−1)),𝑘(𝑛+ 𝑟) при 𝑠 = 𝑟,

(18)

𝜒1(𝑠) =

{︂
1 если 𝑠 ∈ 𝐼,
0 если 𝑠 ∈ 𝐼. (19)

Кроме того, коэффициенты 𝜉𝑠𝑙,𝑘(𝑛), где 1 ⩽ 𝑠 ⩽ 𝑟, неотрицательны при всех 𝑘 ⩾ 0.

Доказательство. Доказательство проведем, используя индукцию по 𝑘. При 𝑘 = 0 ра-
венство (17) полностью совпадает с (15).

Предположим, что утверждение леммы верно при 𝑘 = 𝑚, то есть

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

𝑟∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑚(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 −𝑚− 𝑠). (20)

Распишем 𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 −𝑚− 1), пользуясь равенством (14), как

𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 −𝑚− 1) =

∑︁
𝑠∈𝐼

𝑎′𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖𝑙⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 −𝑚− 𝑠− 1)

и подставим в (20). Имеем:

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

𝑑−1∑︁
𝑙=0

𝜉1𝑙,𝑚(𝑛+ 𝑟)
∑︁
𝑠∈𝐼

𝑎′𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖𝑙⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 −𝑚− 𝑠− 1)+
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+
𝑟∑︁

𝑠=2

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑚(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 −𝑚− 𝑠).

Введем характеристическую функцию (19) для множества 𝐼, изменим порядок суммирова-
ния в первой части суммы и начнем суммирование с 𝑠 = 1 во второй части суммы. Получаем

𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

𝑟∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

𝜒1(𝑠)

𝑎′𝑠∑︁
𝑗=1

𝜉1𝑙,𝑚(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 −𝑚− 𝑠− 1)+

+

𝑟−1∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

𝜉𝑠+1
𝑙,𝑚 (𝑛+ 𝑟)𝑆*

𝑑,𝑎⊖𝑙(𝑛+ 𝑟 −𝑚− 𝑠− 1).

Обозначим 𝑎⊖𝑙⊖(𝑃𝑠−1+(𝑗−1)) как 𝑎⊖𝑙 и перегруппируем слагаемые следующим образом:

𝑆*
𝑑,𝑎(𝑛+𝑟) =

𝑟−1∑︁
𝑠=1

𝑑−1∑︁
𝑙=0

⎛⎝𝜒1(𝑠)

𝑎′𝑠∑︁
𝑗=1

𝜉1𝑙⊖(𝑃𝑠−1+(𝑗−1)),𝑚(𝑛+ 𝑟) + 𝜉𝑠+1
𝑙,𝑚 (𝑛+ 𝑟)

⎞⎠ ·𝑆*
𝑑,𝑎⊖𝑙(𝑛+𝑟−𝑚−𝑠−1)+

+

𝑑−1∑︁
𝑙=0

𝑎′𝑟∑︁
𝑗=1

𝜉1𝑙⊖(𝑃𝑟−1+(𝑗−1)),𝑚(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛−𝑚− 1). (21)

Введем обозначения:

𝜉𝑠𝑙,𝑚+1(𝑛+ 𝑟) = 𝜒1(𝑠)

𝑎′𝑠∑︁
𝑗=1

𝜉1𝑙⊖(𝑃𝑠−1+(𝑗−1)),𝑚(𝑛+ 𝑟) + 𝜉𝑠+1
𝑙,𝑚 (𝑛+ 𝑟),

где 1 ⩽ 𝑠 < 𝑟, и

𝜉𝑟𝑙,𝑚+1(𝑛+ 𝑟) =

𝑎′𝑟∑︁
𝑗=1

𝜉1𝑙⊖(𝑃𝑟−1+(𝑗−1)),𝑚(𝑛+ 𝑟).

В этом случае равенство (2) будет полностью совпадать с утверждением леммы 7 при
𝑘 = 𝑚 + 1. Следовательно, равенство (17) справедливо при всех 𝑘 ⩾ 0. Неотрицательность
коэффициентов 𝜉𝑠𝑙,𝑘(𝑛+ 𝑟) следует из неотрицательности 𝜉𝑠𝑙,0(𝑛+ 𝑟) и равенств (18).

Выясним, какими свойствми обладает соотношение (17). Для этого обозначим

𝐴𝑠
𝑘(𝑛+ 𝑟) =

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑘(𝑛+ 𝑟).

Из равенств (13) и (16) следует, что

𝐴𝑠
0(𝑛+ 𝑟) = 𝑎′𝑠 для всех 1 ⩽ 𝑠 ⩽ 𝑟. (22)

Лемма 8. Справедливы следующие рекуррентные соотношения

𝐴𝑠
𝑘(𝑛+ 𝑟) = 𝑎′𝑠𝐴

1
𝑘−1(𝑛+ 𝑟) +𝐴𝑠+1

𝑘−1(𝑛+ 𝑟) при 1 ⩽ 𝑠 < 𝑟

и 𝐴𝑟
𝑘(𝑛+ 𝑟) = 𝑎′𝑟𝐴

1
𝑘−1(𝑛+ 𝑟).
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Доказательство. Воспользуемся определением 𝐴𝑠
𝑘(𝑛 + 𝑟) и равенствами (18) для полу-

чения доказываемого соотношения. При 1 ⩽ 𝑠 < 𝑟 имеем

𝐴𝑠
𝑘(𝑛+ 𝑟) =

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑘(𝑛+ 𝑟) = 𝜒1(𝑠)

𝑎′𝑠∑︁
𝑗=1

𝑑−1∑︁
𝑙=0

𝜉1𝑙⊖(𝑃𝑠−1+(𝑗−1)),𝑘−1(𝑛+ 𝑟) +

𝑑−1∑︁
𝑙=0

𝜉𝑠+1
𝑙,𝑘−1(𝑛+ 𝑟) =

= 𝜒1(𝑠)

𝑎′𝑠∑︁
𝑗=1

𝐴1
𝑘−1(𝑛+ 𝑟) +𝐴𝑠+1

𝑘−1(𝑛+ 𝑟) = 𝑎′𝑠𝐴
1
𝑘−1(𝑛+ 𝑟) +𝐴𝑠+1

𝑘−1(𝑛+ 𝑟).

Если 𝑠 = 𝑟, то

𝐴𝑟
𝑘(𝑛+ 𝑟) =

𝑑−1∑︁
𝑙=0

𝑎′𝑟∑︁
𝑗=1

𝜉1𝑙⊖(𝑃𝑟−1+(𝑗−1)),𝑘−1(𝑛+ 𝑟) =

𝑎′𝑟∑︁
𝑗=1

𝐴1
𝑘−1(𝑛+ 𝑟) = 𝑎′𝑟𝐴

1
𝑘−1(𝑛+ 𝑟).

Таким образом, лемма 8 доказана.

Перейдем к получению оценки сверху для 𝐴𝑠
𝑘(𝑛+ 𝑟).

Лемма 9. При всех 1 ⩽ 𝑠 ⩽ 𝑟 справедливо неравенство

𝐴𝑠
𝑘(𝑛+ 𝑟) ⩽ (𝑑+ 1)𝑘+1. (23)

Доказательство. Проведем доказательство неравенства, используя метод математиче-
ской индукции. При 𝑘 = 0, согласно определению 𝐴𝑠

0(𝑛 + 𝑟), для всех 1 ⩽ 𝑠 ⩽ 𝑟, имеем:
𝐴𝑠

0(𝑛+ 𝑟) = 𝑎′𝑠 ⩽ 𝑑 ⩽ 𝑑+ 1. Значит, при 𝑘 = 0 неравенство (23) выполняется.

Предположим, что утверждение леммы 9 справедливо при 𝑘 = 𝑚, то есть для любых
1 ⩽ 𝑠 ⩽ 𝑟: 𝐴𝑠

𝑚(𝑛 + 𝑟) ⩽ (𝑑 + 1)𝑚+1. Воспользуемся леммой 8, чтобы получить оценку для
𝐴𝑠

𝑚+1(𝑛+ 𝑟). Если 1 ⩽ 𝑠 < 𝑟, то

𝐴𝑠
𝑚+1(𝑛+ 𝑟) = 𝑎′𝑠𝐴

1
𝑚(𝑛+ 𝑟) +𝐴𝑠+1

𝑚 (𝑛+ 𝑟) ⩽ 𝑑(𝑑+ 1)𝑚+1 + (𝑑+ 1)𝑚+1 = (𝑑+ 1)𝑚+2.

В том случае, когда 𝑠 = 𝑟, получаем

𝐴𝑠
𝑚+1(𝑛+ 𝑟) = 𝑎′𝑟𝐴

1
𝑚(𝑛+ 𝑟) ⩽ 𝑑(𝑑+ 1)𝑚+1 ⩽ (𝑑+ 1)𝑚+2.

Значит, при 𝑘 = 𝑚 + 1 неравенство (23) также выполняется, что доказывает справедливость
леммы 9 при всех целых неотрицательных 𝑘.

Теперь выясним, как связаны между собой члены рекуррентной последовательности {𝑇𝑛}
и 𝐴𝑠

𝑘(𝑛+ 𝑟).

Лемма 10. При всех 0 ⩽ 𝑘 ⩽ 𝑛 справедливо неравенство

𝑇𝑛+𝑟 ⩾
𝑟∑︁

𝑠=1

𝐴𝑠
𝑘(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘−𝑠.

Доказательство. Применим метод математической индукции. При 𝑘 = 0, в силу ра-
венств (1), (13) и (22) можно записать, что

𝑇𝑛+𝑟 =

𝑟∑︁
𝑠=1

𝑎𝑠𝑇𝑛+𝑟−𝑠 ⩾
𝑟∑︁

𝑠=1

𝑎′𝑠𝑇𝑛+𝑟−𝑠 =

𝑟∑︁
𝑠=1

𝐴𝑠
0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑠,
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то есть при 𝑘 = 0 утверждение леммы справедливо. Предположим, что лемма 10 верна при
𝑘 = 𝑚, где 𝑚 < 𝑛, то есть

𝑇𝑛+𝑟 ⩾
𝑟∑︁

𝑠=1

𝐴𝑠
𝑚(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−𝑠 = 𝐴1

𝑚(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−1 +

𝑟∑︁
𝑠=2

𝐴𝑠
𝑚(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−𝑠.

Распишем 𝑇𝑛+𝑟−𝑚−1, используя равенство (1), как 𝑇𝑛+𝑟−𝑚−1 =
𝑟∑︀

𝑠=1
𝑎𝑠𝑇𝑛+𝑟−𝑚−𝑠−1 и подставим

в предыдущее неравенство. Имеем

𝑇𝑛+𝑟 ⩾ 𝐴1
𝑚(𝑛+ 𝑟)

𝑟∑︁
𝑠=1

𝑎𝑠𝑇𝑛+𝑟−𝑚−𝑠−1 +
𝑟∑︁

𝑠=2

𝐴𝑠
𝑚(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−𝑠.

В первой части суммы воспользуемся тем, что 𝑎′𝑠 ⩽ 𝑎𝑠, а во второй — суммирование начнем с
𝑠 = 1. В результате получаем:

𝑇𝑛+𝑟 ⩾ 𝐴1
𝑚(𝑛+ 𝑟)

𝑟∑︁
𝑠=1

𝑎′𝑠𝑇𝑛+𝑟−𝑚−𝑠−1 +
𝑟−1∑︁
𝑠=1

𝐴𝑠+1
𝑚 (𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−𝑠−1.

Внесем 𝐴1
𝑚(𝑛+ 𝑟) под знак суммы и перегруппируем слагаемые

𝑇𝑛+𝑟 ⩾
𝑟−1∑︁
𝑠=1

(︀
𝑎′𝑠𝐴

1
𝑚(𝑛+ 𝑟) +𝐴𝑠+1

𝑚 (𝑛+ 𝑟)
)︀
𝑇𝑛+𝑟−𝑚−𝑠−1 + 𝑎′𝑟𝐴

1
𝑚(𝑛+ 𝑟)𝑇𝑛−𝑚−𝑠−1.

Применим утверждение леммы 8 к последнему неравенству и получим, что

𝑇𝑛+𝑟 ⩾
𝑟∑︁

𝑠=1

𝐴𝑠
𝑚+1(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑚−𝑠−1,

что соответствует утверждению леммы 10 при 𝑘 = 𝑚+ 1. Таким образом, лемма 10 доказана.
В силу леммы 7 все 𝜉𝑠𝑙,𝑘(𝑛+𝑟) неотрицательны. Изучим вопрос о положительности 𝜉𝑠𝑙,𝑘(𝑛+𝑟).

Пусть 𝐷𝑠
𝑘(𝑛 + 𝑟) — множество индексов 𝑙 из {0, 1, . . . , 𝑑 − 1} таких, что значения 𝜉𝑠𝑙,𝑘(𝑛 + 𝑟)

отличны от нуля, то есть для 1 ⩽ 𝑠 ⩽ 𝑟

𝐷𝑠
𝑘(𝑛+ 𝑟) =

{︀
𝑙 : 𝜉𝑠𝑙,𝑘(𝑛+ 𝑟) > 0

}︀
,

причем из равенства (16) следует, что мощность множества 𝐷𝑠
0(𝑛 + 𝑟) равна 𝑎′𝑠, то есть

♯𝐷𝑠
0(𝑛+ 𝑟) = 𝑎′𝑠.
Для двух множеств 𝐴,𝐵 ∈ {0, 1, . . . , 𝑑− 1} определим

𝐴⊖𝐵 = {𝑎⊖ 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} .

Лемма 11. При всех натуральных 𝑘 ⩽ 𝑛 справедливы равенства

𝐷𝑠
𝑘+1(𝑛+ 𝑟) =

𝑎′𝑠⋃︁
𝑗=1

(︀
𝐷1

𝑘(𝑛+ 𝑟) ⊖ {𝑃𝑠−1 + (𝑗 − 1)}
)︀
∪𝐷𝑠+1

𝑘 (𝑛+ 𝑟) при 𝑠 ∈ 𝐼 и 𝑠 < 𝑟; (24)

𝐷𝑠
𝑘+1(𝑛+ 𝑟) = 𝐷𝑠+1

𝑘 (𝑛+ 𝑟) при 𝑠 ∈ 𝐼 и 𝑠 < 𝑟; (25)

𝐷𝑟
𝑘+1(𝑛+ 𝑟) =

𝑎′𝑟⋃︁
𝑗=1

(︀
𝐷1

𝑘(𝑛+ 𝑟) ⊖ {𝑃𝑟−1 + (𝑗 − 1)}
)︀
. (26)
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Утверждение леммы следует из равенства (18).

Пусть 𝑑 ⩾ 3, и обозначим 𝑑0 =
[︀
𝑑
2

]︀
. Перейдем к изучению первого слагаемого в равенстве

(17), а именно,
𝑑−1∑︁
𝑙=0

𝜉1𝑙,𝑘(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘 − 1). (27)

Выясним, какое число итераций необходимо сделать, чтобы к последней сумме можно было
бы применить равенство из леммы 2 и уменьшить число слагаемых в (27) по крайней мере на
1.

Лемма 12. Справедливо неравенство

♯𝐷1
𝑘0(𝑛+ 𝑟) > 𝑑0, (28)

где

𝑘0 = 𝑟(𝑑0 − 1) + 1.

Доказательство. Пусть

𝑘′0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[︁
𝑑0−1
𝑎′1−1

]︁
при 𝑎′1 > 1;[︁

2(𝑑0−1)
𝑎′2

]︁
+ 1 при 𝑎′1 = 1 и 𝑎′2 > 0;[︁

𝑠0(𝑑0−1)
𝑎′𝑠0

]︁
+ 1 при 𝑎′1 = 1, 𝑎′2 = 𝑎′3 = . . . = 𝑎′𝑠0−1 = 0 и 𝑎′𝑠0 > 0.

(29)

Покажем, что

♯𝐷1
𝑘′0

(𝑛+ 𝑟) > 𝑑0 (30)

Вначале заметим, что из равенства (24) следует, что при всех 𝑘 ⩽ 𝑛

𝐷1
𝑘(𝑛+ 𝑟) ⊇ 𝐷1

𝑘−1(𝑛+ 𝑟). (31)

Докажем три соотношения, характеризующих мощность множества 𝐷1
𝑘(𝑛+ 𝑟) в зависимости

от значений коэффициентов 𝑎′𝑠:

♯𝐷1
𝑘(𝑛+ 𝑟) ⩾ ♯𝐷1

𝑘−1(𝑛+ 𝑟) + 𝑎′1 − 1 при 𝑎′1 > 1; (32)

♯𝐷1
𝑘(𝑛+ 𝑟) ⩾ ♯𝐷1

𝑘−2(𝑛+ 𝑟) + 𝑎′2 при 𝑎′1 = 1 и 𝑎′2 > 0; (33)

♯𝐷1
𝑘(𝑛+ 𝑟) ⩾ ♯𝐷1

𝑘−𝑠0(𝑛+ 𝑟) + 𝑎′𝑠0 при 𝑎′1 = 1, 𝑎′2 = 𝑎′3 = . . . = 𝑎′𝑠0−1 = 0 и 𝑎′𝑠0 > 0. (34)

Пусть 𝑎′1 > 1, тогда согласно равенству (24), имеем:

𝐷1
𝑘(𝑛+ 𝑟) =

𝑎′1⋃︁
𝑗=1

(︀
𝐷1

𝑘−1(𝑛+ 𝑟) ⊖ {𝑃0 + (𝑗 − 1)}
)︀
∪𝐷2

𝑘−1(𝑛+ 𝑟) ⊇
𝑎′1⋃︁
𝑗=1

(︀
𝐷1

𝑘−1(𝑛+ 𝑟) ⊖ {𝑗 − 1}
)︀
,

так как 𝑃0 = 0. Множество 𝐷1
𝑘(𝑛+ 𝑟) содержит 𝑎′1 множеств: 𝐷

1
𝑘−1(𝑛+ 𝑟), 𝐷1

𝑘−1(𝑛+ 𝑟) ⊖ {1},
. . . , 𝐷1

𝑘−1(𝑛 + 𝑟) ⊖ {𝑎′1 − 1}, причем каждое из них отличается хотя бы одним элементом от
другого, поэтому неравенство (32) выполняется.

Пусть 𝑎′1 = 1 и 𝑎′2 > 0, тогда в соответствии с равенством (24) можно утверждать, что

𝐷1
𝑘(𝑛+ 𝑟) = 𝐷1

𝑘−1(𝑛+ 𝑟) ∪𝐷2
𝑘−1(𝑛+ 𝑟). (35)
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Зная, что 𝑎′2 > 0, можем воспользоваться равенством (24) для 𝐷2
𝑘−1(𝑛+ 𝑟) и включением (31)

для 𝐷1
𝑘−1(𝑛+ 𝑟). Имеем

𝐷1
𝑘(𝑛+ 𝑟) ⊇ 𝐷1

𝑘−2(𝑛+ 𝑟) ∪

⎛⎝ 𝑎′2⋃︁
𝑗=1

(︀
𝐷1

𝑘−2(𝑛+ 𝑟) ⊖ {𝑃1 + (𝑗 − 1)}
)︀⎞⎠ ⊇ 𝑎′2⋃︁

𝑗=0

(︀
𝐷1

𝑘−2(𝑛+ 𝑟) ⊖ {𝑗}
)︀
,

так как 𝑃1 ≡ 1 (mod 𝑑) при 𝑎′1 = 1. Последнее включение означает, что множество 𝐷1
𝑘(𝑛+ 𝑟)

содержит 𝑎′2 + 1 множество: 𝐷1
𝑘−2(𝑛+ 𝑟), 𝐷1

𝑘−2(𝑛+ 𝑟)⊖ {1}, . . . , 𝐷1
𝑘−2(𝑛+ 𝑟)⊖ {𝑎′2}, каждое из

которых отличается хотя бы одним элементом. Следовательно, неравенство (33) справедливо.
Пусть 𝑎′1 = 1, 𝑎′2 = 𝑎′3 = . . . = 𝑎′𝑠0−1 = 0 и 𝑎′𝑠0 > 0, тогда 𝑠0 − 2 раза воспользуемся

включением (31) для множества 𝐷1
𝑘−1(𝑛+ 𝑟) и равенством (25) для множества 𝐷2

𝑘−1(𝑛+ 𝑟) в
формуле (35), и получим, что

𝐷1
𝑘(𝑛+ 𝑟) ⊇ 𝐷1

𝑘−2(𝑛+ 𝑟) ∪𝐷3
𝑘−2(𝑛+ 𝑟) ⊇ 𝐷1

𝑘−3(𝑛+ 𝑟) ∪𝐷4
𝑘−3(𝑛+ 𝑟) ⊇ . . . ⊇

⊇ 𝐷1
𝑘−𝑠0+1(𝑛+ 𝑟) ∪𝐷𝑠0

𝑘−𝑠0+1(𝑛+ 𝑟). (36)

По условию 𝑎′𝑠0 > 0, поэтому применив либо равенство (24), если 𝑠0 < 𝑟, либо тождество (26)
если 𝑠0 = 𝑟, и, учитывая включение (31), перепишем (2) как

𝐷1
𝑘(𝑛+𝑟) ⊇ 𝐷1

𝑘−𝑠0(𝑛+𝑟)∪

⎛⎝𝑎′𝑠0⋃︁
𝑗=1

(︀
𝐷1

𝑘−𝑠0(𝑛+ 𝑟) ⊖ {𝑃𝑠0−1 + (𝑗 − 1)}
)︀⎞⎠ =

𝑎′𝑠0⋃︁
𝑗=0

(︀
𝐷1

𝑘−𝑠0(𝑛+ 𝑟) ⊖ {𝑗}
)︀
,

так как 𝑃𝑠0−1 =
𝑠0−1∑︀
𝑖=1

𝑎𝑖, и, следовательно, 𝑃𝑠0−1 ≡ 1 (mod 𝑑). Множества 𝐷1
𝑘−𝑠0

(𝑛 + 𝑟),

𝐷1
𝑘−𝑠0

(𝑛+𝑟)⊖{1}, . . . , 𝐷1
𝑘−𝑠0

(𝑛+𝑟)⊖{𝑎′𝑠0} отличаются друг от друга хотя бы одним элементом,
поэтому неравенство (34) будет иметь место.

Теперь перейдем к доказательству неравенства, приведенного в утверждении леммы 12.
Если 𝑎′1 > 1, то применяя неравенство (32) 𝑘 раз, и учитывая, что ♯𝐷1

0(𝑛+ 𝑟) = 𝑎′1, приходим
к выводу, что

♯𝐷1
𝑘(𝑛+ 𝑟) ⩾ ♯𝐷1

𝑘−1(𝑛+ 𝑟) + 𝑎′1 − 1 ⩾ ♯𝐷1
𝑘−2(𝑛+ 𝑟) + 2(𝑎′1 − 1) ⩾ . . . ⩾

⩾ ♯𝐷1
0(𝑛+ 𝑟) + 𝑘(𝑎′1 − 1) = (𝑘 + 1)𝑎′1 − 𝑘.

Очевидно, что последнее выражение будет больше, чем 𝑑0, если 𝑘 =
[︁
𝑑0−1
𝑎′1−1

]︁
.

Если 𝑎′1 = 1, а 𝑎′2 > 0, то используя неравенство (33) ровно
[︀
𝑘
2

]︀
раз, получаем

♯𝐷1
𝑘(𝑛+ 𝑟) ⩾ ♯𝐷1

𝑘−2(𝑛+ 𝑟) + 𝑎′2 ⩾ ♯𝐷1
𝑘−4(𝑛+ 𝑟) + 2𝑎′2 ⩾ . . . ⩾ ♯𝐷1

0(𝑛+ 𝑟) +

[︂
𝑘

2

]︂
𝑎′2 =

[︂
𝑘

2

]︂
𝑎′2 + 1.

Если 𝑘 =
[︁
2(𝑑0−1)

𝑎′2

]︁
+ 1, то мощность множества 𝐷1

𝑘(𝑛+ 𝑟) будет превышать 𝑑0.

В том случае, когда 𝑎′1 = 1, 𝑎′2 = 𝑎′3 = . . . = 𝑎′𝑠0−1 = 0 и 𝑎′𝑠0 > 0, применяя неравенство (34)[︁
𝑘
𝑠0

]︁
раз, имеем

♯𝐷1
𝑘(𝑛+𝑟) ⩾ ♯𝐷1

𝑘−𝑠0(𝑛+𝑟)+𝑎′𝑠0 ⩾ ♯𝐷1
𝑘−2𝑠0(𝑛+𝑟)+2𝑎′𝑠0 ⩾ . . . ⩾ ♯𝐷1

0(𝑛+𝑟)+

[︂
𝑘

𝑠0

]︂
𝑎′𝑠0 =

[︂
𝑘

𝑠0

]︂
𝑎′𝑠0+1.

При 𝑘 =
[︁
𝑠0(𝑑0−1)

𝑎′𝑠0

]︁
+ 1 мощность множества 𝐷1

𝑘(𝑛+ 𝑟) будет больше 𝑑0.

Таким образом (30) доказано. Для доказательства леммы 12 остается воспользоваться (31)
и очевидным неравенством 𝑘′0 ≤ 𝑘0.
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Замечание 3. Из определения 𝐴1
𝑘(𝑛+𝑟) и леммы 12 вытекает, что если 𝑘0 определяется

равенствами (29), то 𝐴1
𝑘0

(𝑛+ 𝑟) > 𝑑0.

Пусть

𝜂𝑑,𝑟 =

(︂
1 +

1

𝑟(𝑑+ 1)𝑘0+1

)︂ 1
𝑘0+𝑟

. (37)

Лемма 13. При всех натуральных 𝑛 справедлива оценка⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒
≪ 𝑇𝑛

𝜂𝑛𝑑,𝑟
.

Доказательство. Введем в рассмотрение последовательность {𝑀𝑑(𝑛)}, определяемую
следующим образом:

𝑀𝑑(𝑛) = max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒
(38)

при 0 ⩽ 𝑛 ⩽ 𝑟 + 𝑘0 и

𝑀𝑑(𝑛+ 𝑟) =
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1) +

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) (39)

в остальных случаях. Пользуясь индукцией по 𝑛, докажем, что⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒
⩽𝑀𝑑(𝑛). (40)

При 𝑛 ⩽ 𝑟+ 𝑘0 неравенство (40) следует из (38). Предположим, что неравенство (40) справед-
ливо при 𝑛+ 𝑟− 𝑘0 − 𝑠, где 1 ⩽ 𝑠 ⩽ 𝑟. Распишем 𝑆*

𝑑,𝑎(𝑛+ 𝑟), воспользовавшись соотношением
(17) при 𝑘 = 𝑘0, как 𝑆

*
𝑑,𝑎(𝑛+ 𝑟) = Σ1 + Σ2, где

Σ1 =
𝑑−1∑︁
𝑙=0

𝜉1𝑙,𝑘0(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

и

Σ2 =
𝑟∑︁

𝑠=2

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑘0(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 𝑠).

Используя определение множества 𝐷1
𝑘0

(𝑛+ 𝑟), перепишем Σ1 следующим образом:

Σ1 =
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

𝜉1𝑙,𝑘0(𝑛+ 𝑟)𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1) =

=
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1) +

∑︁
𝑙∈𝐷1

𝑘0
(𝑛+𝑟)

(︀
𝜉1𝑙,𝑘0(𝑛+ 𝑟)− 1

)︀
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1),

где 𝜉1𝑙,𝑘0(𝑛+𝑟)−1 ⩾ 0 в силу определения 𝐷1
𝑘0

(𝑛+𝑟). Применим лемму 2 к первому слагаемому
последней суммы и получим, что

Σ1 = −
∑︁

𝑙 /∈𝐷1
𝑘0

(𝑛+𝑟)

𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1) +

∑︁
𝑙∈𝐷1

𝑘0
(𝑛+𝑟)

(︀
𝜉1𝑙,𝑘0(𝑛+ 𝑟)− 1

)︀
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1).

Найдем оценку сверху для |Σ1|. Имеем

|Σ1| ⩽
∑︁

𝑙 /∈𝐷1
𝑘0

(𝑛+𝑟)

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

⃒⃒
+

∑︁
𝑙∈𝐷1

𝑘0
(𝑛+𝑟)

(︀
𝜉1𝑙,𝑘0(𝑛+ 𝑟)− 1

)︀ ⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

⃒⃒
⩽
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⩽

⎛⎜⎝ ∑︁
𝑙 /∈𝐷1

𝑘0
(𝑛+𝑟)

1 +
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

(︀
𝜉1𝑙,𝑘0(𝑛+ 𝑟)− 1

)︀⎞⎟⎠ · max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

⃒⃒
=

= 𝐵(𝑛+ 𝑟) max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

⃒⃒
,

где

𝐵(𝑛+ 𝑟) =
∑︁

𝑙 /∈𝐷1
𝑘0

(𝑛+𝑟)

1 +
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

(︀
𝜉1𝑙,𝑘0(𝑛+ 𝑟)− 1

)︀
=

∑︁
𝑙 /∈𝐷1

𝑘0
(𝑛+𝑟)

1 +
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

𝜉1𝑙,𝑘0(𝑛+ 𝑟)−

−
∑︁

𝑙∈𝐷1
𝑘0

(𝑛+𝑟)

1 ⩽
(︀
𝑑− ♯𝐷1

𝑘0(𝑛+ 𝑟)
)︀

+𝐴1
𝑘0(𝑛+ 𝑟)− ♯𝐷1

𝑘0(𝑛+ 𝑟) = 𝑑+𝐴1
𝑘0(𝑛+ 𝑟)− 2♯𝐷1

𝑘0(𝑛+ 𝑟).

Из (28) получаем, что ♯𝐷1
𝑘0

(𝑛 + 𝑟) ⩾ 𝑑0 + 1, а, следовательно, при 𝑑 — четном: 𝑑0 = 𝑑
2 ,

2♯𝐷1
𝑘0

(𝑛+𝑟) ⩾ 𝑑+2 и 𝐵(𝑛+𝑟) ⩽ 𝐴1
𝑘0

(𝑛+𝑟)−2, а при 𝑑 — нечетном: 𝑑0 = 𝑑−1
2 , 2♯𝐷1

𝑘0
(𝑛+𝑟) ⩾ 𝑑+1

и 𝐵(𝑛+ 𝑟) ⩽ 𝐴1
𝑘0

(𝑛+ 𝑟)− 1, то есть, в любом случае, 𝐵(𝑛+ 𝑟) ⩽ 𝐴1
𝑘0

(𝑛+ 𝑟)− 1.
Учитывая последнее неравенство и предположение индукции, можно утверждать, что

|Σ1| ⩽
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 1)

⃒⃒
⩽

⩽
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1).

В свою очередь

|Σ2| ⩽
𝑟∑︁

𝑠=2

𝑑−1∑︁
𝑙=0

𝜉𝑠𝑙,𝑘0(𝑛+ 𝑟) max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 𝑠)

⃒⃒
=

=

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟) max

0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎⊖𝑙(𝑛+ 𝑟 − 𝑘0 − 𝑠)

⃒⃒
=

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠),

поэтому, используя (39) из неравенства
⃒⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟)

⃒⃒⃒
⩽ |Σ1|+ |Σ2| получаем, что⃒⃒

𝑆*
𝑑,𝑎(𝑛+ 𝑟)

⃒⃒
⩽
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1)+

+
𝑟∑︁

𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) = 𝑀𝑑(𝑛+ 𝑟),

что совпадает с неравенством (40). Перейдем к доказательству соотношения

𝑀𝑑(𝑛)≪ 𝑇𝑛
𝜂𝑛𝑑,𝑟

, (41)

то есть покажем, что найдется постоянная 𝐶(𝑑, 𝑟) > 0 такая, что

𝑇𝑛 ⩾ 𝐶(𝑑, 𝑟)𝑀𝑑(𝑛)𝜂𝑛𝑑,𝑟. (42)

Пусть 0 ⩽ 𝑛 ⩽ 𝑟 + 𝑘0, тогда, очевидно, при 𝐶(𝑑, 𝑟) = max
0⩽𝑛⩽𝑟+𝑘0

𝑇𝑛
𝜂𝑛𝑑,𝑟

неравенство (42) будет

выполняться. Предположим, что существует положительная постоянная 𝐶(𝑑, 𝑟) такая, что

𝑇𝑛+𝑟−𝑚 ⩾ 𝐶(𝑑, 𝑟)𝑀𝑑(𝑛+ 𝑟 −𝑚)𝜂𝑛+𝑟−𝑚
𝑑,𝑟 (43)
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при всех 1 ⩽ 𝑚 ⩽ 𝑛+ 𝑟, тогда воспользуемся утверждением леммы 10 при 𝑘 = 𝑘0. Имеем:

𝑇𝑛+𝑟 ⩾
𝑟∑︁

𝑠=1

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘0−𝑠 = 𝐴1

𝑘0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘0−1 +

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘0−𝑠 =

=
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑇𝑛+𝑟−𝑘0−1 +

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘0−𝑠 + 𝑇𝑛+𝑟−𝑘0−1. (44)

Из равенства (1) и неравенства (1) следует, что при всех 1 ⩽ 𝑠 ⩽ 𝑟 справедливо соотношение
𝑇𝑛+𝑟−𝑘0−𝑠 ⩽ 𝑇𝑛+𝑟−𝑘0−1, поэтому

𝑇𝑛+𝑟−𝑘0−1 ⩾
1

𝑟

𝑟∑︁
𝑠=1

𝑇𝑛+𝑟−𝑘0−𝑠.

Учитывая это неравенство, из соотношения (2) получаем, что

𝑇𝑛+𝑟 ⩾
(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑇𝑛+𝑟−𝑘0−1 +

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑇𝑛+𝑟−𝑘0−𝑠 +

1

𝑟

𝑟∑︁
𝑠=1

𝑇𝑛+𝑟−𝑘0−𝑠.

Применим предположение индукции (43) к последнему неравенству. Находим

𝑇𝑛+𝑟 ⩾ 𝐶(𝑑, 𝑟)𝜂𝑛−𝑘0
𝑑,𝑟

(︃(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1)𝜂𝑟−1

𝑑,𝑟 +

+
𝑟∑︁

𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠)𝜂𝑟−𝑠

𝑑,𝑟 +
1

𝑟

𝑟∑︁
𝑠=1

𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠)𝜂𝑟−𝑠
𝑑,𝑟

)︃
.

В силу того, что 𝜂𝑑,𝑟 > 1, получаем, что

𝑇𝑛+𝑟 ⩾ 𝐶(𝑑, 𝑟)𝜂𝑛−𝑘0
𝑑,𝑟

(︃(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1)+

+

𝑟∑︁
𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) +

1

𝑟

𝑟∑︁
𝑠=1

𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠)

)︃
.

Согласно определению (39), имеем

𝑇𝑛+𝑟 ⩾ 𝐶(𝑑, 𝑟)𝜂𝑛−𝑘0
𝑑,𝑟

(︃
𝑀𝑑(𝑛+ 𝑟) +

1

𝑟

𝑟∑︁
𝑠=1

𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠)

)︃
. (45)

Очевидно, что

𝑟∑︁
𝑠=1

𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) ⩾
1

max
1⩽𝑠⩽𝑟

𝐴𝑠
𝑘0

(𝑛+ 𝑟)

𝑟∑︁
𝑠=1

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) ⩾

⩾
1

max
1⩽𝑠⩽𝑟

𝐴𝑠
𝑘0

(𝑛+ 𝑟)

(︃(︀
𝐴1

𝑘0(𝑛+ 𝑟)− 1
)︀
𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 1)+

+
𝑟∑︁

𝑠=2

𝐴𝑠
𝑘0(𝑛+ 𝑟)𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠)

)︃
=

𝑀𝑑(𝑛+ 𝑟)

max
1⩽𝑠⩽𝑟

𝐴𝑠
𝑘0

(𝑛+ 𝑟)
.
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Из неравенства (23) следует, что

1

max
1⩽𝑠⩽𝑟

𝐴𝑠
𝑘0

(𝑛+ 𝑟)
⩾

1

(𝑑+ 1)𝑘0+1
,

поэтому
𝑟∑︁

𝑠=1

𝑀𝑑(𝑛+ 𝑟 − 𝑘0 − 𝑠) ⩾
𝑀𝑑(𝑛+ 𝑟)

(𝑑+ 1)𝑘0+1
. (46)

Подставим (46) в (45) и получим, что

𝑇𝑛+𝑟 ⩾ 𝐶(𝑑, 𝑟)𝜂𝑛−𝑘0
𝑑,𝑟 𝑀𝑑(𝑛+ 𝑟)

(︂
1 +

1

𝑟(𝑑+ 1)𝑘0+1

)︂
.

Так как

𝜂𝑘0+𝑟
𝑑,𝑟 = 1 +

1

𝑟(𝑑+ 1)𝑘0+1
,

то

𝑇𝑛+𝑟 ⩾ 𝐶(𝑑, 𝑟)𝜂𝑛+𝑟
𝑑,𝑟 𝑀𝑑(𝑛+ 𝑟).

Из соотношений (40) и (41) получается утверждение леммы 13.

Перейдем к изучению 𝑆𝑑,𝑎(𝑋), где𝑋 — целое неотрицательное число, имеющее разложение
(4), удовлетворяющее условию (5).

Лемма 14. Справедливо неравенство

|𝑆𝑑,𝑎(𝑋)| ≪
𝑡(𝑋)∑︁
𝑖=0

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
.

Доказательство. Утверждение леммы 14, очевидно, следует из неравенства

|𝑆𝑑,𝑎(𝑋)| ⩽
𝑡(𝑋)∑︁
𝑖=0

𝑡′𝑖 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
, (47)

где 𝑡′𝑖 = 𝑡𝑖(𝑋)mod𝑑, и тривиальной оценки 𝑡′𝑖 < 𝑑. Прежде, чем доказать соотношение (47),
покажем выполнимость при любых 𝑖 неравенства

|𝑆𝑑,𝑎(𝑡𝑖𝑇𝑖)| ⩽ 𝑡′𝑖 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
. (48)

Имеем

𝑆𝑑,𝑎(𝑡𝑖𝑇𝑖) =

𝑡𝑖𝑇𝑖−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) =

𝑡𝑖−1∑︁
𝑙=0

𝑇𝑖−1∑︁
𝑋′=0

𝜀𝑑,𝑎(𝑙𝑇𝑖 +𝑋 ′) =

𝑡𝑖−1∑︁
𝑙=0

𝑇𝑖−1∑︁
𝑋′=0

𝜀𝑑,𝑎⊖𝑙(𝑋
′) =

=

𝑡𝑖−1∑︁
𝑙=0

𝑆𝑑,𝑎⊖𝑙(𝑇𝑖) =

𝑡𝑖−1∑︁
𝑙=0

𝑆*
𝑑,𝑎⊖𝑙(𝑖).

Пусть 𝑡𝑖 = 𝑞𝑑+ 𝑡′𝑖, где 𝑞 ⩾ 0, 0 ⩽ 𝑡′𝑖 < 𝑑, тогда

𝑡𝑖−1∑︁
𝑙=0

𝑆*
𝑑,𝑎⊖𝑙(𝑖) =

𝑞−1∑︁
𝑘=0

𝑑−1∑︁
𝑠=0

𝑆*
𝑑,𝑎⊖(𝑘𝑑+𝑠)(𝑖) +

𝑡′𝑖−1∑︁
𝑠=0

𝑆*
𝑑,𝑎⊖(𝑞𝑑+𝑠)(𝑖) =

𝑡′𝑖−1∑︁
𝑠=0

𝑆*
𝑑,𝑎⊖(𝑞𝑑+𝑠)(𝑖),
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так как при любом 𝑘 в силу леммы 2 получаем
𝑑−1∑︀
𝑠=0

𝑆*
𝑑,𝑎⊖(𝑘𝑑+𝑠)(𝑖) = 0. В таком случае

|𝑆𝑑,𝑎(𝑡𝑖𝑇𝑖)| ⩽
𝑡′𝑖−1∑︁
𝑠=0

⃒⃒⃒
𝑆*
𝑑,𝑎⊖(𝑞𝑑+𝑠)(𝑖)

⃒⃒⃒
⩽ 𝑡′𝑖 max

0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
,

то есть неравенство (48) выполняется.
Доказательство неравенства (47) проведем, используя индукцию по 𝑡(𝑋). Пусть 𝑡(𝑋) = 0,

тогда получаем, что 𝑋 = 𝑡0𝑇0, и в силу (48) |𝑆𝑑,𝑎(𝑋)| = |𝑆𝑑,𝑎(𝑡0𝑇0)| ⩽ 𝑡′0 max
0⩽𝑎<𝑑

⃒⃒⃒
𝑆*
𝑑,𝑎(0)

⃒⃒⃒
, что

совпадает с (47) при 𝑡(𝑋) = 0. Предположим, что неравенство (47) верно при 𝑡(𝑋) = 𝑝, то

есть при 𝑋 =
𝑝∑︀

𝑖=0
𝑡𝑖𝑇𝑖

|𝑆𝑑,𝑎(𝑋)| ⩽
𝑝∑︁

𝑖=0

𝑡′𝑖 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
. (49)

Если 𝑡(𝑋) = 𝑝+ 1, то 𝑋 =
𝑝+1∑︀
𝑖=0

𝑡𝑖𝑇𝑖 = 𝑋 ′ + 𝑡𝑝+1𝑇𝑝+1, где 𝑋
′ =

𝑝∑︀
𝑖=0

𝑡𝑖𝑇𝑖, и

𝑆𝑑,𝑎(𝑋) =

𝑡𝑝+1𝑇𝑝+1−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) +

𝑡𝑝+1𝑇𝑝+1+𝑋′−1∑︁
𝑚=𝑡𝑝+1𝑇𝑝+1

𝜀𝑑,𝑎(𝑚). (50)

В соответствии с определением 𝜀𝑑,𝑎(𝑚) и 𝑆𝑑,𝑎(𝑋) получаем, что

𝑡𝑝+1𝑇𝑝+1+𝑋′−1∑︁
𝑚=𝑡𝑝+1𝑇𝑝+1

𝜀𝑑,𝑎(𝑚) =

𝑡𝑝+1𝑇𝑝+1+𝑋′−1∑︁
𝑚=𝑡𝑝+1𝑇𝑝+1

𝜀𝑑,𝑎⊖𝑡𝑝+1(𝑚− 𝑡𝑝+1𝑇𝑝+1) =
𝑋′−1∑︁
𝑚=0

𝜀𝑑,𝑎⊖𝑡𝑝+1(𝑚) = 𝑆𝑑,𝑎⊖𝑡𝑝+1(𝑋 ′),

а
𝑡𝑝+1𝑇𝑝+1−1∑︀

𝑚=0
𝜀𝑑,𝑎(𝑚) = 𝑆𝑑,𝑎(𝑡𝑝+1𝑇𝑝+1), поэтому из неравенства (50) имеем

|𝑆𝑑,𝑎(𝑋)| ⩽ |𝑆𝑑,𝑎(𝑡𝑝+1𝑇𝑝+1)|+
⃒⃒
𝑆𝑑,𝑎⊖𝑡𝑝+1(𝑋 ′)

⃒⃒
.

Применим к первому слагаемому соотношение (48), а ко второму — предположение индук-
ции (49), и получим, что

|𝑆𝑑,𝑎(𝑋)| ⩽ 𝑡′𝑝+1 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑝+ 1)

⃒⃒
+

𝑝∑︁
𝑖=0

𝑡′𝑖 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
=

𝑝+1∑︁
𝑖=0

𝑡′𝑖 max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
.

Таким образом, лемма 14 доказана.
Для нахождения асимптотической формулы для 𝑇𝑛 сформулируем и докажем следующую

лемму.

Лемма 15. Предположим, что 𝐺0, 𝐺1, . . . , 𝐺𝑟−1 положительны, что 𝐺𝑗 =
𝑟∑︀

𝑖=1
𝑎𝑖𝐺𝑗−𝑖

для 𝑗 ⩾ 𝑟, где 𝑎𝑖 ⩾ 0, 1 ⩽ 𝑖 ⩽ 𝑟. Тогда характеристический многочлен 𝑃 (𝑢) = 𝑢𝑟 −
𝑟∑︀

𝑖=1
𝑎𝑖𝑢

𝑟−𝑖

имеет единственный корень 𝛼 максимального модуля, который является действительным
и большим 1. Кроме того,

𝐺𝑗 = 𝐶𝛼𝑗 +𝑂(𝛼(1−𝛿)𝑗) (51)

для действительной константы 𝐶 > 0 и некоторого 𝛿 > 0.
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Доказательство. Сначала покажем, что 𝑃 (𝑢) имеет единственный положительный дей-

ствительный корень 𝛼 > 1 максимального модуля. Положим 𝐺(𝑢) = 1 − 𝑢𝑟𝑃 (𝑢−1) =
𝑟∑︀

𝑗=1
𝑎𝑗𝑢

𝑗 .

Тогда 𝐺(𝑢) строго возрастает для действительных 𝑢 ⩾ 0. Поскольку 𝐺(0) = 0 и lim
𝑢→+∞

𝐺(𝑢) =

= +∞, то существует единственное 𝑢0 > 0, такое что 𝐺(𝑢0) = 1. Поскольку 𝐺𝑛 строго воз-

растает, то
𝑟∑︀

𝑗=1
𝑎𝑗 = 𝐺(1) > 1 и, следовательно, 𝑢0 < 1. Более того, 𝐺′(𝑢0) =

𝑟∑︀
𝑗=1

𝑗𝑎𝑗𝑢
𝑗−1
0 > 0.

Таким образом, 𝛼 = 1
𝑢0
> 1 является простым корнем 𝑃 (𝑢). Если |𝑢| < 𝑢0, то

|𝐺(𝑢)| ⩽ 𝐺(|𝑢|) < 𝐺(𝑢0) = 1.

то 𝑢 ∈ C.
Для комплексных чисел 𝑧1, 𝑧2, . . . , 𝑧𝑛, то справедливо неравенство

|𝑧1 + 𝑧2 + . . .+ 𝑧𝑛| ⩽ |𝑧1|+ |𝑧2|+ . . .+ |𝑧𝑛|. (52)

Равенство в (52) будет достигаться только в том случае, для некоторого 𝑧 выполняются
равенства 𝑧𝑗 = 𝛼𝑗𝑧, где 𝛼𝑗 ∈ R, 𝛼𝑗 > 0.

Пусть 𝑢 ∈ C, тогда 𝑎𝑗𝑢𝑗 ∈ C и можно воспользоваться неравенством (52) для |𝐺(𝑢)|:

|𝐺(𝑢)| =

⃒⃒⃒⃒
⃒⃒ 𝑟∑︁
𝑗=1

𝑎𝑗𝑢
𝑗

⃒⃒⃒⃒
⃒⃒ ⩽ 𝑟∑︁

𝑗=1

⃒⃒
𝑎𝑗𝑢

𝑗
⃒⃒

=

𝑟∑︁
𝑗=1

𝑎𝑗 |𝑢|𝑗 = 𝐺(|𝑢|).

Как было показано, равенство в последнем соотношении будет достигаться только в том слу-
чае, когда при всех 𝑗 выполняется равенство 𝑎𝑗𝑢

𝑗 = 𝛼𝑗𝑧, то есть 𝑢
𝑗 =

𝛼𝑗

𝑎𝑗
𝑧, где 𝛼𝑗 > 0, 𝑎𝑗 > 0

и 𝑧 ∈ C. Последнее равенство возможно только если 𝑢 ∈ R и 𝑧 ∈ R.
Итак, если |𝑢| = 𝑢0 и 𝑢 ̸= 𝑢0, то

|𝐺(𝑢)| < 𝐺(|𝑢|) = 𝐺(𝑢0) = 1,

то есть такое 𝑢 не является корнем характеристического многочлена 𝑃 (𝑢). Следовательно,
нет корней 𝑃 (𝑢), отличных от 𝛼 с модулем большим или равным 𝛼. Далее ясно, что 𝐺𝑗 имеет
представление вида (51) для некоторого вещественного 𝐶. Нам нужно только показать, что
𝐶 > 0. Для этого определим 𝐹𝑗(𝑥0, . . . , 𝑥𝑟−1) как 𝐹𝑗(𝑥0, . . . , 𝑥𝑟−1) = 𝑥𝑗 , если 0 ⩽ 𝑗 < 𝑟 и как

𝐹𝑗(𝑥0, . . . , 𝑥𝑟−1) =

𝑟∑︁
𝑖=1

𝑎𝑖𝐹𝑗−𝑖(𝑥0, . . . , 𝑥𝑟−1)

для 𝑗 ⩾ 𝑟. Тогда 𝐹𝑗(𝑥0, . . . , 𝑥𝑟−1) является полилинейной и монотонной по всем перемен-
ным. Кроме того, 𝐹𝑗(𝐺0, ..., 𝐺𝑟−1) = 𝐺𝑗 и 𝐹𝑗(1, 𝛼, . . . , 𝛼

𝑟−1) = 𝛼𝑗 . Следовательно, установив
𝑐1 = min

0⩽𝑗<𝑟
𝐺𝑗𝛼

−𝑗 , получаем

𝑐1𝛼
𝑗 = 𝐹𝑗(𝑐1, 𝑐1𝛼, . . . , 𝑐1𝛼

𝑟−1) ⩽ 𝐹𝑗(𝐺0, . . . , 𝐺𝑟−1) = 𝐶𝑗 = 𝐶𝛼𝑗 +𝑂(𝛼(1−𝛿)𝑗).

Таким образом, 𝐶 > 0.

Замечание 4. Приведенное выше утверждение аналогично лемме 3.1 работы [8], в ко-
торой, однако, имеется дополнительное условие о взаимной простоте ненулевых коэффици-
ентов 𝑎𝑖. Доказательство, за исключением утверждения |𝐺(𝑢)| < 1 при |𝑢| = 𝑢0, 𝑢 ̸= 𝑢0
аналогично доказательству из упомянутой работы.
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Члены рекуррентной последовательности {𝑇𝑛}, определяемые условиями (1)–(3), удовле-
творяют утверждению леммы 15. Пусть 𝛼 – наибольший по модулю корень характеристиче-
ского уравнения линейной рекуррентной последовательности {𝑇𝑛}. Из леммы 15 вытекает, что
𝛼 определен однозначно, является действительным и 𝛼 > 1. Более того, в силу равенства (51)
имеем

𝑇𝑛 ∼ 𝐶𝛼𝑛 (53)

с некоторым 𝐶 > 0.

Лемма 16. При всех 𝑛 ⩾ 0 имеет место оценка

⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒
≪ min

(︃
𝛼𝑛

𝜂𝑛𝑑,𝑟
, 𝜏𝑛𝑑0

)︃
,

где 𝛼 — наибольший по модулю корень характеристического уравнения линейной рекур-
рентной последовательности {𝑇𝑛}, 𝛼 > 1, 𝜏𝑑0 — наибольший по модулю корень уравнения

𝑢𝑟 − 𝑑0
𝑟∑︀

𝑠=1
𝑢𝑟−𝑠 = 0, 𝜂𝑑,𝑟 определяется равенством (37).

Доказательство. Характеристический многочлен 𝑓(𝑢) = 𝑢𝑟 − 𝑑0
𝑟∑︀

𝑠=1
𝑢𝑟−𝑠, где 𝑑0 ⩾ 1,

удовлетворяет тем же условиям, что и характеристический многочлен 𝑃 (𝑢) из условия леммы
15, поэтому максимальный по модулю корень 𝜏𝑑0 уравнения 𝑓(𝑢) = 0 действительный и, более
того, больший единицы. Покажем, что 𝜏𝑑0 > 𝑑0. Действительно,

𝑓(𝑑0) = 𝑑𝑟0 − 𝑑0
𝑟∑︁

𝑠=1

𝑑𝑟−𝑠
0 = 𝑑𝑟0 − 𝑑0

(︀
𝑑𝑟−1
0 + 𝑑𝑟−2

0 + . . .+ 𝑑0 + 1
)︀

= −𝑑𝑟−1
0 − 𝑑𝑟−2

0 − . . .− 𝑑0 − 1 < 0,

а lim
𝑢→+∞

𝑓(𝑢) = +∞, значит найдется действительный корень уравнения 𝑓(𝑢) = 0, больший 𝑑0.

Так как 𝜏𝑑0 — наибольший корень уравнения 𝑓(𝑢) = 0, то 𝜏𝑑0 > 𝑑0.

Используя индукцию по 𝑛, докажем, что
⃒⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒⃒
≪ 𝜏𝑛𝑑0 . Заметим, что всегда можно вы-

брать 𝐶(𝑑, 𝑟) так, чтобы
⃒⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒⃒
⩽ 𝐶(𝑑, 𝑟)𝜏𝑛𝑑0 при 𝑛 = 0, 1, . . . , 𝑟 − 1. Действительно, можно

взять 𝐶(𝑑, 𝑟) = max
0⩽𝑎<𝑑

max
(︁⃒⃒⃒
𝑆*
𝑑,𝑎(0)

⃒⃒⃒
,

|𝑆*
𝑑,𝑎(1)|
𝜏𝑑0

, . . . ,
|𝑆*

𝑑,𝑎(𝑟−1)|
𝜏𝑟−1
𝑑0

)︂
.

Рассмотрим доказательство шага индукции. Перепишем равенство (14) как 𝑆*
𝑑,𝑎(𝑛+ 𝑟) =

= 𝑆1 + 𝑆2, где

𝑆1 =
∑︁
𝑠∈𝐼,

1⩽𝑎′𝑠⩽𝑑0

𝑎′𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠), 𝑆2 =

∑︁
𝑠∈𝐼,

𝑑0<𝑎′𝑠⩽𝑑

𝑎′𝑠∑︁
𝑗=1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠).

Найдем оценку каждой из сумм 𝑆1 и 𝑆2:

|𝑆1| ⩽
∑︁
𝑠∈𝐼,

1⩽𝑎′𝑠⩽𝑑0

𝑎′𝑠∑︁
𝑗=1

⃒⃒⃒
𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠)

⃒⃒⃒
⩽

∑︁
𝑠∈𝐼,

1⩽𝑎′𝑠⩽𝑑0

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟 − 𝑠)

⃒⃒ 𝑎′𝑠∑︁
𝑗=1

1 ⩽

⩽ 𝑑0
∑︁
𝑠∈𝐼,

1⩽𝑎′𝑠⩽𝑑0

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟 − 𝑠)

⃒⃒
.
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Для получения оценки 𝑆2 воспользуемся утверждением леммы 2, в силу которого

|𝑆2| ⩽
∑︁
𝑠∈𝐼,

𝑑0<𝑎′𝑠⩽𝑑

⃒⃒⃒⃒
⃒⃒− 𝑑∑︁

𝑗=𝑎′𝑠+1

𝑆*
𝑑,𝑎⊖(𝑃𝑠−1+(𝑗−1))(𝑛+ 𝑟 − 𝑠)

⃒⃒⃒⃒
⃒⃒ ⩽

⩽
∑︁
𝑠∈𝐼,

𝑑0<𝑎′𝑠⩽𝑑

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟 − 𝑠)

⃒⃒ 𝑑∑︁
𝑗=𝑎′𝑠+1

1 ⩽ 𝑑0
∑︁
𝑠∈𝐼,

𝑑0<𝑎′𝑠⩽𝑑

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟 − 𝑠)

⃒⃒
.

Из полученных оценок для |𝑆1| и |𝑆2| следует, что⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟)

⃒⃒
⩽ 𝑑0

∑︁
𝑠∈𝐼

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟 − 𝑠)

⃒⃒
.

С учетом предположения индукции получаем, что

⃒⃒
𝑆*
𝑑,𝑎(𝑛+ 𝑟)

⃒⃒
⩽ 𝑑0

∑︁
𝑠∈𝐼

𝐶(𝑑, 𝑟)𝜏𝑛+𝑟−𝑠
𝑑0

⩽ 𝑑0𝐶(𝑑, 𝑟)
∑︁
𝑠∈𝐼

𝜏𝑛+𝑟−𝑠
𝑑0

= 𝑑0𝐶(𝑑, 𝑟)𝜏𝑛𝑑0
𝜏 𝑟𝑑0 − 1

𝜏𝑑0 − 1
=

= 𝐶(𝑑, 𝑟)
𝑑0

𝜏𝑑0 − 1
𝜏𝑛𝑑0
(︀
𝜏 𝑟𝑑0 − 1

)︀
< 𝐶(𝑑, 𝑟)

𝜏𝑑0
𝜏𝑑0 − 1

𝜏𝑛𝑑0
(︀
𝜏 𝑟𝑑0 − 1

)︀
< 𝐶(𝑑, 𝑟)𝜏𝑛+𝑟

𝑑0
.

Из последнего неравенства следует справедливость оценки
⃒⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒⃒
≪ 𝜏𝑛𝑑0 . Кроме того, приме-

няя асимптотику (53) к утверждению леммы 13, получаем, что
⃒⃒⃒
𝑆*
𝑑,𝑎(𝑛)

⃒⃒⃒
≪ 𝛼𝑛

𝜂𝑛𝑑,𝑟
. Из последних

двух оценок следует утверждение леммы 16.
Перейдем к оценке 𝑡(𝑋).

Лемма 17. Пусть 𝑋 имеет разложение (4) по линейным рекуррентным последователь-
ностям {𝑇𝑛}, определяемых условиями (1)–(3), и удовлетворяет условию (5), тогда

log𝛼
𝑋

𝐶(𝑎1 + 1)
< 𝑡(𝑋) < log𝛼

𝑋

𝐶𝑎1
,

где 𝛼 — корень характеристического уравнения для равенства (1), 𝛼 > 1 и 𝐶 > 0.

Доказательство. По условию 𝑋 =
𝑡(𝑋)∑︀
𝑖=0

𝑡𝑖𝑇𝑖 удовлетворяет условию (5), значит 𝑎1𝑇𝑡(𝑋) <

< 𝑋 < (𝑎1 + 1)𝑇𝑡(𝑋) и в силу асимптотики (53) 𝑎1𝐶𝛼
𝑡(𝑋) < 𝑋 < (𝑎1 + 1)𝐶𝛼𝑡(𝑋), где 𝑎1 > 1,

𝛼 > 1 и 𝐶 > 0, тогда

log𝛼(𝐶𝑎1) + 𝑡(𝑋) < log𝛼𝑋 < log𝛼(𝐶(𝑎1 + 1)) + 𝑡(𝑋),

или

log𝛼𝑋 − log𝛼(𝐶(𝑎1 + 1)) < 𝑡(𝑋) < log𝛼𝑋 − log𝛼(𝐶𝑎1),

из которого следует утверждение леммы.
Сформулируем и докажем следующую теорему.

Теорема 1. Для любого 𝑑 ⩾ 3 справедлива асимптотическая формула

𝑁
(𝑇 )
𝑑,𝑎 (𝑋) =

𝑋

𝑑
+𝑂

(︁
𝑋𝜆
)︁
,
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где 𝜆 = log𝜏𝑑0𝜂𝑑,𝑟
𝜏𝑑0, 𝜏𝑑0 — наибольший по модулю корень уравнения 𝑢𝑟 − 𝑑0

𝑟∑︀
𝑠=1

𝑢𝑟−𝑠 = 0,

𝜂𝑑,𝑟 =

(︂
1 +

1

𝑟(𝑑+ 1)𝑘0+1

)︂ 1
𝑘0+𝑟

,

𝑘0 = 𝑟(𝑑0 − 1) + 1,

𝑑0 =

[︂
𝑑

2

]︂
.

Замечание 5. Легко видеть, что полученное значение 𝜆 зависит только от 𝑑 и 𝑟, но не
от коэффициентов 𝑎𝑖 линейного рекуррентного соотношения. Константа, скрытая в 𝑂(𝑋𝜆),
может зависеть от этих коэффициентов.

Доказательство. Из утверждения леммы 1 следует, что

𝑁
(𝑇 )
𝑑,𝑎 (𝑋) =

𝑋

𝑑
+

𝑋−1∑︁
𝑚=0

𝜀𝑑,𝑎(𝑚) =
𝑋

𝑑
+ 𝑆𝑑,𝑎(𝑋).

Рассмотрим два случая.

1) 𝛼 > 𝜏𝑑0𝜂𝑑,𝑟. В этом случае, используя утверждения лемм 14 и 16, находим |𝑆𝑑,𝑎(𝑋)| ≪

≪
𝑡(𝑋)∑︀
𝑖=0

𝜏 𝑖𝑑0 . Суммируя геометрическую прогрессию, имеем |𝑆𝑑,𝑎(𝑋)| ≪ 𝜏
𝑡(𝑋)
𝑑0

. Применив оценку

𝑡(𝑋) из леммы 17, получаем |𝑆𝑑,𝑎(𝑋)| ≪ 𝜏
log𝛼

𝑋
𝐶𝑎1

𝑑0
. При этом

𝜏
log𝛼

𝑋
𝐶𝑎1

𝑑0
= 𝜏

log𝜏𝑑0

𝑋
𝐶𝑎1

log𝜏𝑑0
𝛼

𝑑0
=

(︂
𝑋

𝐶𝑎1

)︂ 1
log𝜏𝑑0

𝛼

=

(︂
𝑋

𝐶𝑎1

)︂log𝛼 𝜏𝑑0
.

Таким образом, существует постоянная 𝐶1(𝑎1, 𝑑, 𝑟) такая, что при 𝛼 > 𝜏𝑑0𝜂𝑑,𝑟 выполняется
неравенство

|𝑆𝑑,𝑎(𝑋)| ⩽ 𝐶1(𝑎1, 𝑑, 𝑟)𝑋
log𝛼 𝜏𝑑0 < 𝐶1(𝑎1, 𝑑, 𝑟)𝑋

log𝜏𝑑0𝜂𝑑,𝑟
𝜏𝑑0 = 𝐶1(𝑎1, 𝑑, 𝑟)𝑋

𝜆.

2) 𝛼 ⩽ 𝜏𝑑0𝜂𝑑,𝑟. В этом случае для получения оценки 𝑆𝑑,𝑎(𝑋) воспользуемся леммами 14 и
13. Имеем

|𝑆𝑑,𝑎(𝑋)| ≪
𝑡(𝑋)∑︁
𝑖=0

max
0⩽𝑎<𝑑

⃒⃒
𝑆*
𝑑,𝑎(𝑖)

⃒⃒
≪

𝑡(𝑋)∑︁
𝑖=0

𝑇𝑖
𝜂𝑖𝑑,𝑟

. (54)

При всех 𝑖 ⩾ 𝑟 из условий (1) и (3) следует, что 𝑇𝑖 ⩾ 𝑇𝑖−1 + 𝑇𝑖−𝑟 ⩾ 2𝑇𝑖−𝑟, поэтому 𝑇𝑖−𝑟 ⩽ 1
2𝑇𝑖,

поэтому
𝑇𝑖−𝑟

𝜂𝑖−𝑟
𝑑,𝑟

⩽
𝜂𝑟𝑑,𝑟
2
· 𝑇𝑖
𝜂𝑖𝑑,𝑟

. (55)

По условию 𝑟 ⩾ 2, 𝑑 ⩾ 3 и 𝑘0 ⩾ 1, следовательно, 1
2 <

𝜂𝑟𝑑,𝑟
2 < 1. Перепишем соотношение (54)

как

|𝑆𝑑,𝑎(𝑋)| ≪
𝑟−1∑︁
𝑠=0

∑︁
0⩽𝑘⩽𝑡(𝑋),

𝑘≡𝑠 (mod 𝑟)

𝑇𝑡(𝑋)−𝑘

𝜂
𝑡(𝑋)−𝑘
𝑑,𝑟

. (56)
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Воспользуемся неравенством (55) 𝑘−𝑠
𝑟 раз. Имеем:

𝑇𝑡(𝑋)−𝑘

𝜂
𝑡(𝑋)−𝑘
𝑑,𝑟

⩽
𝜂𝑟𝑑,𝑟
2
·
𝑇𝑡(𝑋)−𝑘+𝑟

𝜂
𝑡(𝑋)−𝑘+𝑟
𝑑,𝑟

⩽

(︂
𝜂𝑟𝑑,𝑟
2

)︂2

·
𝑇𝑡(𝑋)−𝑘+2𝑟

𝜂
𝑡(𝑋)−𝑘+2𝑟
𝑑,𝑟

⩽ . . . ⩽

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘−𝑠
𝑟

·
𝑇𝑡(𝑋)−𝑠

𝜂
𝑡(𝑋)−𝑠
𝑑,𝑟

.

Воспользуемся последним неравенством для преобразования соотношения (56). Получаем

|𝑆𝑑,𝑎(𝑋)| ≪
𝑟−1∑︁
𝑠=0

∑︁
0⩽𝑘⩽𝑡(𝑋),

𝑘≡𝑠 (mod 𝑟)

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘−𝑠
𝑟

·
𝑇𝑡(𝑋)−𝑠

𝜂
𝑡(𝑋)−𝑠
𝑑,𝑟

=

𝑟−1∑︁
𝑠=0

𝑇𝑡(𝑋)−𝑠

𝜂
𝑡(𝑋)−𝑠
𝑑,𝑟

∑︁
0⩽𝑘⩽𝑡(𝑋),𝑘≡𝑠 (mod 𝑟)

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘−𝑠
𝑟

.

Из равенства (1) следует, что 𝑇𝑡(𝑋)−𝑟+1 ⩽ 𝑇𝑡(𝑋)−𝑟+2 ⩽ . . . ⩽ 𝑇𝑡(𝑋), поэтому

|𝑆𝑑,𝑎(𝑋)| ≪
𝑇𝑡(𝑋)

𝜂
𝑡(𝑋)
𝑑,𝑟

𝑟−1∑︁
𝑠=0

∑︁
0⩽𝑘⩽𝑡(𝑋),

𝑘≡𝑠 (mod 𝑟)

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘
𝑟

≪
𝑇𝑡(𝑋)

𝜂
𝑡(𝑋)
𝑑,𝑟

∑︁
𝑘⩾0

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘
𝑟

.

Найдем сумму бесконечной убывающей геометрической прогрессии

∑︁
𝑘⩾0

(︂
𝜂𝑟𝑑,𝑟
2

)︂ 𝑘
𝑟

=
1

1−
(︁
𝜂𝑟𝑑,𝑟
2

)︁ 1
𝑟

=
2

1
𝑟

2
1
𝑟 − 𝜂𝑑,𝑟

.

Данная величина является положительной постоянной, так как 𝜂𝑑,𝑟 < 2
1
𝑟 , поэтому, прини-

мая во внимание тот факт, что 𝑇𝑡(𝑋) ⩽ 𝑋, получаем |𝑆𝑑,𝑎(𝑋)| ≪ 𝑋

𝜂
𝑡(𝑋)
𝑑,𝑟

. В силу леммы 17

𝑡(𝑋) > log𝛼
𝑋

𝐶(𝑎1+1) , поэтому

𝜂
𝑡(𝑋)
𝑑,𝑟 ⩾ 𝜂

log𝛼
𝑋

𝐶(𝑎1+1)

𝑑,𝑟 = 𝜂

log𝜂𝑑,𝑟
𝑋

𝐶(𝑎1+1)
log𝜂𝑑,𝑟

𝛼

𝑑,𝑟 =

(︂
𝑋

𝐶(𝑎1 + 1)

)︂ 1
log𝜂𝑑,𝑟

𝛼

=

(︂
𝑋

𝐶(𝑎1 + 1)

)︂log𝛼 𝜂𝑑,𝑟

.

Таким образом, существует постоянная 𝐶2(𝑎1, 𝑑, 𝑟) такая, что при 𝛼 ⩽ 𝜏𝑑0𝜂𝑑,𝑟 выполняется
неравенство

|𝑆𝑑,𝑎(𝑋)| ⩽ 𝐶2(𝑎1, 𝑑, 𝑟)𝑋
1−log𝛼 𝜂𝑑,𝑟 < 𝐶2(𝑎1, 𝑑, 𝑟)𝑋

1−log𝜏𝑑0𝜂𝑑,𝑟
𝜂𝑑,𝑟

= 𝐶2(𝑎1, 𝑑, 𝑟)𝑋
𝜆.

Выберем 𝐶(𝑎1, 𝑑, 𝑟) = min(𝐶1(𝑎1, 𝑑, 𝑟), 𝐶2(𝑎1, 𝑑, 𝑟)) и получим утверждение теоремы 1.

3. Заключение

В настоящей работе было получено новое, чисто комбинаторное, доказательство аналога
теоремы Гельфонда о распределении сумм цифр разложений натуральных чисел для разло-
жений по линейным рекуррентным последовательностям, удовлетворяющим условию Парри,
и произвольного модуля 𝑑.

В отличие от ранее известного доказательства из [12], наш подход дает достаточно простое
и явное выражение для показателя степени в остаточном члене задачи. Кроме того, данный
показатель степени зависит только от модуля 𝑑 и порядка линейного рекуррентного соотно-
шения (в [12] была зависимость от коэффициентов линейного рекуррентного соотношения).
Также наше доказательство не требует некоторых технических условий на коэффициенты
линейного рекуррентного соотношения, имевшихся в [12].
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С другой стороны, методы [12] позволяют также получить результат о равномерности рас-
пределения сумм цифр натуральных чисел, пробегающих некоторую арифметическую про-
грессию. Получить данный результат нашими методами пока не удается. Было бы интересно
попробовать обобщить методы настоящей работы для построения элементарного доказатель-
ства данного результата.

В простейшем случае линейной рекуррентной последовательности Фибоначчи в [14] был
получен результат о точном порядке остаточного члена для произвольного 𝑑. Хотелось бы
уметь получать такие результаты и для других линейных рекуррентных последовательностей.

Рассмотренный класс систем счисления, связанный с разложениями по линейным рекур-
рентным последовательностям, является частным случаем систем счисления, связанных с под-
становками. Конструкцию таких систем счисления и ряд важных результатов об их суммах
цифр можно найти в [15]–[17]. Было бы интересно получить аналог теоремы Гельфонда и в
этом случае.
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2 // Annales de l’institut Fourier. 1981. Vol. 31. № 1. P. 1-15.



Задача Гельфонда для разложений по линeйным. . . 135

14. Шутов А.В. Об аналоге задачи Гельфонда для представлений Цекендорфа // Чебышев-
ский сборник. 2024. Т. 25. № 5. С. 195-215.
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Аннотация

Проблема проверки полноты конечных подмножеств играет важную роль при исследо-
вании функциональных систем. В классе конечных автоматов с операциями композиции
задача проверки полноты конечных подмножеств является алгоритмически неразреши-
мой, тогда как класс конечных автоматов с операциями суперпозиции не содержит конеч-
ных полных систем. Подкласс дефинитных автоматов характеризуется наличием конеч-
ных полных систем относительно операций суперпозиции, однако задача проверки пол-
ноты конечных подмножеств в данном случае также оказывается алгоритмически нераз-
решимой. Ранее был рассмотрен класс линейных автоматов с операциями композиции.
Для данного класса был получен алгоритм определения полноты конечных подмножеств.
В то же время для линейных автоматов с операциями суперпозиции было установлено
отсутствие конечных полных систем. Интерес представляет рассмотрение данной задачи
применительно к классу дефинитных линейных автоматов с операциями суперпозиции. В
данной работе был получен алгоритм проверки полноты конечных содержащих константу
ноль подмножеств в классе дефинитных линейных автоматов.
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Abstract

Determining the completeness of finite subsets is an important task in the study of functional
systems. In the class of finite automata with composition operations, the problem of checking
the completeness of finite subsets is algorithmically undecidable. Conversely, in the class of
finite automata with superposition operations, no finite complete systems exist. The subclass
of definite automata is notable for having finite complete systems with respect to superposition
operations; however, the problem of verifying the completeness of finite subsets in this case
is also algorithmically undecidable. Previously, the class of linear automata with composition
operations was studied, and an algorithm for determining the completeness of finite subsets
was developed for this class. At the same time, it was shown that finite complete systems do
not exist in the class of linear automata with superposition operations. Of particular interest is
the investigation of this problem in the context of definite linear automata with superposition
operations. In this work, an algorithm is proposed for verifying the completeness of finite subsets
that include the zero constant in the class of definite linear automata.

Keywords: finite automata, linear definite automata, completeness, superposition
operations, completeness verification algorithm.
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1. Введение

В дискретной математике при исследовании функциональных систем возникает задача про-
верки полноты конечных подмножеств. В классе конечных автоматов с операциями компо-
зиции 𝑃о.д. подобного алгоритма не существует [1, 2], тогда как класс конечных автоматов с
операциями суперпозиции не содержит конечных полных систем. Интерес представляет рас-
смотрение подклассов конечных автоматов, для которых задача проверки полноты может
быть алгоритмически разрешима.

В работах [3, 4, 5] был рассмотрен класс линейных автоматов над конечными полями. Ли-
нейные автоматы представляют интерес для вычислительной техники, кодирования, построе-
ния датчиков случайных чисел и т. д. Для линейных автоматов были найдены 𝐴-предполные
и 𝐾-предполные классы [3, 4, 5], а также приведены алгоритмы распознавания 𝐴-полноты и
𝐾-полноты конечных подмножеств [6]. Если рассматривать линейные автоматы с операциями
суперпозиции, то в [7] было показано отсутствие конечных полных систем.

Важным подклассом класса конечных автоматов с операциями суперпозиции являются
дефинитные о.д. функции [8]. Дефинитные автоматы могу быть получены как результат за-
мыкания системы, состоящей из задержки с заданным начальным состоянием и универсальной
"истинностной" о.д. функции по операциям суперпозиции. В работах [9, 10] было показано,
что для данного класса не существует алгоритма распознавания 𝐴-полноты и Σ-полноты ко-
нечных множеств.

Естественный интерес вызывает исследование задачи проверки Σ-полноты для класса ли-
нейных дефинитных автоматов с операциями суперпозиции. Описанная задача решена в дан-
ной работе для конечных подмножеств, содержащих константу 0.
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2. Обозначения

Рассмотрим конечное поле из двух элементов 𝐸2. Обозначим 𝑅2 – множество формальных
степенных рядов, построенных по последовательностям элементов из 𝐸2, то есть

𝑅2 = {
∞∑︁
𝑡=0

𝑥(𝑡)𝜉𝑡 | 𝑥(0), 𝑥(1), · · · ∈ 𝐸2}.

Определение 1. Функция 𝑓(𝑥1, 𝑥2, · · · , 𝑥𝑛) : 𝑅𝑛
2 → 𝑅2 – линейный дефинитный автомат

⇐⇒ ∃ 𝑢0(𝜉),
𝑢1(𝜉), · · · , 𝑢𝑛(𝜉), 𝑢𝑖(𝜉) ∈ 𝐸2[𝜉] такие, что ∀𝛼1, 𝛼2, · · · , 𝛼𝑛, 𝛼𝑖 ∈ 𝑅2, имеет место следующее
равенство:

𝑓(𝛼1, 𝛼2, · · · , 𝛼𝑛) =
𝑛∑︁

𝑖=1

𝑢𝑖(𝜉)𝛼𝑖 + 𝑢0(𝜉).

Упорядочим счетное множество всех неприводимых в 𝐸2[𝜉] многочленов 𝑝1(𝜉), 𝑝2(𝜉), ... так,
что 𝑝1(𝜉) = 𝜉. Рассмотрим произвольный неприводимый многочлен 𝑝𝑖 степени 𝑛𝑖. Фактор-

кольцо 𝐸2[𝜉]
⧸︁
(𝑝𝑖) = 𝑃𝑖 является полем из 2𝑛𝑖 элементов [11]. Для многочлена 𝑢(𝜉) ∈ 𝐸2[𝜉]

через ⟨𝑢⟩(𝑝𝑖) будем обозначать класс вычетов по модулю 𝑝𝑖, которому он принадлежит. Для

данного поля 𝑃𝑖 = 𝐸2[𝜉]
⧸︁
(𝑝𝑖) , deg(𝑝𝑖) = 𝑛𝑖, рассмотрим все его максимальные подполя. Пусть

𝑛𝑖 = 𝑑𝑘11 ...𝑑
𝑘𝑙𝑖
𝑙𝑖

— разложение на простые множители. Далее через 𝑃 𝑠
𝑖 обозначим подполе 𝑃𝑖, со-

держащее 𝑛𝑖,𝑠 = 𝑑𝑘11 ...𝑑
𝑘𝑠−1
𝑠 ...𝑑

𝑘𝑙𝑖
𝑙𝑖

элементов. Отметим, что множество {𝑃 𝑠
𝑖 , 𝑠 ∈ 1...𝑙𝑖} включает

все максимальные собственные подполя и только их [12].
Для пары неприводимых многочленов 𝑝𝑖, 𝑝𝑗 , 𝑖 ̸= 𝑗, deg(𝑝𝑖) = deg(𝑝𝑗), рассмотрим фак-

торкольцо 𝐸2[𝜉]
⧸︁
(𝑝𝑖𝑝𝑗) . Через 𝑅

𝑠
𝑖,𝑗 обозначим такие подмножества данного кольца, что 𝑅𝑠

𝑖,𝑗

изоморфно 𝑃𝑖 и 𝑃𝑗 .

Лемма 1. В 𝐸2[𝜉] существуют такие неприводимые многочлены 𝑝𝑖, 𝑝𝑗 , 𝑖 ̸= 𝑗, deg(𝑝𝑖) =
= deg(𝑝𝑗), что |{𝑅𝑠

𝑖,𝑗}| ≠ 0.

Доказательство. Рассмотрим многочлены 𝑝𝑖 = 𝜉3 + 𝜉 + 1, 𝑝𝑗 = 𝜉3 + 𝜉2 + 1.

𝑎0 = ⟨0⟩(𝑝𝑖𝑝𝑗), 𝑎1 = ⟨1⟩(𝑝𝑖𝑝𝑗),
𝑎2 = ⟨𝜉2 + 𝜉⟩(𝑝𝑖𝑝𝑗), 𝑎3 = ⟨𝜉2 + 𝜉 + 1⟩(𝑝𝑖𝑝𝑗), 𝑎4 = ⟨𝜉4 + 𝜉⟩(𝑝𝑖𝑝𝑗),
𝑎5 = ⟨𝜉4 + 𝜉 + 1⟩(𝑝𝑖𝑝𝑗), 𝑎6 = ⟨𝜉4 + 𝜉2⟩(𝑝𝑖𝑝𝑗), 𝑎7 = ⟨𝜉4 + 𝜉2 + 1⟩(𝑝𝑖𝑝𝑗).

Изоморфизм между полем {𝑎𝑖 | 𝑖 = 0, ..., 7} и 𝑃𝑖 вытекает из единственности поля заданного
порядка [12]. 2

Докажем еще одно вспомогательное утверждение.

Лемма 2. Для любых двух неприводимых многочленов 𝑝𝑖, 𝑝𝑗 , deg(𝑝𝑖) < deg(𝑝𝑗), 𝑝𝑖, 𝑝𝑗 ∈
∈ 𝐸2[𝜉], кольцо 𝐸2[𝜉]

⧸︁
(𝑝𝑖𝑝𝑗) не содержит полей, изоморфных 𝑃𝑗.

Доказательство. Предположим, что 𝑃 ′
𝑗 ⊂ 𝐸2[𝜉]

⧸︁
(𝑝𝑖𝑝𝑗) и 𝑃

′
𝑗 изоморфно 𝑃𝑗 . Имеем:

𝑃 ′
𝑗 = {⟨𝑟𝑖,𝑘(𝜉) + 𝑟𝑗,𝑘(𝜉)𝑝𝑖⟩(𝑝𝑖𝑝𝑗) | 𝑘 = 1, .., 2deg(𝑝𝑗), deg(𝑟𝑖,𝑘(𝜉)) < deg(𝑝𝑖), deg(𝑟𝑗,𝑘(𝜉)) < deg(𝑝𝑗)}.

Так как число уникальных 𝑟𝑖,𝑘(𝜉), deg(𝑟𝑖,𝑘(𝜉)) < deg(𝑝𝑖) не превосходит 2deg(𝑝𝑖), то среди эле-
ментов 𝑃 ′

𝑗 существуют ⟨𝑣′(𝜉)⟩(𝑝𝑖𝑝𝑗) и ⟨𝑣′′(𝜉)⟩(𝑝𝑖𝑝𝑗), что ⟨𝑣′(𝜉)⟩(𝑝𝑖𝑝𝑗)+⟨𝑣′′(𝜉)⟩(𝑝𝑖𝑝𝑗)=⟨0 + 𝑟(𝜉)𝑝𝑖⟩(𝑝𝑖𝑝𝑗).
𝑃 ′
𝑗 - поле, не содержащее повторяющихся элементов, следовательно 𝑟(𝜉) ̸= 0, то есть в 𝑃 ′

𝑗 со-
держится необратимый элемент, что приводит к противоречию. 2
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3. Σ-полнота в классе одноместных дефинитных автоматов, со-

храняющих нулевую последовательность.

Множество всех линейных дефинитных автоматов над 𝐸2 обозначим 𝐿𝐷2. Рассмотрим под-
множество 𝐿𝐷0

2,1 множества 𝐿𝐷2, состоящее из линейных дефинитных автоматов с одним
входом, сохраняющих нулевую последовательность. Произвольный автомат, принадлежащий
данному классу, реализует функцию: 𝑓(𝑥) = 𝑢(𝜉)𝑥, 𝑢(𝜉) ∈ 𝐸2[𝜉]. Таким образом, вместо 𝐿𝐷0

2,1

будем рассматривать 𝐸2[𝜉] с операциями сложения и умножения.

Определение 2. Определим семейство 𝐻(1) подмножеств 𝐸2[𝜉] следующим образом:

𝐿
(1)
1,0 = {𝑢(𝜉) | 𝑢(𝜉) ∈ 𝐸2[𝜉], 𝑢(0) = 0},

𝐿
(1)
𝑖,𝑠 = {𝑢(𝜉) | 𝑢(𝜉) ∈ 𝐸2[𝜉], ⟨𝑢(𝜉)⟩(𝑝𝑖) ∈ 𝑃

𝑠
𝑖 }, 𝑖 > 1,

𝑁
(1)
1 = {𝑢(𝜉) | 𝑢(𝜉), 𝑢′(𝜉) ∈ 𝐸2[𝜉], 𝑢(𝜉) = 𝑢(0) + 𝜉2𝑢′(𝜉)},

𝑁
(1)
𝑖 = {𝑣2(𝜉) + 𝑝2𝑖𝑢(𝜉) | 𝑣(𝜉), 𝑢(𝜉) ∈ 𝐸2[𝜉], deg(𝑣(𝜉)) < deg(𝑝𝑖)}, 𝑖 > 1,

𝐼
(1)
𝑖,𝑗,𝑠 = {𝑢(𝜉) | 𝑢(𝜉) ∈ 𝐸2[𝜉], ⟨𝑢(𝜉)⟩(𝑝𝑖𝑝𝑗) ∈ 𝑅

𝑠
𝑖,𝑗}, 𝑖 ≥ 1, 𝑗 > 1, 𝑖 ̸= 𝑗, deg(𝑝𝑖) = deg(𝑝𝑗).

Другими словами, при 𝑖 > 1 класс 𝐿
(1)
𝑖,𝑠 содержит все такие многочлены 𝑢(𝜉) ∈ 𝐸2[𝜉], что их

остатки по модулю неприводимого многочлена 𝑝𝑖 образуют максимальное подполе, соответ-

ствующее простому делителю степени 𝑝𝑖 под номером 𝑠. Также 𝑁
(1)
𝑖 содержит все многочлены

𝑢(𝜉) ∈ 𝐸2[𝜉], остатки которых по модулю квадрата неприводимого многочлена 𝑝𝑖 содержат

только члены с четными степенями. Наконец, 𝐼
(1)
𝑖,𝑗,𝑠 - это подмножество кольца 𝐸2[𝜉]

⧸︁
(𝑝𝑖𝑝𝑗) ,

которое изоморфно полям 𝑃𝑖 и 𝑃𝑗 . Опишем некоторые свойства семейства 𝐻(1). Несложно
проверить следующую лемму.

Лемма 3. Для любого Θ ∈ 𝐻(1) множество Θ замкнуто в 𝐸2[𝜉] относительно операций
сложения и умножения.

Используя систему 𝐻(1), покажем, что задача полноты в классе одноместных дефинитных
линейных автоматов, сохраняющих нулевую последовательность, алгоритмически разрешима.
Через 𝑆(1)(𝑀) обозначим замыкание множества 𝑀, 𝑀 ⊆ 𝐸2[𝜉], по операциям сложения и
умножения.

Лемма 4. Пусть 𝑀 ⊆ 𝐸2[𝜉], 𝑝𝑖 – неприводимый многочлен степени 𝑛𝑖 = 𝑑𝑘11 ...𝑑
𝑘𝑙𝑖
𝑙𝑖
.

Если для любого Θ, Θ ∈ {𝐿(1)
1,0} ∪ {𝐿

(1)
𝑖,𝑠 | 𝑠 = 1, ..., 𝑙𝑖}, выполнено: 𝑀 ⊈ Θ, то для любого

𝑟(𝜉), deg(𝑟(𝜉)) < deg(𝑝𝑖), существует 𝑢𝑟(𝜉) ∈ 𝑆(1)(𝑀) такой, что 𝑢𝑟(𝜉) = 𝑟(𝜉) + 𝑝𝑖𝑢
′(𝜉) для

некоторого 𝑢′(𝜉) ∈ 𝐸2[𝜉].

Доказательство. Из условия 𝑀 ⊈ {𝐿(1)
𝑖,𝑠 }, 𝑠 = 1, ..., 𝑙𝑖, следует, что в 𝑆

(1)(𝑀) содержится
множество многочленов вида {𝑢𝑠(𝜉) | ⟨𝑢𝑠(𝜉)⟩(𝑝𝑖) /∈ 𝑃 𝑠

𝑖 , 𝑠 = 1...𝑙𝑖}. То есть соответствующее
множество классов вычетов по модулю 𝑝𝑖 не содержится ни в одном из максимальных подпо-
лей 𝑃 𝑠

𝑖 , поэтому его замыкание по операциям сложения и умножения совпадает с 𝑃𝑖. 2

Таким образом, было показано, что если множество 𝑀 не содержится ни в одном из классов

{𝐿(1)
1,0} ∪ {𝐿

(1)
𝑖,𝑠 | 𝑠 =

= 1, . . . , 𝑙𝑖} для некоторого 𝑖, то многочлены из его замыкания дают все остатки по модулю
неприводимого многочлена 𝑝𝑖, 𝑖 = 1, 2, . . .. Покажем, что если𝑀 также не содержится в 𝑁𝑖, то
многочлены из замыкания данного множества дают все остатки по модулю квадрата данного
неприводимого многочлена.
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Лемма 5. Пусть 𝑀 ⊆ 𝐸2[𝜉], 𝑝𝑖 – неприводимый многочлен степени 𝑛𝑖 = 𝑑𝑘11 . . . 𝑑
𝑘𝑙𝑖
𝑙𝑖
. Если

для любого Θ,Θ ∈ {𝐿(1)
1,0} ∪ {𝐿

(1)
𝑖,𝑠 | 𝑠 = 1, . . . , 𝑙𝑖} ∪ {𝑁 (1)

𝑖 }, выполнено: 𝑀 ⊈ Θ, то для любо-

го 𝑟(𝜉), deg(𝑟(𝜉)) < deg(𝑝2𝑖 ), существует 𝑢𝑟(𝜉) ∈ 𝑆(1)(𝑀), такой что 𝑢𝑟(𝜉) = 𝑟(𝜉) + 𝑝2𝑖𝑢
′(𝜉)

для некоторого 𝑢′(𝜉) ∈ 𝐸2[𝜉].

Доказательство. В силу леммы 4 и особенностей возведения в степень в поле характери-
стики два, для любого 𝑤(𝜉), deg(𝑤(𝜉)) < deg(𝑝𝑖), многочлен вида 𝑤2(𝜉) + 𝑝2𝑖𝑢(𝜉) принадле-
жит 𝑆(1)(𝑀) для некоторого 𝑢(𝜉) ∈ 𝐸2[𝜉].

Из условия𝑀 ⊈ 𝑁
(1)
𝑖 :𝑀 принадлежит хотя бы один многочлен вида 𝑣(𝜉) = 𝑤(𝜉) + 𝑝2𝑖𝑢(𝜉),

deg(𝑤(𝜉)) < deg(𝑝2𝑖 ), и 𝑤(𝜉) содержит хотя бы один одночлен нечетной степени. Обозначим
через 𝑤𝑜(𝜉) и 𝑤𝑒(𝜉) сумму всех одночленов 𝑤(𝜉) нечетной и четной степеней, соответственно.
Таким образом:

𝑣(𝜉) = 𝑤𝑜(𝜉) + 𝑤𝑒(𝜉) + 𝑝2𝑖𝑢(𝜉), 1 ≤ deg(𝑤𝑜(𝜉)) < deg(𝑝2𝑖 ), deg(𝑤𝑒(𝜉)) < deg(𝑝2𝑖 ).

Рассмотрим 𝑤̄2(𝜉) = 𝑤𝑒(𝜉), тогда 𝑣(𝜉) = 𝑤̄2(𝜉) + 𝑝2𝑖 𝑢̄(𝜉) ∈ 𝑆(1)(𝑀). Имеем:

𝑣′(𝜉) = 𝑣(𝜉) + 𝑣(𝜉) = 𝑤𝑜(𝜉) + 𝑤𝑒(𝜉) + 𝑝2𝑖𝑢(𝜉) + 𝑤̄2(𝜉) + 𝑝2𝑖 𝑢̄(𝜉) = 𝑤𝑜(𝜉) + 𝑝2𝑖𝑢
′(𝜉) ∈ 𝑆(1)(𝑀).

Следовательно:
𝑣′(𝜉) = 𝑤𝑜(𝜉) + 𝑝2𝑖𝑢

′(𝜉) = 𝜉𝑤′
𝑒(𝜉) + 𝑝2𝑖𝑢

′(𝜉).

Так как 𝑤′
𝑒(𝜉) – многочлен, составленный только из одночленов четных степеней, существует

такой 𝑤′
𝑟(𝜉), deg(𝑤′

𝑟(𝜉)) < deg(𝑝𝑖), что 𝑤
′
𝑟(𝜉)

2 = 𝑤′
𝑒(𝜉). Рассмотрим ℎ(𝜉), deg(ℎ(𝜉)) < deg(𝑝𝑖),

для которого ⟨ℎ(𝜉)⟩(𝑝𝑖) = ⟨𝑤′
𝑟(𝜉)⟩−1

(𝑝𝑖)
. Исходя из приведенных ранее рассуждений, существует

такой 𝑢ℎ(𝜉) ∈ 𝐸2[𝜉], что ℎ
2(𝜉) + 𝑝2𝑖𝑢ℎ(𝜉) принадлежит 𝑆(1)(𝑀). Имеем:

(𝜉𝑤′
𝑒(𝜉) + 𝑝2𝑖𝑢

′′(𝜉)) · (ℎ2(𝜉) + 𝑝2𝑖𝑢ℎ(𝜉)) = (𝜉(𝑤′
𝑟(𝜉)ℎ(𝜉))2 + 𝑝2𝑖 𝑢̄(𝜉)) =

= 𝜉(1 + 𝑝𝑖𝑏(𝜉))
2 + 𝑝2𝑖 𝑢̄(𝜉) = 𝜉 + 𝑝2𝑖 𝑤̄

2(𝜉) + 𝑝2𝑖 𝑢̄(𝜉)) = 𝜉 + 𝑝2𝑖 𝑢̃(𝜉) ∈ 𝑆(1)(𝑀).

Так как многочлен 1 +𝑝2𝑖𝑢
′(𝜉) также принадлежит 𝑆(1)(𝑀), получаем утверждение леммы. 2

Отметим: чтобы получить остатки по модулю более старших степеней неприводимого много-
члена, не требуется вводить дополнительные классы. Далее покажем: если𝑀 не принадлежит

ни одному из классов {𝐿(1)
1,0}∪{𝐿

(1)
𝑖,𝑠 }∪𝑁

(1)
𝑖 , то остатки по модулю произвольной степени непри-

водимого многочлена 𝑝𝑖 содержатся в 𝑆
(1)(𝑀).

Лемма 6. Пусть 𝑀 ⊆ 𝐸2[𝜉], 𝑝𝑖 – неприводимый многочлен степени 𝑛𝑖 = 𝑑𝑘11 ...𝑑
𝑘𝑙𝑖
𝑙𝑖
. Если

для любого Θ, Θ ∈ {𝐿(1)
1,0} ∪ {𝐿

(1)
𝑖,𝑠 | 𝑠 = 1, ..., 𝑙𝑖} ∪ {𝑁 (1)

𝑖 }, выполнено: 𝑀 ⊈ Θ, то для любого
𝐽 ∈ N, и произвольного набора многочленов {𝑟𝑗(𝜉) | deg(𝑟𝑗(𝜉)) < deg(𝑝𝑖), 𝑗 = 0, ..., 𝐽 − 1}

существует такой 𝑔𝐽(𝜉) ∈ 𝐸2[𝜉], что
𝐽−1∑︀
𝑗=0

𝑝𝑗𝑖 𝑟𝑗(𝜉) + 𝑝𝐽𝑖 𝑔𝐽(𝜉) ∈ 𝑆(1)(𝑀).

Доказательство. Докажем данное утверждение индукцией по степени 𝑙 неприводимого
многочлена 𝑝𝑖, относительно которой рассматриваются остатки. База индукции для 𝑙 = 1 и
𝑙 = 2 следует из лемм 4 и 5, соответственно.

Пусть утверждение леммы выполнено для любого 𝑙 < 𝐽, 𝐽 ∈ N, 𝐽 > 1. Тогда для любых
многочленов вида {𝑟𝑗(𝜉) | deg(𝑟𝑗(𝜉)) < deg(𝑝𝑖), 𝑗 = 0, ..., 𝐽 − 2} справедливо:

𝐽−2∑︁
𝑗=0

𝑝𝑗𝑖 𝑟𝑗(𝜉) + 𝑝𝐽−1
𝑖 𝑔(𝜉)𝐽−1 ∈ 𝑆(1)(𝑀).
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Рассмотрим произведение многочленов 𝑝𝑖 + 𝑝𝐽−1
𝑖 𝑔1(𝜉) и 𝑟(𝜉)𝑝

𝐽−2
𝑖 + 𝑝𝐽−1

𝑖 𝑔2(𝜉) для произвольно-
го 𝑟(𝜉), deg(𝑟(𝜉)) < deg(𝑝𝑖):(︁

𝑝𝑖 + 𝑝𝐽−1
𝑖 𝑔1(𝜉)

)︁
·
(︁
𝑟(𝜉)𝑝𝐽−2

𝑖 + 𝑝𝐽−1
𝑖 𝑔2(𝜉)

)︁
= 𝑟(𝜉)𝑝𝐽−1

𝑖 + 𝑝𝐽𝑖 𝑔
′(𝜉).

Так как по предположению индукции оба множителя принадлежат 𝑆(1)(𝑀), то получаем, что
для произвольного 𝑟(𝜉), deg(𝑟(𝜉)) < deg(𝑝𝑖), многочлен 𝑟(𝜉)𝑝

𝐽−1
𝑖 + 𝑝𝐽𝑖 𝑔

′(𝜉) ∈ 𝑆(1)(𝑀).
Покажем, что многочлен 𝑝𝑖 + 𝑝𝐽𝑖 𝑔(𝜉) также принадлежит 𝑆(1)(𝑀). Для некоторого

𝑔1(𝜉) ∈ 𝐸2[𝜉], имеем 𝑝𝑖+𝑝
𝐽−1
𝑖 𝑔1(𝜉) ∈ 𝑆(1)(𝑀). Если 𝑔1(𝜉) ∈ ⟨0⟩(𝑝𝑖), то 𝑝𝑖+𝑝

𝐽−1
𝑖 𝑔1(𝜉)=𝑝𝑖+𝑝

𝐽
𝑖 𝑔(𝜉)∈

∈ 𝑆(1)(𝑀). В противном случае: 𝑝𝑖 + 𝑝𝐽−1
𝑖 𝑔1(𝜉) = 𝑝𝑖 + 𝑟(𝜉)𝑝𝐽−1

𝑖 + 𝑝𝐽𝑖 𝑔
′(𝜉). Прибавив 𝑟(𝜉)𝑝𝐽−1

𝑖 +
+ 𝑝𝐽𝑖 𝑔

′(𝜉) ∈ 𝑆(1)(𝑀), получим, что искомый многочлен принадлежит 𝑆(1)(𝑀).

По предположению индукции
𝐽−2∑︀
𝑗=0

𝑝𝑗𝑖 𝑟𝑗(𝜉) + 𝑝𝐽−1
𝑖 𝑔(𝜉)𝐽−1 ∈ 𝑆(1)(𝑀) для любых многочленов

вида {𝑟𝑗(𝜉) | deg(𝑟𝑗(𝜉)) < deg(𝑝𝑖), 𝑗 = 0, ..., 𝐽 − 2}. Тогда следующее произведение также
принадлежит 𝑆(1)(𝑀):⎛⎝𝐽−2∑︁

𝑗=0

𝑝𝑗𝑖 𝑟𝑗(𝜉) + 𝑝𝐽−1
𝑖 𝑔(𝜉)𝐽−1

⎞⎠ · (︀𝑝𝑖 + 𝑝𝐽𝑖 𝑔(𝜉)
)︀

=
𝐽−1∑︁
𝑗=1

𝑝𝑗𝑖 𝑟𝑗(𝜉) + 𝑝𝐽𝑖 𝑔
′′(𝜉).

В заключение рассмотрим произвольный многочлен вида 𝑟(𝜉) + 𝑝𝑖𝑢𝑟(𝜉). Для любого 𝑟(𝜉),
deg(𝑟(𝜉)) < deg(𝑝𝑖), такой многочлен принадлежит 𝑆

(1)(𝑀) по лемме 4. Заметим, что

𝑟(𝜉) + 𝑝𝑖𝑢𝑟(𝜉) = 𝑟(𝜉) +

𝐽−1∑︁
𝑗=1

𝑝𝑗𝑖 𝑟
′
𝑗(𝜉) + 𝑝𝐽𝑖 𝑢

′
𝑟(𝜉),

для некоторого набора {𝑟′𝑗(𝜉) | 0 ≤ deg(𝑟′𝑗) < deg(𝑝𝑖)} и некоторого 𝑢′𝑟(𝜉) ∈ 𝐸2[𝜉]. Следователь-

но, учитывая приведенные ранее рассуждения, получаем: 𝑟(𝜉) + 𝑝𝐽𝑖 𝑢
′′
𝑟(𝜉) ∈ 𝑆(1)(𝑀), откуда

следует утверждение леммы. 2 Было показано, что если множество 𝑀 не содержится в си-

стеме замкнутых классов {𝐿(1)
1,0} ∪ {𝐿

(1)
𝑖,𝑠 |𝑠 = 1, . . . , 𝑙𝑖} ∪ 𝑁 (1)

𝑖 , то его замыкание содержит все
остатки по модулю произвольной степени неприводимого многочлена 𝑝𝑖. Следующим шагом
покажем, что если множество многочленов не содержится ни в одном классе семейства 𝐻(1),
то и остатки по модулю произведения произвольной комбинации неприводимых многочленов
также будут содержаться в 𝑆(1)(𝑀).

Лемма 7. Пусть 𝑀 ⊆ 𝐸2[𝜉]. Рассмотрим {𝑝𝑖 | 𝑖 ∈ I, I ⊂ N, 2 ≤ |I| <∞} – конечное мно-
жество неприводимых многочленов. Если для любого Θ, Θ∈{𝐿(1)

1,0}∪{𝐿
(1)
𝑖,𝑠 |𝑠=1, . . . , 𝑙𝑖, 𝑖 ∈ I}∪

∪ {𝑁 (1)
𝑖 , 𝑖 ∈ I} ∪ {𝐼(1)𝑖,𝑗,𝑠 | deg(𝑝𝑗) = deg(𝑝𝑖), 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ I}, выполнено: 𝑀 ⊈ Θ, то для любо-

го I′, I′ ⊂ I, |I′| = |I| − 1 многочлен
∏︀
𝑖∈I′

𝑝𝑖 +

(︂∏︀
𝑖∈I
𝑝𝑖

)︂
𝑢I′(𝜉) ∈ 𝑆(1)(𝑀) для некоторого 𝑢I′(𝜉) ∈

∈ 𝐸2[𝜉].

Доказательство. Докажем данное утверждение индукцией по мощности множества I. В
качестве базы индукции покажем, что утверждение леммы верно для |I| = 2. Пусть I = {𝑖, 𝑗}.
Без ограничения общности рассуждений будем предполагать, что deg(𝑝𝑗) ≥ deg(𝑝𝑖).
По лемме 4 для любого 𝑟(𝜉), deg(𝑟(𝜉)) < deg(𝑝𝑗), многочлен вида 𝑣𝑟(𝜉) = 𝑟(𝜉)+𝑝𝑗𝑢𝑟(𝜉) принад-
лежит 𝑆(1)(𝑀) для некоторого 𝑢𝑟(𝜉) ∈ 𝐸2[𝜉]. Рассмотрим множество V={𝑣𝑟(𝜉) | ⟨𝑟(𝜉)⟩(𝑝𝑗)∈𝑃𝑗}
и покажем, что при выполнении условий леммы, как минимум один из многочленов 𝑝𝑖 +
+ 𝑝𝑖𝑝𝑗𝑢𝑖(𝜉) или 𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑢𝑗(𝜉) содержится в 𝑆

(1)(𝑀) для для некоторых 𝑢𝑖(𝜉), 𝑢𝑗(𝜉) ∈ 𝐸2[𝜉].
Случай 1: Существует 𝑣𝑟(𝜉) ∈ V, такой что 𝑣𝑟(𝜉) ∈ ⟨0⟩(𝑝𝑖) или 𝑣𝑟(𝜉) ∈ ⟨0⟩(𝑝𝑗), и 𝑣𝑟(𝜉) /∈ ⟨0⟩(𝑝𝑖𝑝𝑗).
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Пусть без ограничения общности 𝑣𝑟(𝜉) ∈ ⟨0⟩(𝑝𝑗), тогда имеем: 𝑣𝑟(𝜉) = 𝑟(𝜉)𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑢0(𝜉), где

deg(𝑟(𝜉)) < deg(𝑝𝑖). По лемме 4 в 𝑆
(1)(𝑀) содержится многочлен 𝑤𝑟′(𝜉) = 𝑟′(𝜉) + 𝑝𝑖𝑠(𝜉) ∈

∈ ⟨𝑟(𝜉)⟩−1
(𝑝𝑖)

, следовательно:

(𝑟(𝜉)𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑢0(𝜉))(𝑟
′(𝜉) + 𝑝𝑖𝑠(𝜉)) = 𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑢𝑖(𝜉) ∈ 𝑆(1)(𝑀).

Случай 2: Существует 𝑣𝑟(𝜉) ∈ V, такой что 𝑣𝑟(𝜉) ∈ ⟨1⟩(𝑝𝑗) и 𝑣𝑟(𝜉) /∈ ⟨1⟩(𝑝𝑖𝑝𝑗). Имеем
𝑣𝑟(𝜉) = 1 + 𝑝𝑗𝑢1(𝜉), 𝑢1(𝜉) /∈ ⟨0⟩(𝑝𝑖). По лемме 4 в 𝑆(1)(𝑀) содержится многочлен 𝑤1(𝜉) =
= 1 + 𝑝𝑖𝑠(𝜉) и

(1 + 𝑝𝑗𝑢1(𝜉)) · (1 + 𝑝𝑖𝑠(𝜉)) + (1 + 𝑝𝑖𝑠(𝜉)) = 𝑝𝑗(1 + 𝑝𝑖𝑠(𝜉))𝑢1(𝜉) ∈ 𝑆(1)(𝑀).

Так как 𝑢1(𝜉) не делит 𝑝𝑖, получаем случай 1.
Обозначим ⟨V⟩(𝑝𝑖𝑝𝑗) = {⟨𝑣𝑟(𝜉)⟩(𝑝𝑖𝑝𝑗) | 𝑣𝑟(𝜉) ∈ V}.

Невыполнение условий 1 и 2 означает, что ⟨0⟩(𝑝𝑖𝑝𝑗) ∈ ⟨V⟩(𝑝𝑖𝑝𝑗) и ⟨1⟩(𝑝𝑖𝑝𝑗) ∈ ⟨V⟩(𝑝𝑖𝑝𝑗), а так-
же, что любой элемент ⟨𝑟(𝜉)⟩(𝑝𝑖𝑝𝑗) ∈ ⟨V⟩(𝑝𝑖𝑝𝑗) ∖ {⟨0⟩(𝑝𝑖𝑝𝑗)} обратим по модулю произведения
неприводимых многочленов 𝑝𝑖𝑝𝑗 .

Случай 3: Существуют 𝑣𝑟(𝜉), 𝑣𝑟′(𝜉) ∈ V, что 𝑣𝑟′(𝜉) ∈ ⟨𝑣𝑟(𝜉)⟩−1
(𝑝𝑗)

и 𝑣𝑟′(𝜉) /∈ ⟨𝑣𝑟(𝜉)⟩−1
(𝑝𝑖𝑝𝑗)

. Имеем:

𝑣𝑟(𝜉) · 𝑣𝑟′(𝜉) = 1 + 𝑟(𝜉)𝑝𝑗 + 𝑝𝑖𝑝𝑗 𝑢̃(𝜉), 𝑟(𝜉) ̸= 0,

следовательно, получаем случай 2.
Случай 4: Существует 𝑣(𝜉) ∈ 𝑆(1)(V), такой что ⟨𝑣(𝜉)⟩(𝑝𝑖𝑝𝑗) /∈ ⟨V⟩(𝑝𝑖𝑝𝑗). Если 𝑣(𝜉) ∈ ⟨0⟩(𝑝𝑖)

или 𝑣(𝜉) ∈ ⟨0⟩(𝑝𝑗), то получаем случай 1. В противном случае, в V содержится многочлен 𝑣𝑟(𝜉),
такой что ⟨𝑣𝑟(𝜉) + 𝑣(𝜉)⟩(𝑝𝑗) = ⟨0⟩(𝑝𝑗) и ⟨𝑣𝑟(𝜉) + 𝑣(𝜉)⟩(𝑝𝑗) ̸= ⟨0⟩(𝑝𝑖𝑝𝑗), то есть реализуется случай
1.

Одновременное невыполнение условий 1-4 означает, что ⟨V⟩(𝑝𝑖𝑝𝑗) является полем, изоморф-
ным 𝑃𝑗 , следовательно, если deg(𝑝𝑖) < deg(𝑝𝑗), то получаем противоречие с утверждением
леммы 2.

Случай 5: deg(𝑝𝑖) = deg(𝑝𝑗). Имеем ∀𝑠 𝑀 ⊈ 𝐼
(1)
𝑖,𝑗,𝑠, следовательно в 𝑆(1)(𝑀) содержится

многочлен 𝑤(𝜉), такой что ⟨𝑤(𝜉)⟩(𝑝𝑖𝑝𝑗) /∈ 𝑅𝑠
𝑖,𝑗 , а значит реализуется один из случаев 1-4.

Таким образом, было доказано, что один из многочленов 𝑝𝑖 + 𝑝𝑖𝑝𝑗𝑢𝑖(𝜉) или 𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑢𝑗(𝜉)
содержится в 𝑆(1)(𝑀) для некоторых 𝑢𝑖(𝜉), 𝑢𝑗(𝜉) ∈ 𝐸2[𝜉].

Без ограничения общности рассуждений будем предполагать, что 𝑝𝑗 +𝑝𝑖𝑝𝑗𝑢𝑗(𝜉) ∈ 𝑆(1)(𝑀),
то есть база индукции доказана для I′ = {𝑗}. Имеем 𝑝𝑖 = 𝑟1(𝜉) + 𝑟2(𝜉)𝑝𝑗 для некоторых
𝑟1(𝜉), 𝑟2(𝜉) ∈ 𝐸2[𝜉], deg(𝑟1(𝜉)) < deg(𝑝𝑗),deg(𝑟2(𝜉)) < deg(𝑝𝑖). Покажем, что для произвольного
𝑟(𝜉) ∈ 𝐸2[𝜉], deg(𝑟(𝜉)) < deg(𝑝𝑖) многочлен 𝑟(𝜉)𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑤𝑟(𝜉) ∈ 𝑆(1)(𝑀). По лемме 4 имеем
𝑟(𝜉) + 𝑝𝑖𝑤̄(𝜉) ∈ 𝑆(1)(𝑀) для некоторого 𝑤̄(𝜉) ∈ 𝐸2[𝜉], следовательно

(𝑟(𝜉) + 𝑝𝑖𝑤̄(𝜉)) · (𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑢𝑗(𝜉)) = 𝑟(𝜉)𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑤𝑟(𝜉) ∈ 𝑆(1)(𝑀).

Рассмотрим 𝑟1(𝜉) + 𝑝𝑗𝑤̃(𝜉). По лемме 4 данный многочлен содержится в 𝑆(1)(𝑀) для неко-
торого 𝑤̃(𝜉) ∈ 𝐸2[𝜉]. Имеем 𝑟1(𝜉) + 𝑝𝑗𝑤̃(𝜉) = 𝑟1(𝜉) + 𝑟′2(𝜉)𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑤̃

′(𝜉), deg(𝑟′2(𝜉)) < deg(𝑝𝑖),
следовательно(︀

𝑟1(𝜉) + 𝑟′2(𝜉)𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑤̃
′(𝜉)
)︀

+
(︁
𝑟′2(𝜉)𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑤𝑟′2

(𝜉)
)︁

+ (𝑟2(𝜉)𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑤𝑟2) =

= 𝑝𝑖 + 𝑝𝑖𝑝𝑗𝑢𝑖(𝜉) ∈ 𝑆(1)(𝑀).

Таким образом, база индукции доказана для I′ = {𝑖}, что завершает доказательство утвер-
ждения леммы для наборов, состоящих из двух многочленов.
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Пусть утверждение леммы верно для любого I ⊂ N, 2 ≤ |I| < 𝑙, 𝑙 > 2. Покажем, что
оно выполняется для наборов мощности 𝑙. Выберем произвольный 𝑗 ∈ I, и для некоторого
𝑘 ∈ I ∖ {𝑗} рассмотрим наборы I2 = {𝑗, 𝑘} и I′ = I ∖ {𝑘}. По предположению индукции имеем:∏︁

𝑖∈I′∖{𝑗}

𝑝𝑖 +
∏︁
𝑖∈I′

𝑝𝑖𝑢I′(𝜉) ∈ 𝑆(1)(𝑀), 𝑝𝑘 + 𝑝𝑘𝑝𝑗𝑢{𝑘,𝑗}(𝜉) ∈ 𝑆(1)(𝑀).

Произведение данных многочленов имеет вид:⎛⎝ ∏︁
𝑖∈I∖{𝑘,𝑗}

𝑝𝑖 +
∏︁

𝑖∈I∖{𝑘}

𝑝𝑖𝑢I′(𝜉)

⎞⎠ · (︀𝑝𝑘 + 𝑝𝑘𝑝𝑗𝑢{𝑘,𝑗}(𝜉)
)︀

=
∏︁

𝑖∈I∖{𝑗}

𝑝𝑖 +
∏︁
𝑖∈I

𝑝𝑖𝑢I(𝜉) ∈ 𝑆(1)(𝑀),

что завершает доказательство леммы, так как выбор 𝑗 был произвольным. 2 Следующие две
леммы обобщают лемму 7.

Лемма 8. Пусть 𝑀 ⊆ 𝐸2[𝜉]. Рассмотрим {𝑝𝑖 | 𝑖 ∈ I, I ⊂ N, 2 |I| <∞} – некоторый набор
неприводимых многочленов. Если для любого Θ, Θ ∈ {𝐿(1)

1,0} ∪ {𝐿
(1)
𝑖,𝑠 | 𝑠 = 1, . . . , 𝑙𝑖, 𝑖 ∈ I} ∪

∪{𝑁𝑖 | 𝑖 ∈ I}∪{𝐼(1)𝑖,𝑗,𝑠 | deg(𝑝𝑗) = deg(𝑝𝑖), 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ I}, выполнено:𝑀 ⊈ Θ, то для любого 𝑗 ∈ I

и произвольного 𝑛𝑗 ∈ N, многочлен
∏︀

𝑖∈I∖{𝑗}
𝑝𝑖 +

(︃
𝑝
𝑛𝑗

𝑗

∏︀
𝑖∈I∖{𝑗}

𝑝𝑖

)︃
𝑢𝑗(𝜉) ∈ 𝑆(1)(𝑀) для некоторого

𝑢𝑗(𝜉) ∈ 𝐸2[𝜉].

Доказательство. Докажем данное утверждение индукцией по степени 𝑛𝑗 . В качестве базы

индукции рассмотрим многочлен
∏︀

𝑖∈I∖{𝑗}
𝑝𝑖 +

(︃
𝑝𝑗

∏︀
𝑖∈I∖{𝑗}

𝑝𝑖

)︃
𝑢1(𝜉), принадлежащий 𝑆

(1)(𝑀) по

лемме 7.
Докажем шаг индукции:

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖 +

⎛⎝𝑝𝑛𝑗

𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠𝑢𝑛𝑗 (𝜉) ∈ 𝑆(1)(𝑀)→
∏︁

𝑖∈I∖{𝑗}

𝑝𝑖 +

⎛⎝𝑝𝑛𝑗+1
𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠𝑢𝑛𝑗+1(𝜉) ∈ 𝑆(1)(𝑀).

Если 𝑢𝑛𝑗 ∈ ⟨0⟩(𝑝𝑗), то утверждение леммы доказано. Рассмотрим противоположный случай:

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖 +

⎛⎝𝑝𝑛𝑗

𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠𝑢𝑛𝑗 (𝜉) =
∏︁

𝑖∈I∖{𝑗}

𝑝𝑖 + 𝑟(𝜉)

⎛⎝𝑝𝑛𝑗

𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠+

⎛⎝𝑝𝑛𝑗+1
𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠𝑢𝑟(𝜉),

где deg(𝑢𝑟(𝜉)) ≥ 0.

Рассмотрим произведение многочленов 𝑟(𝜉)𝑝
𝑛𝑗

𝑗 +𝑝
𝑛𝑗+1
𝑗 𝑢𝑗(𝜉) и

∏︀
𝑖∈I∖{𝑗}

𝑝𝑖+

(︃
𝑝
𝑛𝑗

𝑗

∏︀
𝑖∈I∖{𝑗}

𝑝𝑖

)︃
𝑢𝑛𝑗 (𝜉):

(︁
𝑟(𝜉)𝑝

𝑛𝑗

𝑗 + 𝑝
𝑛𝑗+1
𝑗 𝑢𝑗(𝜉)

)︁
·

⎛⎝ ∏︁
𝑖∈I∖{𝑗}

𝑝𝑖 +

⎛⎝𝑝𝑛𝑗

𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠𝑢𝑛𝑗 (𝜉)

⎞⎠ =

=𝑟(𝜉)

⎛⎝𝑝𝑛𝑗

𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠+ 𝑟(𝜉)

⎛⎝𝑝2𝑛𝑗

𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠𝑢𝑛𝑗 (𝜉) +

⎛⎝𝑝𝑛𝑗+1
𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠𝑢𝑗(𝜉)+

+

⎛⎝𝑝2𝑛𝑗+1
𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠𝑢𝑗(𝜉)𝑢𝑛𝑗 (𝜉) = 𝑟(𝜉)

⎛⎝𝑝𝑛𝑗

𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠+

⎛⎝𝑝𝑛𝑗+1
𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠ 𝑣′(𝜉),
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причем данное произведение принадлежит 𝑆(1)(𝑀), так как первый множитель содержится
в 𝑆(1)(𝑀) по лемме 6, а второй – по предположению индукции. Наконец, суммируя полученные
выражения, имеем:⎛⎝ ∏︁

𝑖∈I∖{𝑗}

𝑝𝑖 + 𝑟(𝜉)

⎛⎝𝑝𝑛𝑗

𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠+

⎛⎝𝑝𝑛𝑗+1
𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠𝑢𝑟(𝜉)

⎞⎠+

⎛⎝𝑟(𝜉)
⎛⎝𝑝𝑛𝑗

𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠+

⎛⎝𝑝𝑛𝑗+1
𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠ 𝑣(𝜉)

⎞⎠ =
∏︁

𝑖∈I∖{𝑗}

𝑝𝑖 +

⎛⎝𝑝𝑛𝑗+1
𝑗

∏︁
𝑖∈I∖{𝑗}

𝑝𝑖

⎞⎠ 𝑣(𝜉) ∈ 𝑆(1)(𝑀).

2

Лемма 9. Пусть 𝑀 ⊆ 𝐸2[𝜉]. Рассмотрим {𝑝𝑖 | 𝑖 ∈ I, I ⊂ N, 2 ≤ |I| <∞} – некоторый на-
бор неприводимых многочленов и {𝑛𝑖 | 𝑛𝑖 ∈ N, 𝑖 ∈ I} – соответствующие степени многочле-

нов. Если для любого Θ, Θ ∈ {𝐿(1)
1,0}∪{𝐿

(1)
𝑖,𝑠 | 𝑠 = 1, . . . 𝑙, 𝑖 ∈ I}∪{𝑁 (1)

𝑖 | 𝑖 ∈ I}∪{𝐼(1)𝑖,𝑗,𝑠 | deg(𝑝𝑗) =
= deg(𝑝𝑖), 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ I}, выполнено: 𝑀 ⊈ Θ, то для любого 𝑗 ∈ I многочлен∏︀
𝑖∈I∖{𝑗}

𝑝𝑛𝑖
𝑖 +

∏︀
𝑖∈I
𝑝𝑛𝑖
𝑖 𝑢𝑗(𝜉) ∈ 𝑆(1)(𝑀) для некоторого 𝑢𝑗(𝜉) ∈ 𝐸2[𝜉].

Доказательство. По лемме 8 для любого 𝑗 ∈ I многочлен 𝑝𝑖 + 𝑝
𝑛𝑗

𝑗 𝑝𝑖𝑢𝑖(𝜉) ∈ 𝑆(1)(𝑀).
Докажем утверждение индукцией по степени неприводимого многочлена для произволь-

ного 𝑖′ ∈ I∖{𝑗}. В качестве базы индукции рассмотрим многочлен
∏︀

𝑖∈I∖{𝑗}
𝑝𝑖+𝑝

𝑛𝑗

𝑗

∏︀
𝑖∈I∖{𝑗}

𝑝𝑖𝑢𝑛𝑗 (𝜉),

который принадлежит 𝑆(1)(𝑀) по лемме 8. Докажем шаг индукции:⎛⎝𝑝𝑛𝑖′
𝑖′

∏︁
𝑖∈I∖{𝑖′,𝑗}

𝑝𝑛𝑖
𝑖

⎞⎠+

⎛⎝𝑝𝑛𝑖′
𝑖′

∏︁
𝑖∈I∖{𝑖′}

𝑝𝑛𝑖
𝑖

⎞⎠𝑢(𝜉)→

⎛⎝𝑝𝑛𝑖′+1
𝑖′

∏︁
𝑖∈I∖{𝑖′,𝑗}

𝑝𝑛𝑖
𝑖

⎞⎠+

⎛⎝𝑝𝑛𝑖′+1
𝑖′

∏︁
𝑖∈I∖{𝑖′}

𝑝𝑛𝑖
𝑖

⎞⎠𝑢′(𝜉).

Многочлен 𝑝𝑖′ + 𝑝
𝑛𝑗

𝑗 𝑝𝑖′𝑢𝑖′(𝜉) принадлежит 𝑆(1)(𝑀) по лемме 8 применительно к множе-
ству {𝑖′, 𝑗}:

(︁
𝑝𝑖′ + 𝑝

𝑛𝑗

𝑗 𝑝𝑖′𝑢𝑖′(𝜉)
)︁
·

⎛⎝⎛⎝𝑝𝑛𝑖′
𝑖′

∏︁
𝑖∈I∖{𝑖′,𝑗}

𝑝𝑛𝑖
𝑖

⎞⎠+

⎛⎝𝑝𝑛𝑖′
𝑖′

∏︁
𝑖∈I∖{𝑖′}

𝑝𝑛𝑖
𝑖

⎞⎠𝑢(𝜉)

⎞⎠ =

⎛⎝𝑝𝑛𝑖′+1
𝑖′

∏︁
𝑖∈I∖{𝑖′,𝑗}

𝑝𝑛𝑖
𝑖

⎞⎠+

+

⎛⎝𝑝𝑛𝑖′+1
𝑖′

∏︁
𝑖∈I{𝑖′}

𝑝𝑛𝑖
𝑖

⎞⎠𝑢(𝜉) +

⎛⎝𝑝𝑛𝑖′+1
𝑖′

∏︁
𝑖∈I∖{𝑖′}

𝑝𝑛𝑖
𝑖

⎞⎠𝑢𝑖(𝜉) +

⎛⎝𝑝𝑛𝑖′+1
𝑖′

∏︁
𝑖∈I{𝑖′}

𝑝𝑛𝑖
𝑖

⎞⎠𝑢(𝜉)𝑢𝑖(𝜉) =

=

⎛⎝𝑝𝑛𝑖′+1
𝑖′

∏︁
𝑖∈I∖{𝑖′,𝑗}

𝑝𝑛𝑖
𝑖

⎞⎠+

⎛⎝𝑝𝑛𝑖′+1
𝑖′

∏︁
𝑖∈I∖{𝑖′}

𝑝𝑛𝑖
𝑖

⎞⎠𝑢′(𝜉) ∈ 𝑆(1)(𝑀).

2

Подводя итог предыдущим рассуждениям, подчеркнем, что по лемме 6 любой остаток по мо-
дулю произвольной целой положительной степени произвольного неприводимого многочлена
принадлежит 𝑆(1)-замыканию рассматриваемого множества 𝑀 , если оно не содержится ни в
одном из замкнутых классов 𝐻(1). В свою очередь, при выполнении аналогичного условия,
лемма 9 утверждает, что если рассмотреть произвольное произведение степеней неприводи-
мых многочленов, то по данному модулю любое произведение, исключающее один из непри-
водимых многочленов, принадлежит 𝑆(1)(𝑀). Покажем, что из лемм 6 и 9 следует условие
включения любого остатка по модулю произвольного произведения степеней неприводимых
многочленов в 𝑆(1)-замыкание множества 𝑀 .



146 И. В. Молдованов

Лемма 10. Пусть 𝑀 ⊆ 𝐸2[𝜉]. Рассмотрим {𝑝𝑛𝑖
𝑖 | 𝑖 ∈ I, I ⊂ N, 1 ≤ |I| <∞} – некоторый

набор степеней неприводимых многочленов. Если для любого Θ, Θ∈{𝐿(1)
1,0}∪{𝐿

(1)
𝑖,𝑠 |𝑠=1, . . . , 𝑙𝑖,

𝑖 ∈ I} ∪ {𝑁 (1)
𝑖 | 𝑖 ∈ I} ∪ {𝐼(1)𝑖,𝑗,𝑠 | deg(𝑝𝑗) = deg(𝑝𝑖), 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ I}, выполнено: 𝑀 ⊈ Θ, то для

∀𝑟(𝜉) ∈ 𝐸2[𝜉], deg(𝑟(𝜉)) <
∑︀
𝑖∈I
𝑛𝑖 deg(𝑝𝑖), существует такой 𝑢(𝜉) ∈ 𝐸2[𝜉], что 𝑟(𝜉) +

∏︀
𝑖∈I
𝑝𝑛𝑖
𝑖 𝑢(𝜉)

принадлежит 𝑆(1)(𝑀).

Доказательство. Обозначим I𝑖 = I ∖ {𝑖}. Исходя из китайской теоремы об остатках [13],
существует изоморфизм колец

∏︁
𝑖∈I

𝐸2[𝜉]
⧸︁
(𝑝𝑛𝑖

𝑖 ) →
𝐸2[𝜉]

⧸︃(︃∏︁
𝑖∈I

𝑝𝑛𝑖
𝑖

)︃
,

который задается отображением вида:

𝜑({⟨𝑟𝑖(𝜉)⟩(𝑝𝑖) | 𝑖 ∈ I}) = ⟨
∑︁
𝑖∈I

𝑟𝑖(𝜉)
∏︁
𝑗∈I𝑖

𝑝
𝑛𝑗

𝑗 𝑠𝑖(𝜉)⟩(︃∏︀
𝑖∈I

𝑝
𝑛𝑖
𝑖

)︃, ∏︁
𝑗∈I𝑖

𝑝
𝑛𝑗

𝑗 𝑠𝑖(𝜉) ∈ ⟨1⟩𝑝𝑛𝑖
𝑖
,∀𝑖 ∈ I.

Для произвольного 𝑖 ∈ I лемме 6 имеем 𝑟𝑖(𝜉) + 𝑝𝑛𝑖
𝑖 𝑢

′
𝑖(𝜉) ∈ 𝑆(1)(𝑀), 𝑠𝑖(𝜉) + 𝑝𝑛𝑖

𝑖 𝑢
′′
𝑖 (𝜉) ∈ 𝑆(1)(𝑀),

а так же(︃∏︀
𝑗∈I𝑖

𝑝
𝑛𝑗

𝑗

)︃
+

(︃∏︀
𝑗∈I

𝑝
𝑛𝑗

𝑗

)︃
𝑢̄𝑖(𝜉) ∈ 𝑆(1)(𝑀) по лемме 9. Таким образом, имеем

(︀
𝑟𝑖(𝜉) + 𝑝𝑛𝑖

𝑖 𝑢
′
𝑖(𝜉)
)︀
·

⎛⎝⎛⎝∏︁
𝑗∈I𝑖

𝑝
𝑛𝑗

𝑗

⎞⎠+

⎛⎝∏︁
𝑗∈I

𝑝
𝑛𝑗

𝑗

⎞⎠ 𝑢̄𝑖(𝜉)

⎞⎠ · (︀𝑠𝑖(𝜉) + 𝑝𝑛𝑖
𝑖 𝑢

′′
𝑖 (𝜉)

)︀
=

= 𝑟𝑖(𝜉)

⎛⎝∏︁
𝑗∈I𝑖

𝑝
𝑛𝑗

𝑗

⎞⎠ 𝑠𝑖(𝜉) +

⎛⎝∏︁
𝑗∈I𝑖

𝑝
𝑛𝑗

𝑗

⎞⎠𝑢𝑖(𝜉).

Следовательно, остатки по модулю любого произведения многочленов из I принадлежат
𝑆(1)(𝑀), то есть получаем утверждение леммы. 2

Далее мы используем ряд описанных в [3] результатов. Рассмотрим𝑀 как подмножество поля
𝐸′

2(𝜉), 𝑀 ⊆ 𝐸2[𝜉] ⊂ 𝐸′
2(𝜉), и спроектируем полученную в [3] критериальную систему 𝐽 (1) на

множество 𝐸2[𝜉]. Обозначим 𝐽𝑃 (1) = {Θ ∩ 𝐸2[𝜉] | Θ ∈ 𝐽 (1)} и рассмотрим элементы данного
множества:

𝑅
(1)
0 ∩ 𝐸2[𝜉] = {0(𝜉)},

𝑅
(1)
𝑖 ∩ 𝐸2[𝜉] = {𝑢(𝜉) | 𝑢(𝜉) ∈ 𝐸2[𝜉], 𝑢(𝜉) ..

. 𝑝𝑖(𝜉)}, 𝑖 = 1, 2, . . . ,

𝑀
(1)
0 ∩ 𝐸2[𝜉] = {0(𝜉), 1(𝜉)},

𝑀
(1)
𝑖 ∩ 𝐸2[𝜉] = {𝑢(𝜉) | 𝑢(𝜉) ∈ 𝐸2[𝜉], (𝑢(𝜉) + 𝑢(0)) ..

. 𝜉𝑝𝑖(𝜉)}, 𝑖 = 1, 2, . . . .

Аналогично классам 𝐻(1), полученные при пересечении множества являются замкнутыми
классами относительно операций сложения и умножения. Также отметим, что в случае линей-
ных дефинитных автоматов, дробь 𝑢(𝜉)

𝑣(𝜉) , 𝑣(0) = 1, deg(𝑢(𝜉)) > deg(𝑣(𝜉)), очевидно содержится

в 𝑆(1)(𝑀) при выполнение условий леммы, представленной ниже. Учитывая данные рассуж-
дения, имеет место следующее утверждение, доказанное в [3].

Лемма 11. Пусть 𝑀 ⊆ 𝐸2[𝜉]. Если для любого Θ, Θ ∈ 𝐽𝑃 (1), выполнено: 𝑀 ⊈ Θ, то
существует 𝑢(𝜉) ∈ 𝐸2[𝜉], 𝑢(𝜉) ̸= 0, такой что ∀ 𝑢̄(𝜉) ∈ 𝐸2[𝜉] многочлен 𝑢(𝜉) · 𝑢̄(𝜉) ∈ 𝑆(1)(𝑀).
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Сформулируем и докажем главное утверждение раздела.

Теорема 1. Задача проверки полноты конечных множеств в классе одноместных дефи-
нитных линейных автоматов, сохраняющих нулевую последовательность, алгоритмически
разрешима.

Доказательство. Рассмотрим некоторое конечное множество 𝑀 ⊂ 𝐸2[𝜉]. Рассмотрим мно-
гочлены 𝑢(𝜉) и 𝑢(𝜉) + 𝑢(0), 𝑢(𝜉) ∈ 𝑀 . Оба данных многочлена однозначно представляются в
виде конечного произведения некоторых неприводимых многочленов. Следовательно, необхо-
димо проверить лишь конечное число замкнутых классов из 𝐽𝑃 (1).

Если 𝑀 не содержится ни в одном из обозначенных замкнутых классов, то имеет место
лемма 11, то есть существует 𝑢(𝜉) ∈ 𝐸2[𝜉], 𝑢(𝜉) ̸= 0, такой что ∀ 𝑢̄(𝜉) ∈ 𝐸2[𝜉] многочлен
𝑢(𝜉) · 𝑢̄(𝜉) ∈ 𝑆(1)(𝑀).

Пусть 𝑢(𝜉) =
∏︀
𝑖∈I
𝑝𝑛𝑖
𝑖 – разложение многочлена 𝑢(𝜉) на неприводимые делители. Множество

I очевидно конечно. Следовательно, перебором конечного множества значений неизвестных в
конечной системе уравнений, для каждой пары 𝑝𝑖, 𝑖 ∈ I, 𝑝𝑗 , 𝑗 ∈ I ,deg(𝑝𝑗) ≥ deg(𝑝𝑖) возможно

установить все возможные замкнутые классы вида 𝐼
(1)
𝑖,𝑗,𝑙. Остается проверить, что система𝑀 не

содержится ни в одном из следующих замкнутых классов: 𝐿
(1)
1,0, 𝐿

(1)
1,1, 𝐿

(1)
𝑖,𝑠 , 𝑁

(1)
𝑖 , 𝐼

(1)
𝑖,𝑗,𝑙 𝑖 ∈ I, 𝑗 ∈ I.

То есть что по лемме 10 система содержит все остатки по модулю произведения степеней
неприводимых многочленов, составляющих многочлен 𝑢(𝜉) . 2

Теорема 2. Система {Θ | Θ ∈ 𝐻(1) ∪ 𝐽𝑃 (1)} является критериальной для класса одно-
местных дефинитных линейных автоматов, сохраняющих нулевую последовательность.

Доказательство. Рассмотрим некоторое множество 𝑀 ⊂ 𝐸2[𝜉]. Если 𝑀 не содержится
ни в одном из замкнутых классов из 𝐽𝑃 (1), то имеет место лемма 11, то есть существует
𝑢(𝜉) ∈ 𝐸2[𝜉], 𝑢(𝜉) ̸= 0, такой что ∀ 𝑢̄(𝜉) ∈ 𝐸2[𝜉] многочлен 𝑢(𝜉) · 𝑢̄(𝜉) ∈ 𝑆(1)(𝑀).

Пусть 𝑢(𝜉) =
∏︀
𝑖∈I
𝑝𝑛𝑖
𝑖 – разложение многочлена 𝑢(𝜉) на неприводимые делители. Если 𝑀 не

содержится ни в одном из замкнутых классов из 𝐻(1), то по лемме 10 система содержит все
остатки по модулю произведения степеней неприводимых многочленов, составляющих много-
член 𝑢(𝜉) . 2

4. Σ-полнота в классе дефинитных линейных автоматов

Ключевой интерес задача проверки полноты конечных множеств представляет в клас-
се дефинитных линейных автоматов от многих переменных. Рассуждения, приведенные в
предыдущей секции, ограничиваются коэффициентами автоматов и не учитывают важную
особенность работы с подобными объектами, а именно: невозможность производить сложение
коэффициентов, принадлежащих разным автоматам. Кроме этого, при операциях с линейны-
ми автоматами следует учитывать наличие свободного хода [15].
Напомним, что множество линейных дефинитных автоматов обозначалось ранее 𝐿𝐷2. Для

произвольного линейного дефинитного автомата 𝑓 ∈ 𝐿𝐷2, 𝑓 =
𝑛∑︀

𝑖=1
𝑢𝑖(𝜉)𝑥𝑖 + 𝑢0(𝜉), обозначим

𝑈(𝑓) - множество коэффициентов {𝑢𝑖(𝜉) | 𝑖 = 1, ..., 𝑛}. Также обобщим данное обозначение

для произвольного множества 𝑀 ⊆ 𝐿𝐷2: 𝑈(𝑀) =

(︃ ⋃︀
𝑓∈𝑀

𝑈(𝑓)

)︃
.
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Определение 3. Определим семейство 𝐻 подмножеств 𝐿𝐷2 следующим образом:

𝐿1,0 = { 𝑓(𝑥1, · · · , 𝑥𝑛) | 𝑓 ∈ 𝐿𝐷2, 𝑈(𝑓) ∈ 𝐿(1)
1,0},

𝐿𝑖,𝑠 = { 𝑓(𝑥1, · · · , 𝑥𝑛) | 𝑓 ∈ 𝐿𝐷2, 𝑈(𝑓) ∈ 𝐿(1)
𝑖,𝑠 },

𝑁𝑖 = { 𝑓(𝑥1, · · · , 𝑥𝑛) | 𝑓 ∈ 𝐿𝐷2, 𝑈(𝑓) ∈ 𝑁 (1)
𝑖 },

𝐼𝑖,𝑗,𝑠 = { 𝑓(𝑥1, · · · , 𝑥𝑛) | 𝑓 ∈ 𝐿𝐷2, 𝑈(𝑓) ∈ 𝐼(1)𝑖,𝑗,𝑠},

𝑇𝑖 = { 𝑓(𝑥1, · · · , 𝑥𝑛) | 𝑓 ∈ 𝐿𝐷2, 𝑓 =

𝑛∑︁
𝑖=1

𝑢𝑖(𝜉)𝑥𝑖 + 𝑢0(𝜉) и 𝑢0(𝜉) ∈ ⟨0⟩(𝑝𝑖)}, 𝑖 ≥ 1,

𝑉𝑖 = { 𝑓(𝑥1, · · · , 𝑥𝑛) | 𝑓 ∈ 𝐿𝐷2, 𝑓 =
𝑛∑︁

𝑖=1

𝑢𝑖(𝜉)𝑥𝑖 + 𝑢0(𝜉),и среди многочленов 𝑢𝑖(𝜉)

существует не более одного не принадлежащего ⟨0⟩(𝑝𝑖)}, 𝑖 ≥ 1,

𝑃𝐽 = { 𝑓(𝑥1, · · · , 𝑥𝑛) | 𝑓 ∈ 𝐿𝐷2 и среди 𝑗 ∈ 𝐽 существует индекс 𝑗′,что 𝑈(𝑓) ⊂ ⟨0⟩(𝑝𝑗′ )
или в 𝑈(𝑓) существует 𝑣(𝜉),что ∀ 𝑣′(𝜉) ∈ 𝑈(𝑓) ∖ {𝑣(𝜉)}, 𝑣′(𝜉) ∈ ⟨0⟩(𝑝𝑗) ∀𝑗 ∈ 𝐽}.

Покажем, что каждое описанное выше множество является замкнутым классом по операциям
суперпозиции в LD2.

Лемма 12. Для любого Θ ∈ 𝐻 множество Θ замкнуто в LD2 относительно операций
суперпозиции.

Доказательство. Для классов 𝐿1,0, 𝐿1,1, 𝐿𝑖,𝑠, 𝑁𝑖, 𝐼𝑖,𝑗,𝑠 данное утверждение напрямую
следует из леммы 3. Замкнутость классов 𝑃𝐽 можно показать, используя соответствующие
утверждения из [16, 17].

Пусть Θ = 𝑉𝑖, 𝑉𝑖 ∈ 𝐻 для некоторого 𝑖 = 1, 2, ... . Переименование переменных очевидно
не выводит за пределы данного класса. Подстановка переменных не меняет число не деля-
щихся на 𝑝𝑖 коэффициентов результирующего автомата. Аналогичное верно и для операции
отождествления.

Рассмотрим Θ = 𝑇𝑖, 𝑇𝑖 ∈ 𝐻 для некоторого 𝑖 = 1, 2, ... . Операции переименования и
отождествления не влияют на коэффициент свободного хода. При подстановке коэффициент
свободного хода результирующего автомата является суммой делящихся на 𝑝𝑖 коэффициентов.
2 Любой класс, принадлежащий системе 𝐻, является замкнутым в LD2. Далее, аналогично
предыдущему разделу, покажем, что, проверив принадлежность множества линейных дефи-
нитных автоматов конечному количеству замкнутых классов из 𝐻, можно установить, при-
надлежит ли конкретный остаток по модулю данного неприводимого многочлена множеству
𝑈(𝑆(1)(𝑀)).

Лемма 13. Пусть 𝑀 ⊆ LD2, 𝑝𝑖 – неприводимый многочлен степени 𝑛𝑖 = 𝑑𝑘11 ...𝑑
𝑘𝑙𝑖
𝑙𝑖
.

Если для любого Θ, Θ ∈ {𝐿1,0} ∪ {𝐿𝑖,𝑠|𝑠 = 1, ..., 𝑙𝑖} ∪ {𝑁𝑖} ∪ {𝑉𝑖}, выполнено: 𝑀 ⊈ Θ, то для
любого 𝑛𝑖 ∈ N и любого 𝑟(𝜉), deg(𝑟(𝜉)) < deg(𝑝𝑛𝑖

𝑖 ), существует 𝑢𝑟(𝜉) ∈ 𝑈(𝑆(𝑀)), такой что
𝑢𝑟(𝜉) = 𝑟(𝜉) + 𝑝𝑛𝑖

𝑖 𝑢(𝜉) для некоторого 𝑢(𝜉) ∈ 𝐸2[𝜉].

Доказательство. Из условия 𝑀 ⊈ 𝑉𝑖 следует, что в 𝑆
(1)(𝑀) содержится автомат:

𝑓(𝑥1, 𝑥2, 𝑥) = (𝑟1(𝜉) + 𝑝𝑖𝑢1(𝜉))𝑥1 + (𝑟2(𝜉) + 𝑝𝑖𝑢𝑗(𝜉))𝑥2 + ℎ(𝑥), 𝑟1(𝜉) ̸= 0, 𝑟2(𝜉) ̸= 0.

Так как 𝑟1(𝜉) и 𝑟2(𝜉) – ненулевые элементы конечного поля, то существуют 𝐾1 ∈ N и 𝐾2 ∈ N,
такие что 𝑟𝐾1

1 (𝜉) ∈ ⟨1⟩(𝑝𝑖) и 𝑟
𝐾2
2 (𝜉) ∈ ⟨1⟩(𝑝𝑖). Тогда:

𝑓 ′(𝑥1, 𝑥2, 𝑥) = 𝑓(𝑓(· · · (𝑓(𝑥1, 𝑥, 𝑥), 𝑥, 𝑥) · · · )⏟  ⏞  
𝐾1−1 раз 𝑓

, 𝑓(· · · (𝑥, 𝑓(𝑥, 𝑥2, 𝑥), 𝑥) · · ·⏟  ⏞  
𝐾2−1 раз 𝑓

, 𝑥) =

=(1 + 𝑝𝑖𝑢
′
𝑖(𝜉))𝑥1 + (1 + 𝑝𝑖𝑢

′
𝑗(𝜉))𝑥2 + ℎ′(𝑥).
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Далее для некоторого 𝑛𝑖 ∈ N рассмотрим 𝑛′𝑖 = 2𝑘, 2𝑘 ≥ 𝑛𝑖, тогда

𝑓𝑛𝑖(𝑥1, 𝑥2, 𝑥) = 𝑓 ′(𝑓 ′(· · · (𝑓 ′(𝑥1, 𝑥, 𝑥), 𝑥, 𝑥) · · · )⏟  ⏞  
𝑛′
𝑖−1 раз 𝑓

, 𝑓 ′(· · · (𝑥, 𝑓 ′(𝑥, 𝑥2, 𝑥), 𝑥) · · ·⏟  ⏞  
𝑛′
𝑖−1 раз 𝑓

, 𝑥) =

=(1 + 𝑝
𝑛′
𝑖

𝑖 𝑢
′′
1(𝜉))𝑥1 + (1 + 𝑝

𝑛′
𝑖

𝑖 𝑢
′′
2(𝜉))𝑥2 + ℎ′′(𝑥).

Отметим, что сложение по модулю произвольной степени 𝑝𝑛𝑖
𝑖 может быть осуществлено через

отождествление переменных автомата 𝑓𝑛𝑖(𝑥1, 𝑥2, 𝑥). Далее, учитывая, что 𝑈(𝑀) ̸∈ 𝐿(1)
𝑖,𝑠 ∪𝑁

(1)
𝑖

и используя леммы 4, 5 и 6, получаем доказательство искомого утверждения. 2 Покажем,
что среди коэффициентов замыкания множества 𝑀 содержатся остатки специального вида
по модулю произведения двух неприводимых многочленов.

Лемма 14. Пусть𝑀 ⊆ LD2. Рассмотрим {𝑝𝑖, 𝑝𝑗 | 𝑖 ̸= 𝑗} – пара различных неприводимых
многочленов. Если для любого Θ, Θ ∈ {𝐿1,0}∪{𝐿𝑘,𝑠 | 𝑠 = 1, ..., 𝑙𝑘, 𝑘 ∈ {𝑖, 𝑗}}∪{𝑁𝑘 | 𝑘 ∈ {𝑖, 𝑗}}∪
∪ {𝑉𝑘 | 𝑘 ∈ {𝑖, 𝑗}} ∪ {𝐼𝑖,𝑗,𝑠 | deg(𝑝𝑖) = deg(𝑝𝑗)} ∪ 𝑃{𝑖,𝑗}, выполнено: 𝑀 ⊈ Θ, то для некоторых
𝑣𝑖(𝜉), 𝑣𝑗(𝜉) ∈ 𝐸2[𝜉] и некоторого 𝐹 ′(𝑥) ∈ 𝐿𝐷2 автомат 𝐹 (𝑥1, 𝑥2, 𝑥) = (𝑝𝑖 + 𝑝𝑖𝑝𝑗𝑣𝑖(𝜉))𝑥1 +
+ (𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑣𝑗(𝜉))𝑥2 + 𝐹 ′(𝑥) ∈ 𝑆(𝑀).

Доказательство. Без ограничения общности будем считать deg(𝑝𝑗) ≥ deg(𝑝𝑖). Рассмотрим
автомат 𝑠(𝑥1, · · · , 𝑥𝑛) ∈ 𝑀, 𝑠(𝑥1, · · · , 𝑥𝑛) /∈ 𝑃{𝑖,𝑗}. По определению класса 𝑃{𝑖,𝑗} в 𝑈(𝑠) суще-
ствуют коэффициенты 𝑢𝑖(𝜉) и 𝑢𝑗(𝜉), не делящиеся на 𝑝𝑖 и 𝑝𝑗 соответственно. Без ограничения
общности можно считать: 𝑠(𝑥1, 𝑥2, 𝑥) = 𝑢𝑖(𝜉)𝑥1 + 𝑢𝑗(𝜉)𝑥2 + 𝑓(𝑥). Рассмотрим все возможные
варианты их делимости на другой неприводимый многочлен.

Случай 1: 𝑝𝑗 ∤ 𝑢𝑖(𝜉), 𝑝𝑖 ∤ 𝑢𝑗(𝜉), то есть ⟨𝑢𝑖(𝜉)⟩(𝑝𝑖𝑝𝑗) и ⟨𝑢𝑗(𝜉)⟩(𝑝𝑖𝑝𝑗) не являются делителями

нуля в кольце 𝐸2[𝜉]
⧸︁
(𝑝𝑖𝑝𝑗) . Следовательно, существуют 𝐾1 ∈ N и 𝐾2 ∈ N: 𝑢𝐾1

𝑖 (𝜉) ∈ ⟨1⟩(𝑝𝑖𝑝𝑗) и
𝑢𝐾2
𝑗 (𝜉) ∈ ⟨1⟩(𝑝𝑖𝑝𝑗). Тогда

𝑠′(𝑥1, 𝑥2, 𝑥) = 𝑠(𝑠(· · · (𝑠(𝑥1, 𝑥, · · · , 𝑥) · · · ) · · · )⏟  ⏞  
𝐾1−1 раз 𝑠

, 𝑠(𝑥, 𝑠(𝑥, · · · 𝑠(𝑥, 𝑥2, · · · , 𝑥) · · · )⏟  ⏞  
𝐾2−1 раз 𝑠

· · · ) =

=(1 + 𝑝𝑖𝑝𝑗𝑢
′
𝑖(𝜉))𝑥1 + (1 + 𝑝𝑖𝑝𝑗𝑢

′
𝑗(𝜉))𝑥2 + ℎ′(𝑥).

Используя данный автомат в качестве сумматора по модулю произведения 𝑝𝑖𝑝𝑗 , аналогично
лемме 7, получаем искомое утверждение.

Случай 2: 𝑝𝑗 | 𝑢𝑖(𝜉), 𝑝𝑖 ∤ 𝑢𝑗(𝜉) или 𝑝𝑗 ∤ 𝑢𝑖(𝜉), 𝑝𝑖 | 𝑢𝑗(𝜉). Без ограничения общности рассуж-
дений будем считать, что 𝑝𝑖 ∤ 𝑢𝑗(𝜉) то есть ⟨𝑢𝑗(𝜉)⟩(𝑝𝑖𝑝𝑗), не является делителем нуля в кольце

𝐸2[𝜉]
⧸︁
(𝑝𝑖𝑝𝑗) . Следовательно, существует 𝐾2 ∈ N: 𝑢𝐾2

𝑗 (𝜉) ∈ ⟨1⟩(𝑝𝑖𝑝𝑗). Тогда

𝑠′(𝑥1, 𝑥2, 𝑥) = 𝑠(𝑥1, 𝑠(𝑥, 𝑠(𝑥, · · · 𝑠(𝑥, 𝑥2, · · · , 𝑥) · · · )⏟  ⏞  
𝐾2−1 раз 𝑠

, · · · , 𝑥) =

=(𝑟(𝜉)𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑢
′
𝑖(𝜉))𝑥1 + (1 + 𝑝𝑖𝑝𝑗𝑢

′
𝑗(𝜉))𝑥2 + ℎ′(𝑥), deg(𝑟(𝜉)) < 𝑑𝑒𝑔(𝑝𝑖).

(1)

По лемме 13 в 𝑆(𝑀) существует автомат 𝑓𝑟, такой что в 𝑈(𝑓) существует многочлен, принад-
лежащий ⟨𝑟(𝜉)⟩−1

(𝑝𝑖)
. Без ограничения общности данный многочлен является коэффициентом

при 𝑥1, тогда:

𝑠′′(𝑥1, 𝑥2, 𝑥) = 𝑠′(𝑓𝑟(𝑥1, 𝑥, · · · , 𝑥), 𝑥2, 𝑥) = (𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑢
′′
𝑖 (𝜉))𝑥1 + (1 + 𝑝𝑖𝑝𝑗𝑢

′
𝑗(𝜉))𝑥2 + ℎ′′(𝑥).

Имеем 𝑝𝑖 = 𝑟1(𝜉)+𝑟2(𝜉)𝑝𝑗 , deg(𝑟1) < deg(𝑝𝑗), deg(𝑟2) < deg(𝑝𝑖). По лемме 13 в 𝑆(𝑀) существу-
ют автоматы 𝑓𝑟1 и 𝑓𝑟2 , такие что в 𝑈(𝑓𝑟1) и в 𝑈(𝑓𝑟2) соответственно существуют многочлены,
принадлежащие ⟨𝑟1(𝜉)⟩(𝑝𝑗) и ⟨𝑟2(𝜉)⟩(𝑝𝑖). Тогда

𝑠𝑝𝑖(𝑥1, 𝑥) = 𝑠′′(𝑓𝑟2(𝑥1, 𝑥, · · · , 𝑥), 𝑓𝑟1(𝑥1, 𝑥, · · · , 𝑥), 𝑥) = (𝑝𝑖 + 𝑝𝑖𝑝𝑗 𝑢̄𝑖(𝜉))𝑥1 + 𝑔(𝑥).
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Наконец, используя автомат 𝑠′′(𝑥1, 𝑠𝑝𝑖(𝑥2, 𝑥), 𝑥), получаем утверждение леммы.
Случай 3: 𝑝𝑗 | 𝑢𝑖(𝜉), 𝑝𝑖 | 𝑢𝑗(𝜉). Для некоторых 𝑟𝑖(𝜉), 𝑟𝑗(𝜉) ∈ 𝐸2[𝜉], deg(𝑟𝑖(𝜉) < deg(𝑝𝑖),

deg(𝑟𝑗(𝜉)) < deg(𝑝𝑗), имеем:

𝑠(𝑥1, 𝑥2, 𝑥) = (𝑟𝑖(𝜉)𝑝𝑗 + 𝑝𝑖𝑝𝑗𝑢
′
𝑖(𝜉))𝑥1 + (𝑟𝑗(𝜉)𝑝𝑖 + 𝑝𝑖𝑝𝑗𝑢

′
𝑗(𝜉))𝑥2 + 𝑓(𝑥).

Повторяя рассуждения, представленные в (1), получаем утверждение леммы. 2 Таким обра-
зом, было показано, что если для пары неприводимых многочленов 𝑝𝑖, 𝑝𝑗 множество 𝑀 не со-
держится ни в одном из замкнутых классов вида {𝐿𝑖,𝑠 | 𝑠 ∈ 0, ..., 𝑙𝑖}∪{𝑁𝑖}∪{𝑉𝑖}∪{𝐼𝑖,𝑗,𝑠}∪𝑃{𝑖,𝑗},
то в 𝑆(𝑀) содержится автомат 𝑓 , для которого верно, что в 𝑈(𝑓) содержатся коэффициенты,
остатки от деления которых на произведение данных неприводимых многочленов равны 𝑝𝑖 и
𝑝𝑗 соответственно.

Введем дополнительные обозначения. Положим 𝐴𝑆(𝑀) – замыкание множества 𝑀 ⊆ 𝐿𝐷2

по операциям суперпозиции за исключением операции отождествления переменных. Также

будем говорить, что множество 𝑈 ⊆ 𝐸2[𝜉] содержится в классе 𝑃
(1)
𝐽 , 𝐽 ⊂ 𝑁, 1 ≤ |𝐽 | < ∞,

если среди 𝑗 ∈ 𝐽 существует индекс 𝑗′, что 𝑈 ⊂ ⟨0⟩(𝑝𝑗′ ) или в 𝑈 существует 𝑣(𝜉), что

∀ 𝑣′(𝜉) ∈ 𝑈 ∖ {𝑣(𝜉)}, 𝑣′(𝜉) ∈ ⟨0⟩(𝑝𝑗) ∀𝑗 ∈ 𝐽 .

Лемма 15. Пусть 𝑀 ⊆ LD2 и I = {𝑖1, ..., 𝑖𝐽} ⊂ N, 𝐽 < ∞. Если для любого

Θ, Θ ∈ {𝑃I′ , | I′ ⊆ I}, выполнено:𝑀 ⊈ Θ, то автомат 𝐻I(𝑥1, ..., 𝑥𝐽 , 𝑥𝐽+1, ..., 𝑥𝑛) =
𝐽∑︀

𝑗=1
𝑢𝑗(𝜉)𝑥𝑗+

+ 𝐻̄(𝑥𝐽+1, ..., 𝑥𝑛), 𝑢𝑗(𝜉) /∈ ⟨0⟩(𝑝𝑖𝑗 ), содержится в 𝐴𝑆(𝑀) для некоторых 𝑢𝑗(𝜉) ∈ 𝐸2[𝜉], 𝑗 ≤ 𝐽 и

𝐻̄ ∈ 𝐿𝐷2.

Доказательство. Докажем данное утверждение индукцией по мощности множества I.
В качестве базы индукции при I = {𝑖1} рассмотрим автомат 𝐻𝑖 ∈ 𝑀 ∖ 𝑉𝑖, у которого есть

как минимум два входа, коэффициенты при которых не делятся на данный неприводимый
многочлен. При I = {𝑖1, 𝑖2} автомат 𝐻{𝑖1,𝑖2} ∈ 𝑀 ∖ 𝑃{𝑖1,𝑖2}, завершает доказательство базы
индукции.

Пусть предположение индукции выполнено для любого множества I′, I′ ⊂ I, покажем, что
оно выполняется для множества I. По условию 𝑀 ⊈ 𝑃I, следовательно, 𝐴𝑆(𝑀) принадлежит

автомат 𝐻 ′, такой что 𝑈(𝐻 ′) /∈ 𝑃 (1)
I . Обозначим 𝑋 = {𝑥𝑗1 , ..., 𝑥𝑗𝐶}, минимальное по включе-

нию подмножество переменных данного автомата, такое что коэффициенты при переменных

из данного множества удовлетворяют свойству: {𝑣𝑗1(𝜉), ..., 𝑣𝑗𝐶 (𝜉)} /∈ 𝑃 (1)
I . Следовательно, ис-

пользуя операцию переименования переменных, имеем:

𝐻̄(𝑥′1, ..., 𝑥
′
𝐶 , 𝑦

′
1, ..., 𝑦

′
𝑛) =

𝐶∑︁
𝑗=1

𝑣′𝑗(𝜉)𝑥
′
𝑗 +𝐻 ′(𝑦′1, ..., 𝑦

′
𝑛) ∈ 𝐴𝑆(𝑀),

и для данного автомата верно, что

� 2 ≤ 𝐶 ≤ |I|,

� ∀𝑣′𝑗(𝜉) ∃𝐼𝑗 = {𝑖 | 𝑖 ∈ I, 𝑣′𝑗(𝜉) /∈ ⟨0⟩(𝑝𝑖)}, 1 ≤ |𝐼𝑗 | ≤ |I|,

� I =
𝐶⋃︀

𝑗=1
𝐼𝑗 .

Из представленных неравенств и по определению 𝑃
(1)
I следует, что существует система

{𝐼 ′𝑗 | 𝐼 ′𝑗 ⊆ 𝐼𝑗 , 1 ≤ |𝐼 ′𝑗 | < |I|}, также удовлетворяющая условиям I =
𝐶⋃︀

𝑗=1
𝐼 ′𝑗 и |I| =

𝐶∑︀
𝑗=1
|𝐼 ′𝑗 |. Таким

образом, по предположению индукции, получаем: ∀𝑗, 𝑗 = 1, ..., 𝐶 автомат 𝐻𝐼′𝑗
∈ 𝐴𝑆(𝑀).
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Обозначим 𝐾𝑗 =
𝑗∑︀

𝑗′=1

|𝐼 ′𝑗′ | и рассмотрим автомат

𝐻I = 𝐻̄(𝐻𝐼′1
(𝑥′1, ..., 𝑥

′
𝐾1
, 𝑦1,1, ..., 𝑦𝑛1,1), 𝐻𝐼′2

(𝑥′𝐾1+1, ..., 𝑥
′
𝐾2
, 𝑦1,2, ..., 𝑦𝑛2,2), ...

..., 𝐻𝐼′𝐶
(𝑥′𝐾𝐶−1+1, ..., 𝑥

′
𝐾𝐶
, 𝑦1,𝐶 , ..., 𝑦𝑛𝐶 ,𝐶), 𝑦′1, ..., 𝑦

′
𝑛).

Для произвольного 𝑖 ∈ I имеем ∃ 𝑗 ∈ {1, ..., 𝐶}, что 𝑖 ∈ 𝐼𝑗 и среди коэффициентов автомата
𝐻𝐼′𝑗

существует 𝑣𝑘,𝐼′𝑗 (𝜉) /∈ ⟨0⟩(𝑝𝑖), следовательно среди коэффициентов автомата 𝐻I существует

𝑣𝑗(𝜉) ·𝑣𝑘,𝐼′𝑗 (𝜉) /∈ ⟨0⟩(𝑝𝑖). Таким образом, автомат 𝐻I удовлетворяет условию леммы с точностью

до переименования переменных {𝑥′1, ..., 𝑥′𝐶}. 2

Рассмотрим два специальных автомата из LD2 : 𝑓1(𝑥1, 𝑥2, 𝑥3) = 𝑥1 + 𝑥2 + 𝑥3 и 𝑓2(𝑥1, 𝑥2) =
= 𝜉𝑥1 + ℎ(𝑥2). Первый представляет собой сумматор от трех переменных, а второй суще-
ственно зависит от двух переменных и обладает следующим свойством: 𝜉 ∈ 𝑈(𝑓2(𝑥1, 𝑥2)).
Множество, составленное из двух данных автоматов, обозначим A.

Лемма 16. Пусть 𝑀 ⊆ LD2 и автомат 0 ∈ 𝑀 . Если для любого Θ, Θ ∈ {𝑇𝑖, 𝑖 ≥ 1},
выполнено: 𝑀 ⊈ Θ, то система 𝑀 ∪ {𝑥1 + 𝑥2 + 𝑥3, 𝜉𝑥1 + ℎ(𝑥2)} полна в LD2.

Доказательство. Множество𝑀∪{𝑥1+𝑥2+𝑥3, 𝜉𝑥1+ℎ(𝑥2)} обозначим через𝑀 ′. По условию:
константа 0 содержится в 𝑀 ′, следовательно, автоматы 𝑥1 + 𝑥2 и 𝜉𝑥1 принадлежат 𝑆(𝑀 ′), и
для любого многочлена 𝑢(𝜉) ∈ 𝐸2[𝜉] автомат 𝑢(𝜉)𝑥 может быть получен из 𝑥1 + 𝑥2 и 𝜉𝑥1 с
помощью операций суперпозиции. Следовательно, осталось доказать, что для произвольного
𝑢0(𝜉) ∈ 𝐸2[𝜉], константа 𝑢0(𝜉) ∈ 𝑆(𝑀 ′).

Покажем, что 1 принадлежит 𝑆(𝑀 ′). По предположению: 𝑀 ′ /∈ 𝑇0, следовательно, в 𝑀 ′

содержится такой автомат 𝑓(𝑥1, ..., 𝑥𝑛), что 𝑓(0, ..., 0) = 1 + 𝜉𝑢0(𝜉) ∈ 𝑆(𝑀 ′). Рассмотрим мно-
гочлен 1 + 𝜉𝑢0(𝜉). Если 𝑢0 = 0(𝜉), то предположение доказано, иначе 1 + 𝜉𝑢0 ̸= 0(𝜉) имеет
определенное разложение на неприводимые

∏︀
𝑖∈I
𝑝𝑛𝑖
𝑖 , 1 /∈ I. Для любого 𝑖 ∈ I, 𝑖 ≥ 2, имеем:

𝑀 ′ /∈ 𝑇𝑖, значит, в𝑀 ′ содержится такой автомат 𝑓𝑖(𝑥1, ..., 𝑥𝑛), что 𝑓𝑖(0, ..., 0) = 𝑟𝑖(𝜉)+𝑝𝑖𝑢𝑖(𝜉) ∈
∈ 𝑆(𝑀 ′), 𝑟𝑖(𝜉) ̸= 0.

Многочлены {1 + 𝜉𝑢0(𝜉)} ∪ {𝑟𝑖(𝜉) + 𝑝𝑖𝑢𝑖(𝜉), 𝑖 ∈ I} взаимно просты, откуда получаем, что в
𝑆(𝑀 ′) существует автомат ℎ(𝑥1, ..., 𝑥𝑚, 𝑥𝑚+1), такой что

ℎ(𝑓1(0, ..., 0), ..., 𝑓𝑚(0..., 0), 𝑓(0..., 0)) =
∑︁
𝑖∈I

𝑣𝑖(𝜉)(𝑟𝑖(𝜉) + 𝑝𝑖𝑢𝑖(𝜉)) + 𝑣𝑚+1(𝜉)(1 + 𝜉𝑢0(𝜉)) = 1.

Таким образом, 1 ∈ 𝑆(𝑀 ′), следовательно для произвольного 𝑢0(𝜉) ∈ 𝐸2[𝜉], имеем:
𝑢0(𝜉) ∈ 𝑆({1, 𝑢0(𝜉)𝑥}. 2

Отметим, что критерий, полученный в предыдущей лемме, является эффективным, несмотря
на счетное число элементов в 𝐻, так как число замкнутых классов 𝑇𝑖, которые необходимо
проверить, ограничено и определяется по автомату 𝑓0 ∈ 𝑀 ∖ 𝑇0. Тем не менее, в рамках
следующего утверждения, которое является основным в разделе, рассмотрим только конечные
множества.

Теорема 3. Задача проверки Σ−полноты конечных множеств, содержащих 0, алгорит-
мически разрешима в классе дефинитных линейных автоматов с операциями суперпозиции
над полем 𝐸2.

Доказательство. Пусть 𝑀 – конечное подмножество LD2, содержащее 0. Согласно лем-
ме 16, доказательство теоремы сводится к доказательству следующего утверждения: проверка
условия {𝑥1 + 𝑥2 + 𝑥3, 𝜉𝑥1 + ℎ(𝑥2)} ⊆ 𝑆(𝑀) алгоритмически разрешима.
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Рассмотрим множество

I(𝑀) = {𝑖 | 𝑖 ∈ N, ∃ 𝑢(𝜉) ∈ 𝑈(𝑀), такой что 𝑢(𝜉) ∈ ⟨0⟩(𝑝𝑖)} = {𝑖1, ..., 𝑖𝐿}.

Так как множество 𝑀 конечно, то и I(𝑀) конечно по определению. Если 𝑀 содержится в
𝑃I(𝑀), то оно не полно, следовательно, по лемме 15 в 𝐴𝑆(𝑀) существует автомат

ℎ(𝑥1, ...𝑥𝐿, 𝑥𝐿+1, ..., 𝑥𝑛ℎ
) =

𝐿∑︁
𝑗=1

𝑢𝑗(𝜉)𝑥𝑗 + ℎ′(𝑥𝐿+1, ..., 𝑥𝑛ℎ
), 𝑢𝑗(𝜉) /∈ ⟨0⟩(𝑝𝑖𝑗 ).

Так как 𝑀 /∈ 𝑉𝑖, 𝑖 ∈ I(𝑀), автоматы

𝑙𝑖(𝑥2𝑖−1, 𝑥2𝑖, 𝑦1,𝑖, ..., 𝑦𝑛𝑖,𝑖) = 𝑣2𝑖−1(𝜉)𝑥2𝑖−1 + 𝑣2𝑖(𝜉)𝑥2𝑖 + 𝑙′(𝑦1,𝑖, ..., 𝑦𝑛𝑖,𝑖), 𝑣2𝑖−1(𝜉), 𝑣2𝑖(𝜉) /∈ ⟨0⟩(𝑝𝑖),

содержатся в 𝑆(𝑀). Рассмотрим подстановку

𝑚(𝑥1, ...𝑥2𝐿, 𝑦1, ..., 𝑦𝑛𝑚) = ℎ(𝑙1(𝑥1, 𝑥2, ...), ..., 𝑙𝐿(𝑥2𝐿−1, 𝑥2𝐿, ...), ..., 𝑦𝑛𝑚).

По построению автомат 𝑚 обладает следующим свойством: ∀𝑖 ∈ I(𝑀) коэффициенты при
переменных 𝑥2𝑖−1 и 𝑥2𝑖 не делятся на 𝑝𝑖. Рассмотрим подстановку:

𝐻(𝑥1, ...𝑥2𝐿, 𝑦
′
1, ..., 𝑦

′
𝑛𝐻

) =

= 𝑚(𝑚(𝑦′1, 𝑥1, ..., 𝑦
′
𝑛𝑚+1),𝑚(𝑥2, 𝑦

′
𝑛𝑚+2, ..., 𝑦

′
2𝑛𝑚+3), ...,𝑚( ...⏟ ⏞ 

2𝐿−1

, 𝑥2𝐿−1, ...),𝑚( ...⏟ ⏞ 
2𝐿−2

, 𝑥2𝐿, ...), ..., 𝑦
′
𝑛𝐻

).

Для 𝐻 верно, что ∀𝑖 ∈ I(𝑀) коэффициенты при переменных 𝑥2𝑖−1 и 𝑥2𝑖 не делятся на 𝑝𝑖 и рав-
ны между собой. Данный автомат принадлежит 𝐴𝑆(𝑀), то есть его коэффициенты являются
конечным произведением элементов из 𝑈(𝑀), а следовательно, в 𝑈(𝐻) нет коэффициентов,
делящихся на неприводимые многочлены, отличные от 𝑝𝑖, 𝑖 ∈ I(𝑀).

Рассмотрим

𝐻̄(𝑥1, ...𝑥2𝐿, 𝑥) = 𝐻(𝑥1, ...𝑥2𝐿, 𝑥, ..., 𝑥) =
𝐿∑︁

𝑗=1

(𝑢𝑗(𝜉)𝑥2𝑗−1 + 𝑢𝑗(𝜉)𝑥2𝑗) +𝐻 ′(𝑥). (2)

Имеем: ∀𝑗 коэффициент 𝑢𝑗(𝜉) не делится ни на один неприводимый многочлен из множества
{𝑝𝑖𝑗} ∪ {𝑝𝑖 | 𝑖 ∈ N ∖ I(𝑀)}.

Покажем, что автомат

𝐻𝑠1,...𝑠𝐿(𝑥1, ..., 𝑥𝑀𝐿
, 𝑥) =

𝐿∑︁
𝑙=1

𝑚𝑙∑︁
𝑗=1

𝑢𝑚𝑙
𝑙 (𝜉)𝑥𝑀𝑗,𝑙

+𝐻 ′
𝑠1,...𝑠𝐿

(𝑥),

𝑚𝑙 = 2𝑠𝑙 , 𝑀𝑙 =
∑︁
𝑞<𝑙

2𝑠𝑞 , 𝑀𝑗,𝑙 = 𝑗 +𝑀𝑙,

(3)

принадлежит 𝑆(𝑀) для произвольного набора {𝑠𝑙 | 𝑠𝑙 ∈ N}.
В качестве базы индукции рассмотрим 𝐻1,...,1(𝑥1, ..., 𝑥2𝐿, 𝑥) = 𝐻̄(𝑥1, ...𝑥2𝐿, 𝑥).
Пусть выражение верно для некоторого набора {𝑠1, ..., 𝑠𝐿}, тогда положим 𝑀 ′

𝐿 = 𝑀𝐿 +2𝑠1

и рассмотрим автомат:

𝐻𝑠1+1,...,𝑠𝐿(𝑥1, ..., 𝑥𝑀 ′
𝐿
, 𝑥) = 𝐻𝑠1,...,𝑠𝐿(𝐻̄(𝑥1, 𝑥2, 𝑥), ..., 𝐻̄(𝑥2𝑠1−1, 𝑥2𝑠1 , 𝑥), ..., 𝑥𝑀 ′

𝐿
, 𝑥),

что завершает доказательство шага индукции.
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Рассмотрим систему замкнутых классов 𝐽𝑃 (1). Для произвольного 𝑗 ≤ 𝐿 коэффициент

𝑢𝑗(𝜉) принадлежит конечному числу классов вида𝑀𝑃
(1)
𝑖 = 𝑀

(1)
𝑖 ∩𝐸2[𝜉] = {𝑢(𝜉) | 𝑢(𝜉) ∈ 𝐸2[𝜉],

(𝑢(𝜉) + 𝑢(0)) ..
. 𝜉𝑝𝑖(𝜉)}, 𝑖 = 1, 2, ..., то есть имеем:

|{Θ | Θ ∈𝑀𝑃
(1)
𝑖 , 𝑢𝑗(𝜉) ∈ Θ}| = 𝐾𝑗 <∞.

Положим 𝐾𝐻 =
𝐿

max
𝑗=1

𝐾𝑗 и рассмотрим автомат 𝐻𝑆 = 𝐻𝑆,...,𝑆 , такой что 2𝑆 ≥ 2(𝐾𝐻 + 2).

Разделим переменные {𝑥1, ..., 𝑥𝑀𝑆
} автомата 𝐻𝑆 на две группы 𝑋,𝑌 и переименуем их соот-

ветствующим образом:

𝐻𝑆(𝑋,𝑌, 𝑥) =
𝐿∑︁
𝑙=1

𝑚̄∑︁
𝑗=1

𝑢2𝑚̄𝑙 (𝜉)𝑥𝑗,𝑙 +
𝐿∑︁
𝑙=1

𝑚̄∑︁
𝑗=1

𝑢2𝑚̄𝑙 (𝜉)𝑦𝑗,𝑙 + 𝐻̄ ′
𝑆(𝑥), 𝑚̄ = 2𝑆−1.

В [7] было показано, что если для некоторого линейного автомата 𝑔 существует подмножество
𝑈 ⊆ 𝑈(𝑔), такое что любой коэффициент, содержащийся в 𝑈 , встречается среди коэффи-
циентов 𝑔 как минимум дважды, то ∀𝑢′(𝜉) ∈ 𝑆(1)(𝑈) существует 𝑔′ ∈ 𝑆(𝑔), для которого
𝑢′(𝜉) ∈ 𝑈(𝑔′). Отметим, что подмножества коэффициентов при переменных 𝑋 и 𝑌 дублируют
друг друга, таким образом, применив одинаковый набор преобразований ко входам автомата
𝐻̄𝑆 , соответствующим каждой из групп переменных, получим подмножество коэффициентов,
удовлетворяющее описанному выше свойству.

Опишем только операции со входами при переменных группы 𝑋 автомата 𝐻̄𝑆 , множество
коэффициентов при переменных 𝑋 обозначим 𝑈(𝑋). Получим автомат 𝐻̃𝑋(𝑋,𝑌, 𝑥), для ко-

торого верно 𝑈̃(𝑋) ⊈ Θ,∀Θ : Θ ∈ 𝐽𝑃 (1). Положим 𝑅𝑃
(1)
𝑖 = 𝑅𝑖 ∩ 𝐸2[𝜉], 𝑖 ∈ N. По построению

автомата 𝐻̄𝑆 имеем 𝑈(𝑋) ⊈ Θ, ∀Θ : Θ ∈ {𝑅𝑃 (1)
𝑖 | 𝑖 ∈ N}. Для произвольного 𝑙, 1 ≤ 𝑙 ≤ 𝐿 рас-

смотрим переменные {𝑥1,𝑙, ..., 𝑥𝑚̄,𝑙} автомата 𝐻̄𝑆 , коэффициент при каждой из которых равен

𝑢2𝑚̄𝑙 (𝜉). Обозначим𝑀𝑃 (𝑙) = {𝑖 | 𝑖 ∈ N, 𝑢2𝑚̄𝑙 (𝜉) ∈𝑀𝑃
(1)
𝑖 } = {𝑖1,𝑙, ..., 𝑖𝑛𝑙,𝑙}. Учитывая особенности

возведения в степень в поле характеристики два, имеем:

𝑢𝑙(𝜉) ∈ Θ⇔ 𝑢2𝑚̄𝑙 (𝜉) ∈ Θ, Θ ∈ 𝐽𝑃 (1) ∖𝑀𝑃
(1)
1 ,

что продемонстрировано в [7]. Положим 𝑔𝑘,𝑙(𝑥𝑘,𝑙, 𝑥) = (𝜉+𝜉𝑝𝑖𝑘,𝑙𝑢𝑘,𝑙(𝜉))𝑥𝑘,𝑙+𝑔
′
𝑘,𝑙(𝑥), 𝑖𝑘,𝑙 ∈𝑀𝑃 (𝑙)

и рассмотрим подстановку:

𝐻̃𝑋(𝑋,𝑌, 𝑥) = 𝐻̄𝑆(..., 𝑔1,𝑙(𝑥1,𝑙, 𝑥), ..., 𝑔𝑛𝑙,𝑙(𝑥𝑛𝑙,𝑙, 𝑥), 𝑥𝑛𝑙+1,𝑙..., 𝑥𝑚̄,𝑙⏟  ⏞  
𝑚̄−𝑛𝑙≥1 раз 𝑥*,𝑙

, ..., 𝑌, 𝑥). (4)

Автомат 𝑔𝑘,𝑙(𝑥𝑘,𝑙, 𝑥) ∈ 𝑆(𝑀), ∀𝑙 ≤ 𝐿, 𝑘 ≤ 𝑛𝑙 по лемме 13, следовательно 𝐻̃𝑋 ∈ 𝑆(𝑀). Так как
𝑚̄−𝑛𝑙 ≥ 1, 𝑙 ≤ 𝐿, то 𝑈(𝑋) ⊆ 𝑈̃(𝑋), следовательно, 𝑈̃(𝑋) не содержится ни в одном из классов

серии {𝑅𝑃 (1)
𝑖 | 𝑖 ∈ N}. Если 𝑈(𝑋) ⊈ {𝑀𝑃

(1)
𝑖 | 𝑖 ∈ N}, то предположение доказано, в противном

случае положим I(𝑋) = {𝑖 | 𝑖 ∈ N, 𝑈(𝑋) ⊆ 𝑀𝑃
(1)
𝑖 }. Для произвольного 𝑖′ ∈ I(𝑋) в 𝑈(𝑋)

содержится коэффициент вида 1 + 𝜉𝑝𝑖′𝑣𝑖′(𝜉), в противном случае, получаем противотечение с

тем, что 𝑈(𝑋) ⊈ 𝑅𝑃
(1)
𝑖′ . Исходя из (4), в 𝑈̃(𝑋) содержится коэффициент

(𝜉 + 𝜉𝑝𝑖′𝑢𝑖′(𝜉))(1 + 𝜉𝑝𝑖′𝑣𝑖′(𝜉)) = 𝜉 + 𝜉𝑝𝑖′𝑣
′
𝑖′(𝜉) = 𝜉(𝑝𝑖′𝑣

′
𝑖′(𝜉) + 1) /∈𝑀𝑃

(1)
𝑖′ .

Проведем аналогичные операции со входами, соответствующими переменным группы 𝑌 , и
получим автомат 𝐻̃(𝑋,𝑌, 𝑥), для которого верно, что ∃ 𝑈̃ ⊆ 𝑈(𝐻̃), 𝑈̃ ⊈ Θ, ∀Θ : Θ ∈ 𝐽𝑃 (1),
и произвольный коэффициент 𝑢(𝜉) ∈ 𝑈̃ встречается среди коэффициентов автомата 𝐻̃ как
минимум два раза. Таким образом, используя лемму 11 и подход, изложенный в [4], получим:

∃𝑉 (𝜉) ∈ 𝐸2[𝜉] : ∀𝑣(𝜉) ∈ 𝐸2[𝜉] автомат 𝑉 (𝜉)𝑣(𝜉)𝑥1 + 𝑍(𝑥) ∈ 𝑆(𝑀). (5)
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Обозначим I(𝑉 ) – номера всех неприводимых многочленов, встречающихся в разложении вве-
денного в (5) многочлена 𝑉 (𝜉). Рассмотрим множество 𝐹 = I(𝑀) ∪ I(𝑉 ) = {𝑖1, ..., 𝑖𝐿′}. Если
𝑀 ⊆ 𝑃𝐹 , то оно не полно. Применяя рассуждения, аналогичные приведенным в (2), получим,
что автомат

𝐺(𝑥1, ..., 𝑥2𝐿′ , 𝑥) =

𝐿′∑︁
𝑗=1

(𝑢𝑗(𝜉)𝑥2𝑗−1 + 𝑢𝑗(𝜉)𝑥2𝑗) +𝐺′(𝑥) ∈ 𝑆(𝑀).

По аналогии с (2), для автомата 𝐺(𝑥1, ...𝑥2𝐿′ , 𝑥) верно: ∀𝑗 ≤ 𝐿′, 𝑢𝑗(𝜉) не делится ни на один
неприводимый многочлен из множества {𝑝𝑖𝑗} ∪ {𝑝𝑖 | 𝑖 ∈ N ∖ 𝐹}.

Перебором конечного множества значений неизвестных в конечной системе уравнений,

установим все возможные замкнутые классы вида {𝐼(1)𝑖,𝑗,𝑠 | deg(𝑝𝑗) = deg(𝑝𝑖), 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ 𝐹}.
Обозначим:

𝐾𝐹 =
𝐿′

max
𝑗=1
|{𝐿(1)

𝑖𝑗 ,𝑠
| 𝑖𝑗 ∈ 𝐹} ∪ {𝑁 (1)

𝑖𝑗
| 𝑖𝑗 ∈ 𝐹} ∪ {𝐼(1)𝑖𝑗 ,𝑘,𝑠

, deg(𝑝𝑘) = deg(𝑝𝑖𝑗 ), 𝑖𝑗 ̸= 𝑘, 𝑖𝑗 , 𝑘 ∈ 𝐹}|.

Повторяя алгоритм, приведенный в (3), покажем, что для 𝑆′ : 2𝑆
′ ≥ 8(𝐾𝐹 + 2), автомат

𝐺𝑆′(𝑥1, ..., 𝑥𝑀𝐿′ , 𝑥) =
𝐿′∑︁
𝑙=1

𝑚′∑︁
𝑗=1

𝑢𝑚
′

𝑙 (𝜉)𝑥𝑀𝑗,𝑙
+𝐺′

𝑆′(𝑥), 𝑚′ = 2𝑆
′
, 𝑀𝑙 = 𝑙 ·𝑚′, 𝑀𝑗,𝑙 = 𝑗 +𝑀𝑙,

содержится в 𝑆(𝑀). Разделим переменные {𝑥1, ..., 𝑥𝑀𝐿′} данного автомата на 5 групп
𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝑍, переименуем их соответствующим образом и отождествим остальные:

𝐺̄𝑆′(𝑋1, 𝑌1, 𝑋2, 𝑌2, 𝑍, 𝑥) =
𝐿′∑︁
𝑙=1

𝑚̄′∑︁
𝑗=1

𝑢8𝑚̄
′

𝑙 (𝜉)𝑥𝑗,𝑙,1 +
𝐿′∑︁
𝑙=1

𝑚̄′∑︁
𝑗=1

𝑢8𝑚̄
′

𝑙 (𝜉)𝑦𝑗,𝑙,1 +
𝐿′∑︁
𝑙=1

𝑚̄′∑︁
𝑗=1

𝑢8𝑚̄
′

𝑙 (𝜉)𝑥𝑗,𝑙,2+

+
𝐿′∑︁
𝑙=1

𝑚̄′∑︁
𝑗=1

𝑢8𝑚̄
′

𝑙 (𝜉)𝑦𝑗,𝑙,2 +
𝐿∑︁
𝑙=1

𝑚̄′∑︁
𝑗=1

𝑢8𝑚̄
′

𝑙 (𝜉)𝑧𝑗,𝑙 + 𝐺̄′
𝑆′(𝑥), 𝑚̄′ = 2𝑆

′−3.

Аналогично описанному выше, рассмотрим только операции со входами, ассоциированны-
ми с переменными группы 𝑋1. Для произвольного 𝑙, 1 ≤ 𝑙 ≤ 𝐿 рассмотрим переменные
{𝑥1,𝑙,1, ..., 𝑥𝑚̄′,𝑙,1} автомата 𝐺̄𝑆′ , коэффициент при каждой из которых равен 𝑢8𝑚̄

′
𝑙 (𝜉). Обозна-

чим Θ(𝑙) = {Θ | Θ ∈ 𝐻(1), 𝑢8𝑚̄
′

𝑙 (𝜉) ∈ Θ} = {Θ1, ...,Θ𝑛𝑙
}. По построению автомата 𝐺̄𝑆′ имеем

𝑚̄′−𝑛𝑙 > 0. Положим 𝑔′𝑘,𝑙(𝑥𝑘,𝑙,1, 𝑥) = 𝑣(𝜉)𝑘,𝑙𝑥𝑘,𝑙,1 +𝑔′′𝑘,𝑙(𝑥), 𝑣(𝜉)𝑘,𝑙 /∈ Θ𝑘, Θ𝑘 ∈ Θ(𝑙) и рассмотрим
подстановку:

𝐺̃𝑋(𝑋1, 𝑌1, 𝑋2, 𝑌2, 𝑍, 𝑥) =

𝐺̄𝑆′(..., 𝑔1,𝑙(𝑥1,𝑙,1, 𝑥), ..., 𝑔𝑛𝑙,𝑙(𝑥𝑛𝑙,𝑙,1, 𝑥), 𝑥𝑛𝑙+1,𝑙,1..., 𝑥𝑚̄,𝑙,1⏟  ⏞  
𝑚̄−𝑛𝑙≥1 раз 𝑥*,𝑙,1

, ..., 𝑌1, 𝑋2, 𝑌2, 𝑍, 𝑥).

Автомат 𝑔′𝑘,𝑙(𝑥𝑘,𝑙,1, 𝑥) ∈ 𝑆(𝑀), ∀𝑙 ≤ 𝐿, 𝑘 ≤ 𝑛𝑙 так как 𝑀 ⊈ {𝐿𝑖,𝑠 | 𝑖 ∈ 𝐹} ∪ {𝑁𝑖 | 𝑖 ∈ 𝐹} ∪
∪ {𝐼𝑖,𝑗,𝑠, deg(𝑝𝑖) = deg(𝑝𝑗), 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ 𝐹}, следовательно 𝐺̃𝑋 ∈ 𝑆(𝑀).

Проведем аналогичные операции со входами, соответствующими переменным группы
𝑌1, 𝑋2 и 𝑌2, следовательно получим автомат 𝐺̃(𝑋1, 𝑌1, 𝑋2, 𝑌2, 𝑍, 𝑥), для которого верно, что
∃ 𝑈̃ ′ ⊆ 𝑈(𝐺̃), 𝑈̃ ′ ⊈ Θ, ∀Θ : Θ ∈ 𝐻(1), и произвольный коэффициент 𝑢(𝜉) ∈ 𝑈̃ ′ встречается
среди коэффициентов автомата 𝐺̃ как минимум четыре раза, следовательно автомат

𝐹𝑟1,𝑟2(𝑥1, 𝑥2, 𝑍, 𝑥) =(︃
𝑟1(𝜉) +

(︃∏︁
𝑖∈𝐹

𝑝𝑛𝑖
𝑖

)︃
𝑢𝑟1(𝜉)

)︃
𝑥1 +

(︃
𝑟2(𝜉) +

(︃∏︁
𝑖∈𝐹

𝑝𝑛𝑖
𝑖

)︃
𝑢𝑟2(𝜉)

)︃
𝑥2 +

𝐿∑︁
𝑙=1

𝑚̄′∑︁
𝑗=1

𝑢8𝑚̄
′

𝑙 (𝜉)𝑧𝑗,𝑙 + 𝐹 ′
𝑟1,𝑟2(𝑥),
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содержится в 𝑆(𝑀) для произвольных {𝑛𝑖 | 𝑛𝑖 ∈ N, 𝑖 ∈ 𝐹}, произвольных 𝑟𝑘(𝜉), deg(𝑟𝑘) <
< deg(

∏︀
𝑖∈𝐹

𝑝𝑛𝑖
𝑖 ), 𝑘 = 1, 2, и некоторых 𝑢𝑟1(𝜉), 𝑢𝑟2(𝜉) ∈ 𝐸2[𝜉], 𝐹

′
𝑟1,𝑟2(𝑥) ∈ 𝐿𝐷2, по лемме 10. Так

как 𝐿′ ≥ 1 и 8𝑚̄′ ≥ 2, то автомат 𝐹𝑟1,𝑟2(𝑥1, 𝑥2, 𝑍, 𝑥) существенно зависит еще как минимум
от двух своих переменных группы 𝑍, коэффициенты при которых не делятся на многочлены,
отличные от {𝑝𝑖 | 𝑖 ∈ 𝐹}. Подставляя на данные входы автомат (5), получаем систему A. 2

5. Заключение

В данной работе был получен алгоритм проверки полноты конечных содержащих констан-
ту ноль подмножеств в классе дефинитных линейных автоматов. Дальнейшие исследования по
теме могут заключаться в выражении константы ноль, а также в использовании полученного
в данной работе критерия для формирования критерия в терминах предполных классов.

В заключение автор выражает особую признательность научному руководителю, д.ф.-м.н.
Часовских А. А. за научное руководство, помощь и обсуждение результатов.
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Аннотация

Для количества нулей дзета-функции Римана 𝜁(𝑠) в узких прямоугольниках критиче-
ской полосы (Re 𝑠 ⩾ 𝛼 ⩾ 0,5 и 𝑇 < Im𝑠 ⩽ 𝑇 +𝐻), при

𝐻 > 𝑇 𝜃+𝜀, 𝜃 = 𝜃(𝜅, 𝜆) =
𝜅+ 𝜆

2𝜅+ 2
,

где (𝜅, 𝜆) — произвольная экспоненциальная пара, 𝜀 < 10−4 — любое фиксированное по-
ложительное число, 𝑇 ⩾ 𝑇0(𝜀) > 0, получена оценка вида

𝑁(𝛼, 𝑇 +𝐻)−𝑁(𝛼, 𝑇 )≪ 𝐻𝑎(1−𝛼) ln 𝑐 𝑇,

причём 𝑎 = 2, 4, 𝑐 = 172, если 1
2 ⩽ 𝛼 ⩽ 2

3 или 5
6 ⩽ 𝛼 ⩽ 1, и соответственно 𝑎 = 8

3 , 𝑐 = 50,
если 2

3 < 𝛼 < 5
6 .

Ключевые слова: нетривиальные нули дзета-функции Римана, плотностная теорема,
узкие прямоугольники критической полосы, экспоненциальная пара.

Библиография: 30 названий.

Для цитирования:

Рахмонов З. Х. Плотность нулей дзета-функции Римана в узких прямоугольниках критиче-
ской полосы // Чебышевcкий сборник, 2025, т. 26, вып. 5, с. 158–183.

CHEBYSHEVSKII SBORNIK

Vol. 26. No. 5.

UDC: 511. 344 DOI: 10.22405/2226-8383-2025-26-5-158-183

Density of zeros of the Riemann zeta function in narrow rectangles
of the critical strip

Z. Kh. Rakhmonov

Rakhmonov Zarullo Khusenovich — doctor of physical and mathematical sciences, Academi-
cian of the National Academy of Sciences of Tajikistan, Tajik National University (Dushanbe,
Tajikistan). e-mail: zarullo-r@rambler.ru, zarullo.rakhmomov@gmail.com

Светлой памяти Геннадия Ивановича Архипова



Плотность нулей дзета-функции Римана в узких прямоугольниках критической полосы 159

Abstract

For the number of zeros of the Riemann zeta-function 𝜁(𝑠) in narrow rectangles of the critical
strip (Re 𝑠 ⩾ 𝛼 ⩾ 0.5 and 𝑇 < Im𝑠 ⩽ 𝑇 +𝐻), assuming

𝐻 > 𝑇 𝜃+𝜀, 𝜃 = 𝜃(𝜅, 𝜆) =
𝜅+ 𝜆

2𝜅+ 2
,

where (𝜅, 𝜆) is an arbitrary exponent pair, 𝜀 < 10−4 is any fixed positive number, and
𝑇 ⩾ 𝑇0(𝜀) > 0, an estimate of the form

𝑁(𝛼, 𝑇 +𝐻)−𝑁(𝛼, 𝑇 )≪ 𝐻𝑎(1−𝛼) ln 𝑐 𝑇,

is obtained. Here 𝑎 = 2, 4 and 𝑐 = 172 when 1
2 ⩽ 𝛼 ⩽ 2

3 or 5
6 ⩽ 𝛼 ⩽ 1, and respectively 𝑎 = 8

3
and 𝑐 = 50 when 2

3 < 𝛼 < 5
6 .
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1. Введение

Определение 1. Пусть 𝑁(𝛼, 𝑇 ) — число нулей функции Римана 𝜁(𝑠) в области
Re 𝑠 ⩾ 𝛼 ≥ 0,5 и 0 ≤ Im𝑠 ≤ 𝑇 . Оценка вида

𝑁(𝛼, 𝑇 )≪ 𝑇 𝑎(1−𝛼) ln𝑐 𝑇, ln𝑇, (1)

с положительными абсолютными постоянными 𝑎 и 𝑐 называется плотностной теоремой.

Наилучшая плотностная теорема принадлежит М. Хаксли [1]. Он доказал (1) с 𝑎 = 2.4
и 𝑐 = 244. А. А. Карацуба [2] дал новый вариант доказательства теоремы Хаксли. Методом
работы [2] С. А. Гриценко [3] доказал (1) с 𝑎 = 2.4 и 𝑐 = 33.6.

Определение 2. При 𝐻 < 𝑇 оценка вида

𝑁(𝛼, 𝑇 +𝐻)−𝑁(𝛼, 𝑇 )≪ 𝐻𝑎(1−𝛼) ln𝑐 𝑇, (2)

с положительными абсолютными постоянными 𝑎 и 𝑐 называется плотностной теоремой
в узких прямоугольниках критической полосы.

Впервые проблему распределения нулей дзета-функции Римана в узких прямоугольниках
критической полосы и в коротких промежутках критической прямой исследовал А. Сельберг
[4]. Он доказал, что если 𝐻 ⩾ 𝑇 𝜃, 𝜃 > 0,5 и 0,5 < 𝛼 ⩽ 1, то справедливы следующие оценки:

𝑁(𝛼, 𝑇 +𝐻)−𝑁(𝛼, 𝑇 ) = 𝑂

(︂
𝐻

𝛼− 0,5

)︂
, (3)

𝑁0(𝑇 +𝐻)−𝑁0(𝑇 ) ⩾ 𝑐1𝐻 ln𝑇, (4)

где 𝑁0(𝑡) — количество нулей нечетного порядка функции 𝜁(0,5 + 𝑖𝑡) на промежутке (0, 𝑇 ). В
этой работе А. Сельберг высказал гипотезы, что условие 𝜃 > 0,5 в этих оценках может быть
заменено условием 𝜃 > æ, æ < 0,5. Эти гипотезы в 1984 г. решил А. А. Карацуба [5, 6, 7, 8]

и доказал, что неравенства (3) и (4) имеют место при 𝐻 ⩾ 𝑇
27
82

+𝜀. Он [9, 8, 10, 11] также
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доказал, что при таких𝐻 для количества нулей функции Дэвенпорта-Хейльбронна в коротких
промежутках критической прямой выполняется соотношение

𝑁0(𝑇 +𝐻)−𝑁0(𝑇 ) ⩾ 𝐻(ln𝑇 )
1
2
−𝜀1 . (5)

В работах [12, 13, 14, 15, 16] доказано, что неравенства (3), (4) и (5) имеют место при

𝐻 > 𝑇 𝜃+𝜀, 𝜃 = 𝜃(𝜅, 𝜆) =
𝜅+ 𝜆

2𝜅+ 2
,

где (𝜅, 𝜆) — произвольная экспоненциальная пара. Хиз-Браун [17], с помощью своей теоремы

о четвертом моменте дзета-функции Римана на критической прямой при 𝐻 ≥ 𝑇
7
8
+𝜀 доказал

(2) с 𝑎 = 2,4 и 𝑐 = 244. Жан Тао [18] доказал (2) с 𝑎 = 8
3 и 𝑐 = 216 при условии 𝐻 > 𝑇

35
108

+𝜀.
Основным результатом этой работы является доказательство теоремы о плотности нулей

дзета-функции Римана в узких прямоугольниках критической полосы, которая ранее была
анонсирована автором в работе [19].

Теорема 1. Пусть (𝜅, 𝜆) — произвольная экспоненциальная пара, 𝜀 < 104 — любое фик-
сированное положительное число, 𝑇 ≥ 𝑇0(𝜀) > 0,

𝜃 = 𝜃(𝜅, 𝜆) =
𝜅+ 𝜆

2𝜅+ 2
, 𝐻 > 𝑇 𝜃+𝜀,

тогда (2) выполняется при 𝑎 = 2,4, 𝑐 = 172, если 1
2 ⩽ 𝛼 ⩽ 2

3 или 5
6 ⩽ 𝛼 ⩽ 1; и соответствен-

но, 𝑎 = 8
3 , 𝑐 = 50, если 2

3 < 𝛼 < 5
6 .

Показатель 𝜃(𝜅, 𝜆) также появляется в оценках остаточных членов в проблеме Гаусса о
числе целых точек в круге, проблеме делителей Дирихле и второго момента дзета-функции
Римана на критической прямой. Наилучшая оценка сверху для 𝜃(𝜅, 𝜆) принадлежит Дж. Бур-
гейну и Н. Уотту [20], которые доказали, что

𝜃0 = min
𝜅,𝜆∈𝒫

𝜃(𝜅, 𝜆) = min
𝜅,𝜆∈𝒫

𝜅+ 𝜆

2𝜅+ 2
⩽

1515

4816
= 0.314546 · · · , (6)

где 𝒫 — множество всех экспоненциальных пар.
Отсюда и из теоремы 1 следует:

Следствие 1. Неравенство (2) справедливо при

𝐻 ⩾ 𝑇
1515
4816

+𝜀, 𝑎 =
8

3
, 𝑐 = 50.

При доказательстве основной теоремы мы существенно используем метод работ А. А. Ка-
рацубы [2, 6], в которых, соответственно, доказаны плотностная теорема Хаксли и гипотеза
Сельберга о количестве нулей дзета-функции Римана в окрестности критической прямой (см.
также [21, 22, 23]).

2. Вспомогательные леммы

Лемма 1. [2]. Пусть 𝑠 = 𝜎 + 𝑖𝑡, 𝑡 ⩾ 2𝜋, положительные числа 𝑦 и 𝑧 удовлетворяют
условиям 𝑦 ⩾ 1, 𝑧 ⩾ 1, 2𝜋𝑦𝑧 = 𝑡. Тогда при 0 < 𝜎0 ⩽ 𝜎 ⩽ 2 справедливо следующее равенство:

𝜁(𝑠) =
∑︁
𝑛⩽𝑦

𝑛−𝑠 + 𝜒(𝑠)
∑︁
𝑛⩽𝑧

𝑛𝑠−1 +𝑂(𝑡0,5−𝜎𝑧−1+𝜎 + 𝑦−𝜎 ln 𝑡),

где

𝜒(𝑠) = 𝑒

(︂
− 𝑡

2𝜋
ln

𝑡

2𝜋
+

𝑡

2𝜋
− 7

8

)︂
(2𝜋)𝜎−1𝑡0,5−𝜎.
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Лемма 2. [2]. Пусть 𝑆(𝑡) — комплекснозначная непрерывно дифференцируемая на от-
резке [𝑡0, 𝑡𝑘] функция,

𝑡0 < 𝑡1 < . . . < 𝑡𝑘−1 < 𝑡𝑘.

Тогда, полагая 𝑑 = min
0⩽𝑟<𝑘

(𝑡𝑟+1 − 𝑡𝑟), будем иметь

𝑘∑︁
𝑟=1

|𝑆(𝑡𝑟)|2 ⩽ 𝑑−1

∫︁ 𝑡𝑘

𝑡0

|𝑆(𝑡)|2𝑑𝑡+ 2

(︂∫︁ 𝑡𝑘

𝑡0

|𝑆(𝑡)|2𝑑𝑡
∫︁ 𝑡𝑘

𝑡0

|𝑆′(𝑡)|2𝑑𝑡
)︂ 1

2

.

Лемма 3. [2]. Пусть 𝑎(𝑛) — произвольные комплексные числа, 0 < 𝐻 < 𝑇 , 𝑁 ≥ 2,

𝐼 =

∫︁ 𝑇+𝐻

𝑇

⃒⃒⃒⃒
⃒⃒∑︁
𝑛≤𝑁

𝑎(𝑛)𝑛𝑖𝑡

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡.

Справедливо следующее неравенство:

𝐼 ⩽ (𝐻 + 32𝑁 ln𝑁)
∑︁
𝑛≤𝑁

|𝑎(𝑛)|2.

Лемма 4. [24]. При 𝑥 ≥ 2 имеем:∑︁
𝑛⩽𝑥

𝜏 𝑙𝑟(𝑛)≪ 𝑥(ln𝑥)𝑟
𝑙−1
.

Лемма 5. [25]. Пусть 𝑓(𝑢) — вещественная дифференцируемая функция в интервале
(𝑎, 𝑏), причем внутри интервала ее производная 𝑓 ′(𝑢) монотонна и знакопостоянна и при
постоянном 𝛿 с условием 0 < 𝛿 < 1 удовлетворяет неравенству |𝑓 ′(𝑢)| ⩽ 𝛿. Тогда имеем

∑︁
𝑎<𝑛⩽𝑏

𝑒(𝑓(𝑛)) =

𝑏∫︁
𝑎

𝑒(𝑓(𝑢))𝑑𝑢+𝑂

(︂
3 +

2𝛿

1− 𝛿

)︂
.

Лемма 6. [2]. Пусть вещественные функции 𝑓(𝑛) и 𝜙(𝑛) удовлетворяют на отрезке
[𝑎, 𝑏] следующим условиям:

а) 𝑓 (4)(𝑛) и 𝜙(2)(𝑛) — непрерывные функции;

б) существуют числа 𝐻1, 𝑈 , 𝐴, 1 ⩽ 𝐴 ⩽ 𝑈 , 0 < 𝑏− 𝑎 ⩽ 𝑈 , такие что

𝐴−1 ≪ 𝑓 (2)(𝑛)≪ 𝐴−1, 𝑓 (3)(𝑛)≪ 𝐴−1𝑈−1, 𝑓 (4)(𝑛)≪ 𝐴−1𝑈−2,

𝜙(𝑛)≪ 𝐻1, 𝜙′(𝑛)≪ 𝐻1𝑈
−1, 𝜙(2)(𝑛)≪ 𝐻1𝑈

−2.

Тогда, определяя числа 𝑛𝑚 из уравнения 𝑓 ′(𝑛𝑚) = 𝑚, будем иметь:∑︁
𝑎≤𝑛≤𝑏

𝜙(𝑛)𝑒(𝑓(𝑛)) =
∑︁

𝑓 ′(𝑎)≤𝑚≤𝑓 ′(𝑏)

𝐶(𝑚)𝑍(𝑚) +𝑅,

где 𝐶(𝑚) = 1, если 𝑓 ′(𝑎) < 𝑚 < 𝑓 ′(𝑏), и 𝐶(𝑚) = 0,5, если 𝑚 = 𝑓 ′(𝑎) или 𝑚 = 𝑓 ′(𝑏),

𝑍(𝑚) =
1 + 𝑖√

2

𝜙(𝑛𝑚)√︀
𝑓 ′′(𝑛𝑚)

𝑒(𝑓(𝑛𝑚)−𝑚𝑛𝑚),

𝑅 = 𝐻1(𝑇𝑎 + 𝑇𝑏 + ln
(︀
𝑓 ′(𝑏)− 𝑓 ′(𝑎) + 2

)︀
),

𝑇𝜇 =

{︃
0, если 𝑓 ′(𝜇)− целое;

min(
√
𝐴, ‖𝑓 ′(𝜇)‖−1), если 𝑓 ′(𝜇)− нецелое.
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Лемма 7. [26]. Пусть действительная функция 𝑓(𝑢) и монотонная функция 𝑔(𝑢) удо-
влетворяют условиям: 𝑓 ′(𝑢) монотонна, |𝑓 ′(𝑢)| ⩾ 𝑚1 > 0 и |𝑔(𝑢)| ⩽ 𝑀 . Тогда справедлива
оценка: ∫︁ 𝑏

𝑎
𝑔(𝑢)𝑒(𝑓(𝑢))𝑑𝑢≪ 𝑀

𝑚1
.

Определение 3. Если 𝐵 ≥ 1, 0 < ℎ ≤ 𝐵, 𝐹 (𝑢) ∈ 𝐶∞(𝐵, 2𝐵), 𝐴 ≥ 1,

𝐴𝐵1−𝑟 ≪ |𝐹 (𝑟)(𝑢)| ≪ 𝐴𝐵1−𝑟, 𝑟 = 1, 2, 3, . . . ,

где постоянная под знаком ≪ зависит только от 𝑟, и имеет место оценка∑︁
𝐵<𝑛≤𝐵+ℎ

𝑒(𝐹 (𝑛))≪ 𝐴𝜅𝐵𝜆, 0 ⩽ 𝜅 ≤ 0,5 ≤ 𝜆 ≤ 1,

то пара (𝜅, 𝜆) называется экспоненциальной парой. Тривиальная оценка∑︁
𝐵<𝑛≤𝐵+ℎ1

𝑒(𝐹 (𝑛)) ⩽ ℎ1 ⩽ 𝐵,

показывает, что (0, 1) является экспоненциальной парой.
Э. Филлипс [27] показал, что если (𝜅, 𝜆) — экспоненциальная пара, то

𝐴(𝜅, 𝜆) =

(︂
𝜅

2𝜅+ 2
,
1

2
+

𝜆

2𝜅+ 2

)︂
, (𝐴-процесс),

𝐵(𝜅, 𝜆) = (𝜆− 0,5, 𝜅+ 0,5); (𝐵-процесс)

также являются экспоненциальными парами. 𝐴-процесс выводится из неравенства Вейля [27]
(см. также [28], стр. 26, лемма 3), а 𝐵-процесс доказывается с помощью леммы 6.

3. Доказательство теоремы 1

Не ограничивая общности, будем считать, что 𝐻 = 𝑇 𝜃+𝜀 и 2(𝜃 + 𝜀)𝜀−1 − 1 — целое число.
Пусть

𝑅 = 𝑁(𝛼, 𝑇 +𝐻)−𝑁(𝛼, 𝑇 ).

Положим в лемме 1 𝑦 = (𝑇/2𝜋)
1
2 , 2𝜋𝑧 = 𝑡, 𝑠 = 𝜎 + 𝑖𝑡, 𝜎 ⩾ 0.5, 𝑇 ⩽ 𝑡 ⩽ 𝑇 +𝐻; получим

𝜁(𝑠) =
∑︁
𝑛⩽𝑦

𝑛−𝑠 + 𝜒(𝑠)
∑︁

𝑛⩽𝑡/2𝜋𝑦

𝑛−1+𝑠 +𝑂(𝑇−0.5𝜎 ln𝑇 ).

Граница изменения 𝑛 во второй сумме зависит от 𝑡. Освободимся от этой зависимости. Имеем

|𝜒(𝑠)| = |(2𝜋)𝜎−1𝑡0.5−𝜎| ⩽ 𝑇 0.5−𝜎;

𝑦 ⩽
𝑡

2𝜋𝑦
⩽ 𝑦 +

𝐻√
2𝜋𝑇

⩽ 𝑦 + 1.

Поэтому ⃒⃒⃒⃒
⃒⃒𝜒(𝑠)

∑︁
𝑦<𝑛⩽𝑡/2𝜋𝑦

𝑛−1+𝑠

⃒⃒⃒⃒
⃒⃒≪ 𝑇 0.5−𝜎+0.5(−1+𝜎) ≪ 𝑇−0.5𝜎.

Следовательно,

𝜁(𝑠) =
∑︁
𝑛⩽𝑦

𝑛−𝑠 + 𝜒(𝑠)
∑︁
𝑛⩽𝑦

𝑛−1+𝑠 +𝑂(𝑇−0.5𝜎 ln𝑇 ). (7)
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В этом представлении 𝜁(𝑠) границы изменения 𝑛 уже не зависят от 𝑡. Далее возьмем

𝑀𝑥(𝑠) =
∑︁
𝑚⩽𝑥

𝜇(𝑚)𝑚−𝑠, 𝑥 = 𝑇 0.5𝜀.

Умножим обе части (7) на 𝑀𝑥(𝑠) и преобразуем правую часть, получим

𝜁(𝑠)𝑀𝑥(𝑠) = 1 +
∑︁

𝑥<𝑛⩽𝑥𝑦

𝑎(𝑛)𝑛−𝑠 + 𝜒(𝑠)𝑀𝑥(𝑠)
∑︁
𝑛⩽𝑦

𝑛−1+𝑠 +𝑂(𝑇−0,2), (8)

где

𝑎(𝑛) =
∑︁
𝑚|𝑛

𝑚⩽𝑥, 𝑛
𝑚
⩽𝑦

𝜇(𝑚), |𝑎(𝑛)| ⩽ 𝜏(𝑛).

Если 𝑠 = 𝜌, то левая часть (8) обращается в нуль, поэтому

⃒⃒
1 +𝑂(𝑇−0,2)

⃒⃒
=

⃒⃒⃒⃒
⃒⃒1 +

∑︁
𝑥<𝑛⩽𝑥𝑦

𝑎(𝑛)𝑛−𝜌 + 𝜒(𝜌)𝑀𝑥(𝜌)
∑︁
𝑛⩽𝑦

𝑛−1+𝜌

⃒⃒⃒⃒
⃒⃒

или, предполагая 𝑇 ≫ 1, имеем неравенство:

1 ⩽ 2

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑥<𝑛⩽𝑥𝑦

𝑎(𝑛)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒+ 2

⃒⃒⃒⃒
⃒⃒𝜒(𝜌)

∑︁
𝑚⩽𝑥

𝜇(𝑚)𝑚−𝜌
∑︁
𝑛⩽𝑦

𝑛−1+𝜌

⃒⃒⃒⃒
⃒⃒ .

Промежутки суммирования по 𝑛 и 𝑚 разобьем на промежутки вида 𝑎 < 𝑏 ⩽ 2𝑎. В каждом
случае получится не более ln𝑇 промежутков и приходим к такому неравенству:

1 ⩽ 2
ln2 𝑇∑︁
|𝑆(𝜌)|, (9)

где 𝑆(𝜌) имеет один из следующих видов:

𝑆(𝜌) =
∑︁

𝑁<𝑛⩽𝑁1

𝑎(𝑛)𝑛−𝜌, 𝑥 < 𝑁 ⩽ 𝑦𝑥, (10)

𝑆(𝜌) = 𝜒(𝜌)
∑︁

𝑀<𝑚⩽𝑀1

𝜇(𝑚)𝑚−𝜌
∑︁

𝑌 <𝑛⩽𝑌1

𝑛−1+𝜌. (11)

Обозначим через 𝐷 количество сумм 𝑆(𝜌) в правой части (9); 𝐷 ≪ ln2 𝑇 . Занумеруем эти
суммы в произвольном порядке 𝑆1(𝜌), 𝑆2(𝜌), . . . , 𝑆𝐷(𝜌). Все нули 𝜌 с условием Re 𝜌 ⩾ 𝛼,
𝑇 < Im𝜌 ⩽ 𝑇 + 𝐻, а их 𝑅 штук, разобьем на классы 𝐴1, 𝐴2, . . . , 𝐴𝐷 следующим образом:
в класс 𝐴𝜈 , 1 ⩽ 𝜈 ⩽ 𝐷 отнесем те 𝜌, для которых

|𝑆𝜈(𝜌)| ⩾ (2𝐷)−1.

Каждое 𝜌 из общего количества 𝑅 попадает хотя бы в один класс 𝐴𝜈 . Действительно, если
некоторое 𝜌 не попало бы ни в один из классов 𝐴𝜈 , то для этого 𝜌:

|𝑆𝜈(𝜌)| < (2𝐷)−1, 𝜈 = 1, 2, ..., 𝐷;

2

𝐷∑︁
𝜈=1

|𝑆𝜈(𝜌)| < 1,
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что противоречит (9). Далее найдется хотя бы один класс 𝐴𝜈 , 1 ⩽ 𝜈 ⩽ 𝐷, в котором не меньше
чем 𝑅𝐷−1 нулей 𝜌. Обозначим этот класс буквой 𝐴, а отвечающую ему сумму буквой 𝑆(𝜌).
Имеем

(2𝐷)−1 ⩽ |𝑆(𝜌)|, 𝜌 ∈ 𝐴, |𝐴| ⩾ 𝑅𝐷−1.

Мнимые части 𝜌 ∈ 𝐴 лежат на промежутке (𝑇, 𝑇 +𝐻); будем считать, что 𝛾 = Im𝜌 занумеро-
ваны в порядке возрастания 𝛾.

Разделим (𝑇, 𝑇 + 𝐻] на промежутки вида 𝑛, 𝑛 + 1; те из них, для которых 𝑛 — четное
число, отнесем к множеству 𝐵1, оставшиеся — к множеству 𝐵2. В одном из множеств 𝐵1 или
𝐵2 попадет не менее чем 0.5𝑅𝐷−1 нулей 𝜌; множество этих нулей мы обозначим буквой 𝐵.
Наконец, 𝐵 разобьем на ≪ ln𝑇 множеств следующим образом: к множеству 𝐸1 отнесем те 𝜌,
у которых мнимые части 𝛾 являются первыми на своих промежутках (𝑛, 𝑛 + 1] (если таких
несколько, берем любое из них), к множеству 𝐸2 отнесем те 𝜌, у которых 𝛾 являются вторыми
на своих промежутках, и так далее. Так как на промежутке (𝑛, 𝑛+1] лежит не более чем 𝑐 ln𝑇
чисел 𝛾 = Im𝜌, то и множеств 𝐸𝜈 будет не более чем 𝑐 ln𝑇 штук. Следовательно найдется такое
𝐸𝜈 , в котором будет не менее 𝑅(𝐷𝑐 ln𝑇 )−1 нулей 𝜌. Итак, получили множество нулей 𝜌 такое,
что

(2𝐷)−1 ⩽ |𝑆(𝜌)|, 𝜌 ∈ 𝐸, |𝐸| ⩾ 𝑅(𝐷𝑐 ln𝑇 )−1. (12)

Отметим, что если 𝜌, 𝜌′ ∈ 𝐸, то

|Im𝜌− Im𝜌′| = |𝛾 − 𝛾′| ⩾ 1.

3.1. Сумма 𝑆(𝜌) имеет вид (10)

Пусть 𝑆(𝜌) имеет вид (10). Из условий на 𝑛 получаем

𝑇 0.5𝜀 = 𝑥 < 𝑁 < 𝑁1 ⩽ 𝑥𝑦 ⩽ 𝑇 0.5(1+𝜀).

Рассмотрим пять возможных случаев:

1. 𝑇 0.5𝜀 < 𝑁 ⩽ 𝐻
3
5 ;

2. 𝐻
3
5 < 𝑁 ⩽ 𝐻

4
5 ; 𝛼 ∈

(︀
2
3 ,

5
6

)︀
;

3. 𝐻
3
5 < 𝑁 ⩽ 𝐻

4
5 , 𝛼 /∈

(︀
2
3 ,

5
6

)︀
;

4. 𝐻
4
5 < 𝑁 ⩽ 𝐻;

5. 𝐻 < 𝑁 ⩽ 𝑇 0.5(1+𝜀).

3.1.1. Случай 𝑇 0.5𝜀 < 𝑁 ⩽ 𝐻
3
5

Промежуток (𝑇 0.5𝜀, 𝐻
3
5 ] разделим точками 𝐻

1
𝑟 , 𝑟 = 2, 3, · · · , 𝑟0; 𝑟0 = 2(𝜃 + 𝜀)𝜀−1 − 1,

𝜃 = 𝜃(𝑘, 𝜆) = 𝑘+𝜆
2𝑘+2 , на 𝑟0 промежутков 𝐹𝑟:

𝐹𝑟 =
(︁
𝐻

1
𝑟+1 , 𝐻

1
𝑟

)︁
, 𝑟 = 𝑟0, · · · , 2, 𝐹1 =

(︁
𝐻

1
2 , 𝐻

3
5

)︁
.

Возведя обе части (12) в степень 2(𝑟 + 1), найдем

(2𝐷)−2(𝑟+1) ⩽ |𝑆𝑟+1(𝜌)|2 =

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟+1<𝑛⩽𝑁𝑟+1

1

𝐴𝑟+1(𝑛)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒
2

, (13)
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где
𝐴𝑟+1(𝑛) =

∑︁
𝑛1···𝑛𝑟+1=𝑛

𝑎(𝑛1) · · · 𝑎(𝑛𝑟+1).

Так как |𝑎(𝑛)| ⩽ 𝜏(𝑛), то

|𝐴𝑟+1(𝑛)| ⩽
∑︁

𝑛1···𝑛𝑟+1=𝑛

𝜏(𝑛1) · · · 𝜏(𝑛𝑟+1) =
∑︁

𝑑1𝑘1···𝑑𝑟+1𝑘𝑟+1=𝑛

1 = 𝜏2𝑟+2(𝑛). (14)

Суммируя обе части неравенства (13) по 𝜌 ∈ 𝐸 и имея в виду, что 𝐷 ≪ ln2 𝑇 , |𝐸| ≫ 𝑅 ln−3 𝑇 ,
получим

𝑅≪ ln4𝑟+7 𝑇
∑︁
𝜌∈𝐸

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟+1<𝑛⩽𝑁𝑟+1

1

𝐴𝑟+1(𝑛)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒
2

.

Во внутренней сумме по 𝑛 сделаем частное суммирование и, помня, что 𝛽 ⩾ 𝛼, найдем

𝑅 ⩽ 𝑁−2(𝑟+1)𝛼 ln4𝑟+7 𝑇
∑︁
𝜌∈𝐸

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟+1<𝑛⩽𝑢

𝐴𝑟+1(𝑛)𝑛−𝑖𝛾

⃒⃒⃒⃒
⃒⃒
2

. (15)

Здесь 𝑢 ⩽ 𝑁 𝑟+1
1 такое, при котором правая часть (15) максимальна. К сумме по 𝜌 применим

лемму 2, полагая в ней 𝑡𝜈 = 𝛾, 𝛿 = 1. Находим

𝑅 ⩽ 𝑁−2(𝑟+1)𝛼 ln4𝑟+7 𝑇
(︁
𝐼1 +

√︀
𝐼1𝐼2

)︁
, (16)

где

𝐼1 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟+1<𝑛⩽𝑢

𝐴𝑟+1(𝑛)𝑛−𝑖𝑡

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡,

𝐼2 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟+1<𝑛⩽𝑢

𝐴𝑟+1(𝑛)𝑛−𝑖𝑡 ln𝑛

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡.

Каждый из интегралов 𝐼1 и 𝐼2 оцениваем, пользуясь леммами 3 и 4:

𝐼1 ≪ (𝐻 +𝑁 𝑟+1 ln𝑇 )
∑︁

𝑁𝑟+1<𝑛⩽𝑁𝑟+1
1

|𝐴𝑟+1(𝑛)|2 ≪

≪ (𝐻 +𝑁 𝑟+1) ln𝑇
∑︁

𝑁𝑟+1<𝑛⩽𝑁𝑟+1
1

𝜏22𝑟+2(𝑛)≪ (𝐻 +𝑁 𝑟+1)𝑁 𝑟+1 ln(2𝑟+2)2 𝑇 ;

𝐼2 ≪ (𝐻 +𝑁 𝑟+1) ln3 𝑇
∑︁

𝑁𝑟+1<𝑛⩽𝑁𝑟+1
1

𝜏22𝑟+2(𝑛)≪ (𝐻 +𝑁 𝑟+1)𝑁 𝑟+1 ln(2𝑟+2)2+2 𝑇.

Подставляя эти оценки в правую часть неравенства (16), получим

𝑅 ⩽ 𝑁−2(𝑟+1)𝛼 ln4𝑟+7 𝑇 · (𝐻 +𝑁 𝑟+1)𝑁 𝑟+1 ln(2𝑟+2)2+1 𝑇 ≪

≪ (𝐻 +𝑁 𝑟+1)𝑁 (𝑟+1)(1−2𝛼) ln(2𝑟+2)2+4𝑟+8 𝑇. (17)

Так как 𝑁 ∈ 𝐹𝑟, то 𝐻
1

𝑟+1 < 𝑁 , то есть 𝐻 < 𝑁 𝑟+1, и, следовательно,

𝑅≪ 𝑁2(𝑟+1)(1−𝛼) ln(2𝑟+2)2+4𝑟+8 𝑇. (18)
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Опять так как 𝑁 ∈ 𝐹𝑟, то 𝑁 ⩽ 𝐻
1
𝑟 при 𝑟 = 𝑟0, · · · , 2 и 𝑁 ⩽ 𝐻

3
5 при 𝑟 = 1. Поэтому, если

𝑟 = 𝑟0, · · · , 5 или 𝑟 = 1, то из (18) имеем

𝑅≪ 𝐻2.4(1−𝛼) ln172 𝑇.

Осталось рассмотреть случай 𝑁 ∈ 𝐹𝑟, 𝑟 = 2, 3, 4. Если 𝑁 ⩽ 𝐻
6

5(𝑟+1) , то из (18) следует

𝑅 ⩽ 𝐻2.4(1−𝛼) ln124 𝑇.

Итак, пусть 𝑟 = 2, 3, 4 и 𝐻
6

5(𝑟+1) < 𝑁 ⩽ 𝐻
1
𝑟 . Заменяя в (17) 𝑟 + 1 на 𝑟, найдем

𝑅≪ (𝐻 +𝑁 𝑟)𝑁 𝑟(1−2𝛼) ln4𝑟2+4𝑟+4 𝑇.

Так как 𝐻 ⩾ 𝑁 𝑟, 𝛼 ⩾ 0.5, то

𝑅≪ 𝐻𝑁 𝑟(1−2𝛼) ln4𝑟2+4𝑟+4 𝑇 ≪ 𝐻
1+ 6𝑟

5(𝑟+1)
(1−2𝛼)

ln84 𝑇. (19)

Если для 𝛼 выполняются неравенства 1
2 ⩽ 𝛼 ⩽ 1

2 + 𝑟+1
12 , то

1 +
6𝑟

5(𝑟 + 1)
(1− 2𝛼) =

12

5
(1− 𝛼) +

12

5(𝑟 + 1)

(︂
𝛼− 1

2
− 𝑟 + 1

12

)︂
⩽ 2.4(1− 𝛼),

и нужная оценка следует из (19).

Пусть теперь
1

2
+
𝑟 + 1

12
⩽ 𝛼 ⩽ 1, 2 ⩽ 𝑟 ⩽ 4.

Вернемся к (12)

1 ⩽ ln2𝑟 𝑇 |𝑆𝑟(𝜌)| = ln2𝑟 𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑛⩽𝑁𝑟

1

𝐴𝑟(𝑛)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒ . (20)

Пусть

𝜙 = 𝜙(𝜌) = arg
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

𝐴𝑟(𝑛)𝑛−𝜌.

Тогда (20) перепишется так:

1 ⩽ ln2𝑟 𝑇𝑒−𝑖𝜙(𝜌)
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

𝐴𝑟(𝑛)𝑛−𝜌,

Суммируя обе части последнего неравенства по 𝜌 ∈ 𝐸 и меняя порядок суммирования, найдем:

𝑅≪ ln2𝑟+3 𝑇
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

|𝐴𝑟(𝑛)|

⃒⃒⃒⃒
⃒⃒∑︁
𝜌∈𝐸

𝑒−𝑖𝜙(𝜌)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒ ;

𝑅2 ≪ ln4𝑟+6 𝑇
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

|𝐴𝑟(𝑛)|2
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

⃒⃒⃒⃒
⃒⃒∑︁
𝜌∈𝐸

𝑒−𝑖𝜙(𝜌)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒
2

.

Для первой суммы имеем оценку:∑︁
𝑁𝑟<𝑛⩽𝑁𝑟

1

|𝐴𝑟(𝑛)|2 ⩽
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

𝜏22𝑟(𝑛)≪ 𝑁 𝑟 ln4𝑟2−1 𝑇.
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Следовательно,

𝑅2 ⩽ 𝑁 𝑟 ln4𝑟2+4𝑟+5 𝑇 ·𝑊, 𝑊 =
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

⃒⃒⃒⃒
⃒⃒∑︁
𝜌∈𝐸

𝑒−𝑖𝜙(𝜌)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒
2

. (21)

Далее,

𝑊 =
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

∑︁
𝜌,𝜌1∈𝐸

𝑒−𝑖(𝜙(𝜌)−𝜙(𝜌1))𝑛−𝛽−𝛽1−𝑖(𝛾−𝛾1) =

=
∑︁

𝜌,𝜌1∈𝐸
𝛾=𝛾1

∑︁
𝑁𝑟<𝑛⩽𝑁𝑟

1

𝑛−𝛽−𝛽1 +
∑︁

𝜌,𝜌1∈𝐸
𝛾 ̸=𝛾1

𝑒−𝑖(𝜙(𝜌)−𝜙(𝜌1))
∑︁

𝑁𝑟<𝑛⩽𝑁𝑟
1

𝑛−𝛽−𝛽1−𝑖(𝛾−𝛾1) ≪

≪ 𝑅𝑁 𝑟(1−2𝛼) +
∑︁

𝜌,𝜌1∈𝐸
𝛾 ̸=𝛾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑛⩽𝑁𝑟

1

𝑛−𝛽−𝛽1−𝑖(𝛾−𝛾1)

⃒⃒⃒⃒
⃒⃒ .

К последней сумме по 𝑛 применим формулу частного суммирования; учитывая, что 𝛽, 𝛽1 ⩾ 𝛼,
найдем:

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) +𝑁−2𝑟𝛼
∑︁

𝜌,𝜌1∈𝐸
𝛾 ̸=𝛾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑛⩽𝑢

𝑛−𝑖(𝛾−𝛾1)

⃒⃒⃒⃒
⃒⃒ ,

причем 𝑢 ⩽ 𝑁 𝑟
1 и такое, при котором правая часть максимальна. Двойную сумму по 𝜌, 𝜌1 ∈ 𝐸,

𝛾 ̸= 𝛾1 разобьем на ≪ ln𝑇 сумм вида 𝑉 < 𝛾 − 𝛾1 ⩽ 𝑉1, 1 ⩽ 𝑉 < 𝑉1 ⩽ 2𝑉 ⩽ 𝐻. Переходя к
максимальной сумме, получим, что

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) +𝑁−2𝑟𝛼 ln𝑇
∑︁

𝑉 <𝛾−𝛾1⩽𝑉1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑛⩽𝑢

𝑛−𝑖(𝛾−𝛾1)

⃒⃒⃒⃒
⃒⃒≪

≪ 𝑅𝑁 𝑟(1−2𝛼) +𝑅𝑁−2𝑟𝛼 ln𝑇
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑛⩽𝑢

𝑛−𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒ ,

где внешнее суммирование проводится по числам 𝛾, а 𝛾0 — фиксированное число из проме-
жутка (𝑇, 𝑇 +𝐻].

Если 𝑉1 ⩽ 𝜋𝑁 𝑟, то к сумме по 𝑛 применим лемму 5:

∑︁
𝑁𝑟<𝑛⩽𝑢

𝑛−𝑖(𝛾−𝛾0) =

𝑢∫︁
𝑁𝑟

𝑛−𝑖(𝛾−𝛾0)𝑑𝑛≪ 𝑁 𝑟

|𝛾 − 𝛾0|+ 1
;

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) +𝑅𝑁−2𝑟𝛼 ln𝑇
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

𝑁 𝑟

𝛾 − 𝛾0 + 1
≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇.

Если 𝑉1 > 𝜋𝑁 𝑟, то к сумме по 𝑛 применим лемму 6:∑︁
𝑁𝑟<𝑛⩽𝑢

𝑛−𝑖(𝛾−𝛾0) =
∑︁

𝑀⩽𝑚⩽𝑀1

(︂
𝛾 − 𝛾0

2𝜋

)︂1/2

𝑚−1𝑒

(︂
−𝛾 − 𝛾0

2𝜋
ln
𝛾 − 𝛾0

2𝜋𝑒
+
𝛾 − 𝛾0

2𝜋
ln𝑚

)︂
+

+𝑂(𝑁 𝑟𝑉 −0.5)≪ 𝑉 0.5

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑀⩽𝑚⩽𝑀1

𝑚𝑖(𝛾−𝛾0)−1

⃒⃒⃒⃒
⃒⃒+𝑁 𝑟𝑉 −0.5,

𝑀 =
𝛾 − 𝛾0
2𝜋𝑢

, 𝑀1 =
𝛾 − 𝛾0
2𝜋𝑁 𝑟

.
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Таким образом, при любом 𝑉 , 1 ⩽ 𝑉 ⩽ 𝐻, для 𝑊 выполняется такая оценка:

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅𝑉 0.5𝑁−2𝑟𝛼 ln𝑇
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

⎛⎝⃒⃒⃒⃒⃒⃒ ∑︁
𝑀⩽𝑚⩽𝑀1

𝑚−1+𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒+𝑁 𝑟𝑉 −1

⎞⎠ . (22)

Границы изменения 𝑚 зависят от переменной суммирования 𝛾. Освободимся от этой зависи-
мости за счет незначительного огрубления оценки. Возьмем

𝐵 =
[︀
𝑉 𝑁−𝑟

]︀
+ 1, 𝑈 = 𝑉 (2𝜋𝑢)−1, 𝑈1 = 𝑉 (𝜋𝑁 𝑟)−1.

Имеем цепочку равенств:∑︁
𝑀⩽𝑚⩽𝑀1

𝑚−1+𝑖(𝛾−𝛾0) =
∑︁

𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)
∑︁

𝑀⩽𝑚⩽𝑀1

1

2𝐵 + 1

∑︁
|𝑏|⩽𝐵

𝑒

(︂
𝑏(𝑛−𝑚)

2𝐵 + 1

)︂
=

=
1

2𝐵 + 1

∑︁
𝑀⩽𝑚⩽𝑀1

∑︁
𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)+

+
1

2𝐵 + 1

∑︁
0<|𝑏|⩽𝐵

∑︁
𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂ ∑︁
𝑀⩽𝑚⩽𝑀1

𝑒

(︂
−𝑏𝑚

2𝐵 + 1

)︂
.

Последняя сумма по 𝑚 суммируется и легко оценивается по абсолютной величине числом
(2𝐵 + 1)|𝑏|−1. Следовательно,

∑︁
𝑀⩽𝑚⩽𝑀1

𝑚−1+𝑖(𝛾−𝛾0) ≪
∑︁
|𝑏|⩽𝐵

1

|𝑏|+ 1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂⃒⃒⃒⃒⃒⃒≪
≪ ln𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂⃒⃒⃒⃒⃒⃒ ,
где |𝑏| ⩽ 𝐵 и такое, при котором правая часть максимальна. Подставляя эту оценку в (22),
находим:

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅𝑉 0.5𝑁−2𝑟𝛼 ln2 𝑇
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

⎛⎝⃒⃒⃒⃒⃒⃒ ∑︁
𝑈⩽𝑛⩽𝑈1

𝑛−1+𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂⃒⃒⃒⃒⃒⃒+
𝑁 𝑟

𝑉

⎞⎠ .

(23)
Возводя основное неравенство (12) в степень 𝑟, будем считать:

1 ⩽ ln2𝑟 𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

1

𝐴𝑟(𝑘)𝑘−𝛽+𝑖𝛾

⃒⃒⃒⃒
⃒⃒ . (24)

Заменяя единицу в правой части (23) под знаком суммы по 𝛾 большой величиной, именно
правой частью (24), получим:

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅𝑉 0.5𝑁−2𝑟𝛼 ln2𝑟+2 𝑇 ·𝑊1, (25)

𝑊1 =
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

⎛⎝⃒⃒⃒⃒⃒⃒ ∑︁
𝑈⩽𝑛⩽𝑈1

∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

1

𝑛−1+𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂
𝐴𝑟(𝑘)𝑘−𝛽+𝑖𝛾

⃒⃒⃒⃒
⃒⃒+

+𝑁 𝑟𝑉 −1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

1

𝐴𝑟(𝑘)𝑘−𝛽+𝑖𝛾

⃒⃒⃒⃒
⃒⃒
⎞⎠ .



Плотность нулей дзета-функции Римана в узких прямоугольниках критической полосы 169

Наконец, в последних двух суммах сделаем частное суммирование по 𝑛 и 𝑘; при этом за
знак модуля выносятся максимумы величин 𝑛−1 и 𝑘−𝛽 , а верхние границы изменения 𝑛 и 𝑘
заменяются какими-то другими; получим:

𝑊1 ≪ 𝑁 𝑟−𝑟𝛼𝑉 −1(𝑊2 +𝑊3), (26)

𝑊2 =
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑈⩽𝑛⩽𝑈2

∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

2

𝑛𝑖(𝛾−𝛾0)𝑒

(︂
𝑏𝑛

2𝐵 + 1

)︂
𝐴𝑟(𝑘)𝑘𝑖𝛾

⃒⃒⃒⃒
⃒⃒ ,

𝑊3 =
∑︁

𝑉 <𝛾−𝛾0⩽𝑉3

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

3

𝐴𝑟(𝑘)𝑘𝑖𝛾

⃒⃒⃒⃒
⃒⃒ , 𝑈2 ⩽ 𝑈1, 𝑁2, 𝑁3 ⩽ 𝑁1.

Записывая модуль внутренней суммы в 𝑊2 в виде произведения суммы на 𝑒−𝑖𝜙(𝛾) и меняя
порядки суммирования, находим:

𝑊2 ≪
∑︁

𝑈⩽𝑛⩽𝑈2

∑︁
𝑁𝑟<𝑘⩽𝑁𝑟

2

|𝐴𝑟(𝑘)|

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)(𝑛𝑘)𝑖𝛾

⃒⃒⃒⃒
⃒⃒≪

≪
∑︁

𝑈𝑁𝑟⩽𝑚⩽𝑈2𝑁𝑟
2

𝐵(𝑚)

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑚𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒ , (27)

𝐵(𝑚) ⩽
∑︁

𝑛𝑘=𝑚

|𝐴𝑟(𝑘)| ≪
∑︁
𝑘|𝑚

𝜏2𝑟(𝑘) = 𝜏2𝑟+1(𝑚);

𝑊3 =
∑︁

𝑁𝑟⩽𝑘⩽𝑁𝑟
3

|𝐴𝑟(𝑘)|

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑘𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒ . (28)

Применяя к (27) и (28) неравенство Коши, оценку (14) и лемму 4, получим

𝑊 2
2 ≪ 𝑉 ln(2𝑟+1)2−1 𝑇

∑︁
𝑈𝑁𝑟⩽𝑚⩽𝑈2𝑁𝑟

2

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑚𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒
2

,

𝑊 2
3 ≪ 𝑁 𝑟 ln4𝑟2−1 𝑇

∑︁
𝑁𝑟⩽𝑘⩽𝑁𝑟

3

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑘𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒
2

.

Применив к правым частям полученных неравенств лемму 2, получим:

𝑊 2
2 ≪ 𝑉 ln(2𝑟+1)2−1 𝑇

(︁
𝐼1 +

√︀
𝐼1𝐼2

)︁
, 𝑊 2

3 ≪ 𝑁 𝑟 ln4𝑟2−1 𝑇
(︁
𝐼3 +

√︀
𝐼3𝐼4

)︁
, (29)
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где

𝐼1 =

𝑈2𝑁𝑟
2∫︁

𝑈𝑁𝑟

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑚𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑚,

𝐼2 =

𝑈2𝑁𝑟
2∫︁

𝑈𝑁𝑟

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

(𝛾 − 𝛾0)𝑒−𝑖𝜙(𝛾)𝑚𝑖(𝛾−𝛾0)−1

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑚,

𝐼3 =

𝑁𝑟
3∫︁

𝑁𝑟

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

𝑒−𝑖𝜙(𝛾)𝑘𝑖(𝛾−𝛾0)

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑘,

𝐼4 =

𝑁𝑟
3∫︁

𝑁𝑟

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑉 <𝛾−𝛾0⩽𝑉1

(𝛾 − 𝛾0)𝑒−𝑖𝜙(𝛾)𝑘𝑖(𝛾−𝛾0)−1

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑘.

Интегралы 𝐼1, 𝐼2, 𝐼3 и 𝐼4 оцениваются одинаково: после возведения модуля соответствующей
суммы в квадрат, интеграл берется и сумма по 𝛾 и 𝛾1 оценивается тривиально суммой модулей
слагаемых (следует помнить, что число слагаемых по 𝛾, 𝛾1 не превосходит 𝑅, а 𝛾, 𝛾1 таковы,
что |𝛾 − 𝛾1| ⩾ 1 и 𝑈 = 𝑉 (2𝜋𝑢)−1 ≍ 𝑉 𝑁−𝑟). Последовательно находим:

𝐼1 =
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝑒𝑖(𝜙(𝛾1)−𝜙(𝛾))

𝑈2𝑁𝑟
2∫︁

𝑈𝑁𝑟

𝑚𝑖(𝛾−𝛾1)𝑑𝑚 =

=
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝑒𝑖(𝜙(𝛾1)−𝜙(𝛾)) (𝑈2𝑁
𝑟
2 )𝑖(𝛾−𝛾1)+1 − (𝑈𝑁 𝑟)𝑖(𝛾−𝛾1)+1

𝑖(𝛾 − 𝛾1) + 1
≪

≪ 𝑅𝑈𝑁 𝑟 + 𝑈𝑁 𝑟
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝛾 ̸=𝛾1

(|𝛾 − 𝛾1|+ 1)−1 ≪ 𝑅𝑈𝑁 𝑟 ln𝑇 ≪ 𝑅𝑉 ln𝑇 ;

𝐼2 =
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝑒𝑖(𝜙(𝛾1)−𝜙(𝛾))(𝛾 − 𝛾0)(𝛾1 − 𝛾0)
𝑈2𝑁𝑟

2∫︁
𝑈𝑁𝑟

𝑚𝑖(𝛾−𝛾1)−2𝑑𝑚 =

=
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝑒𝑖(𝜙(𝛾1)−𝜙(𝛾)) (𝛾 − 𝛾0)(𝛾1 − 𝛾0)
(𝑈2𝑁

𝑟
2 )𝑖(𝛾−𝛾1)−1 − (𝑈𝑁 𝑟)𝑖(𝛾−𝛾1)−1

𝑖(𝛾 − 𝛾1)− 1
≪

≪ 𝑉 2(𝑈𝑁 𝑟)−1𝑅+ 𝑉 2(𝑈𝑁 𝑟)−1
∑︁

𝑉 <𝛾−𝛾0⩽𝑉1
𝑉 <𝛾1−𝛾0⩽𝑉1

𝛾 ̸=𝛾1

|𝛾 − 𝛾1|−1 ≪ 𝑉 2(𝑈𝑁 𝑟)−1𝑅 ln𝑇 ≪ 𝑅𝑉 ln𝑇 ;

𝐼3 ≪ 𝑅𝑁 𝑟 ln𝑇 ;

𝐼4 ≪ 𝑉 2𝑁−𝑟𝑅 ln𝑇.

Подставляя найденные оценки для интегралов 𝐼1, 𝐼2, 𝐼3 и 𝐼4 в (29), а при оценке𝑊3 пользуясь
условием 𝑉1 > 𝜋𝑁 𝑟, найдем
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𝑊 2
2 ≪ 𝑉 ln(2𝑟+1)2−1 𝑇

(︁
𝑅𝑉 ln𝑇 +

√
𝑅𝑉 ln𝑇 ·𝑅𝑉 ln𝑇

)︁
≪ 𝑅𝑉 2 ln(2𝑟+1)2 𝑇,

𝑊 2
3 ≪ 𝑁 𝑟 ln4𝑟2−1 𝑇

(︁
𝑅𝑁 𝑟 ln𝑇 +

√
𝑅𝑁 𝑟 ln𝑇 · 𝑉 2𝑁−𝑟𝑅 ln𝑇

)︁
≪

≪ 𝑅 ln4𝑟2−1 𝑇 (𝑁2𝑟 ln𝑇 +𝑁 𝑟𝑉 ln𝑇 )≪ 𝑅𝑉 2 ln4𝑟2 𝑇.

Из (26), (25) и (21) последовательно получаем:

𝑊1 ≪ 𝑁 𝑟−𝑟𝛼𝑉 −1
(︁
𝑅0,5𝑉 ln2𝑟2+2𝑟+0,5 𝑇 +𝑅0,5𝑉 ln2𝑟2 𝑇

)︁
≪ 𝑅0.5𝑁 𝑟(1−𝛼) ln2𝑟2+2𝑟+0,5 𝑇 ;

𝑊 ≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅𝑉 0.5𝑁−2𝑟𝛼 ln2𝑟+2 𝑇 ·𝑅0.5𝑁 𝑟(1−𝛼) ln2𝑟2+2𝑟+0,5 𝑇 ≪

≪ 𝑅𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅1.5𝑉 0.5𝑁 𝑟(1−3𝛼) ln2𝑟2+4𝑟+2,5 𝑇 ;

𝑅 ⩽ 𝑁 𝑟 ln4𝑟2+4𝑟+5 𝑇 ·
(︁
𝑁 𝑟(1−2𝛼) ln2 𝑇 +𝑅0.5𝑉 0.5𝑁 𝑟(1−3𝛼) ln2𝑟2+4𝑟+2,5 𝑇

)︁
≪

≪ 𝑁2𝑟(1−𝛼) ln4𝑟2+4𝑟+7 𝑇 +𝑅0.5𝑉 0.5𝑁 𝑟(2−3𝛼) ln6𝑟2+8𝑟+7.5 𝑇.

Помня, что 𝑉 ⩽ 𝐻, перепишем последнюю оценку для величины 𝑅 в следующей удобной
форме:

𝑅≪ 𝑁2𝑟(1−𝛼) ln4𝑟2+4𝑟+7 𝑇 +𝐻𝑁 𝑟(4−6𝛼) ln12𝑟2+16𝑟+15 𝑇. (30)

Мы рассматриваем случай:

𝐻
6

5(𝑟+1) < 𝑁 ⩽ 𝐻
1
𝑟 ,

1

2
+
𝑟 + 1

12
⩽ 𝛼 ⩽ 1, 𝑟 = 2, 3, 4.

Легко видеть, что 𝛼 > 3
4 >

2
3 , тогда

𝑅≪ 𝐻2(1−𝛼) ln4𝑟2+4𝑟+7 𝑇 +𝐻
1+ 12𝑟

5(𝑟+1)
(2−3𝛼)

ln12𝑟2+16𝑟+15 𝑇.

Отсюда, пользуясь соотношением

1 +
12𝑟

5(𝑟 + 1)
(2− 3𝛼)− 12

5
(1− 𝛼) =

12(2𝑟 − 1)

5(𝑟 + 1)

(︂
17𝑟 − 7

12(2𝑟 − 1)
− 𝛼

)︂
⩽

⩽
12(2𝑟 − 1)

5(𝑟 + 1)

(︂
17𝑟 − 7

12(2𝑟 − 1)
− 1

2
− 𝑟 + 1

12

)︂
= −2𝑟(𝑟 − 2)

5(𝑟 + 1)
⩽ 0,

имеем

𝑅≪ 𝐻2.4(1−𝛼) ln95 𝑇.

3.1.2. Случай 𝐻0.6 < 𝑁 ⩽ 𝐻0.8; 𝛼 /∈
(︀
2
3 ,

5
6

)︀
Если 1/2 ⩽ 𝛼 ⩽ 2/3, то, полагая в (17) 𝑟 = 0, найдем

𝑅≪ (𝐻𝑁1−2𝛼 +𝑁2(1−𝛼)) ln12 𝑇 ⩽ (𝐻1+0.6(1−2𝛼) +𝐻1.6(1−𝛼)) ln14 𝑇 =

= (𝐻2.4(1−𝛼)+1.2(𝛼−2/3) +𝐻1.6(1−𝛼)) ln14 𝑇 ≪ 𝐻2.4(1−𝛼) ln14 𝑇.

При 5/6 ⩽ 𝛼 ⩽ 1 применим оценку (30), полагая в ней 𝑟 = 1. Находим

𝑅≪ (𝑁2(1−𝛼) +𝐻𝑁4−6𝛼) ln𝑐 𝑇 ≪ (𝐻1.6(1−𝛼) +𝐻1+0.6(4−6𝛼)) ln43 𝑇 =

= (𝐻1.6(1−𝛼) +𝐻2.4(1−𝛼)+1.2(5/6−𝛼)) ln43 𝑇 ≪ 𝐻2.4(1−𝛼) ln43 𝑇.
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3.1.3. Случай 𝐻0.6 < 𝑁 ⩽ 𝐻0.8; 2/3 ⩽ 𝛼 ⩽ 5/6

Пусть сначала 𝐻0.6 < 𝑁 ⩽ 𝐻2/3. Полагая в оценке (17) 𝑟 = 1, найдем:

𝑅≪ (𝐻𝑁2−4𝛼 +𝑁4(1−𝛼)) ln28 𝑇 ≪ 𝐻8/3(1−𝛼) ln28 𝑇.

Пусть теперь 𝐻2/3 ⩽ 𝑁 ⩽ 𝐻0.8, 2/3 ⩽ 𝛼 ⩽ 3/4. Применим (17) при 𝑟 = 0. Находим

𝑅≪ (𝐻𝑁1−2𝛼 +𝑁2(1−𝛼)) ln14 𝑇 ≪ (𝐻1+2/3(1−2𝛼) +𝐻8/5(1−𝛼)) ln14 𝑇 =

= (𝐻8/3(1−𝛼)+4/3(𝛼−3/4) +𝐻8/5(1−𝛼)) ln14 𝑇 ≪ 𝐻8/3(1−𝛼) ln14 𝑇.

Наконец, если 𝐻2/3 ⩽ 𝑁 ⩽ 𝐻0.8 и 3/4 ⩽ 𝛼 ⩽ 5/6, то, пользуясь оценкой (30) при 𝑟 = 1,
получим:

𝑅≪ (𝑁2(1−𝛼) +𝐻𝑁4−6𝛼) ln50 𝑇 ≪ (𝐻8/5(1−𝛼) +𝐻1+2/3(4−6𝛼)) ln50 𝑇 =

= (𝐻8/5(1−𝛼) +𝐻8/3(1−𝛼)+4/3(3/4−𝛼)) ln50 𝑇 ≪ 𝐻8/3(1−𝛼) ln50 𝑇.

3.1.4. Случай 𝐻0.8 < 𝑁 ⩽ 𝐻

Если 0.5 ⩽ 𝛼 ⩽ 3/4, то, полагая в (17) 𝑟 = 0, найдем:

𝑅≪ (𝐻𝑁1−2𝛼 +𝑁2(1−𝛼)) ln14 𝑇 ≪ (𝐻1+4/5(1−2𝛼) +𝐻2(1−𝛼)) ln14 𝑇 =

= (𝐻2.4(1−𝛼)+0.8(𝛼−3/4) +𝐻2(1−𝛼)) ln14 𝑇 ≪ 𝐻2.4(1−𝛼) ln14 𝑇.

При 0.75 ⩽ 𝛼 ⩽ 1 применим оценку (20), полагая в ней 𝑟 = 1. Находим

𝑅≪ (𝑁2(1−𝛼) +𝐻𝑁4−6𝛼) ln14 𝑇 ≪ (𝐻2(1−𝛼) +𝐻1+4/5(4−6𝛼)) ln14 𝑇 =

= (𝐻2(1−𝛼) +𝐻2.4(1−𝛼)+2.4(0.75−𝛼)) ln14 𝑇 ≪ 𝐻2.4(1−𝛼) ln14 𝑇.

3.1.5. Случай 𝐻 ⩽ 𝑁 ⩽ 𝑇 0.5(1+𝜀)

Возводя основное неравенство (12) в квадрат и просуммировав обе части получившегося
неравенства по 𝜌 ∈ 𝐸, получим

𝑅≪ ln7 𝑇
∑︁
𝜌∈𝐸

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁1

𝑎(𝑛)𝑛−𝜌

⃒⃒⃒⃒
⃒⃒
2

.

Во внутренней сумме по 𝑛 сделаем частное суммирование. При этом за знак модуля вынесется
максимум величины 𝑛−𝛽 , а верхняя граница изменения 𝑛 заменится на 𝑁2, 𝑁2 ⩽ 𝑁1. Помня,
что 𝛽 ⩾ 𝛼, получим

𝑅≪ 𝑁−2𝛼 ln7 𝑇
∑︁
𝜌∈𝐸

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖𝛾

⃒⃒⃒⃒
⃒⃒
2

.

К сумме по 𝜌 применим лемму 2, полагая в ней 𝑡𝜈 = 𝛾, 𝛿 = 1. Находим

𝑅≪ 𝑁−2𝛼
(︁
𝐼1 +

√︀
𝐼1𝐼2

)︁
ln7 𝑇. (31)

где

𝐼1 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖𝑡

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡,

𝐼2 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖𝑡 ln𝑛

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡.
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Оценим сверху интеграл 𝐼1. Имеем

𝐼1 =

𝐻∫︁
0

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖(𝑇+𝑡)

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡 ⩽

𝐻∫︁
0

exp

(︃
1−

(︂
𝑡

𝐻

)︂2
)︃ ⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖(𝑇+𝑡)

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡 ⩽

⩽ 𝑒

∞∫︁
−∞

exp

(︃
−
(︂
𝑡

𝐻

)︂2
)︃ ⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛⩽𝑁2

𝑎(𝑛)𝑛−𝑖(𝑇+𝑡)

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡 =

= 𝑒
∑︁

𝑁<𝑛1,𝑛2⩽𝑁2

𝑎(𝑛1)𝑎(𝑛2)

(︂
𝑛1
𝑛2

)︂−𝑖𝑇
∞∫︁

−∞

exp

(︃
−
(︂
𝑡

𝐻

)︂2

− 𝑖𝑡 ln
𝑛1
𝑛2

)︃
𝑑𝑡.

При вещественном 𝛼 справедливо равенство

∞∫︁
−∞

exp
(︀
−𝑡2 − 𝑖𝛼𝑡

)︀
𝑑𝑡 =

√
𝜋 exp

(︂
−
(︁𝛼

2

)︁2)︂
.

Поэтому

𝐼1 ⩽ 𝑒
√
𝜋𝐻

∑︁
𝑁<𝑛1,𝑛2⩽𝑁2

𝑎(𝑛1)𝑎(𝑛2)

(︂
𝑛1
𝑛2

)︂−𝑖𝑇

exp

(︃
−
(︂
𝐻

2
ln
𝑛1
𝑛2

)︂2
)︃
.

Представляя последнюю сумму в виде двух слагаемых, одно из которых получается при
𝑛1 = 𝑛2, приходим к оценке

𝐼1 ≪ 𝐻(Σ0 +𝑊0), Σ0 =
∑︁

𝑁<𝑛⩽𝑁2

𝑎2(𝑛),

𝑊0 ⩽
∑︁

𝑁<𝑛1<𝑛2⩽𝑁2

𝑎(𝑛1)𝑎(𝑛2)

(︂
𝑛1
𝑛2

)︂−𝑖𝑇

exp

(︃
−
(︂
𝐻

2
ln
𝑛2
𝑛1

)︂2
)︃
.

Оценим сумму Σ0, пользуясь леммой 4 и имея в виду, что |𝑎(𝑛)| ⩽ 𝜏(𝑛). Найдем:

Σ0 ⩽
∑︁

𝑁<𝑛⩽𝑁2

𝜏2(𝑛)≪ 𝑁 ln2 𝑇.

Теперь оценим 𝑊0. Если в 𝑊0 выполняется условие 𝑛2 − 𝑛1 ⩾ 𝐾 = 𝑁𝐻−1 ln𝑇 , то

ln
𝑛2
𝑛1

= ln

(︂
1 +

𝑛2 − 𝑛1
𝑛1

)︂
⩾ ln

(︂
1 +

ln𝑇

2𝐻

)︂
⩾

ln𝑇

4𝐻
.

Следовательно

exp

(︃
−
(︂
𝐻

2
ln
𝑛2
𝑛1

)︂2
)︃

⩽ exp

(︂
− ln2 𝑇

64

)︂
.

Таким образом, если 𝑛2−𝑛1 > 𝐾, то соответствующая часть суммы𝑊0 есть величина порядка

𝑂
(︀
exp

(︀
−0.01 ln2 𝑇

)︀)︀
.

Оценим оставшуюся часть суммы 𝑊0, которую обозначим 𝑊1:

𝑊1 =
∑︁

𝑁<𝑛1⩽𝑁2

𝑎(𝑛1)
∑︁

𝑛1<𝑛2⩽𝑛1+𝐾
𝑛2⩽𝑁2

𝑎(𝑛2)

(︂
𝑛1
𝑛2

)︂−𝑖𝑇

exp

(︃
−
(︂
𝐻

2
ln
𝑛2
𝑛1

)︂2
)︃
.
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Записывая коэффициенты 𝑎(𝑛1) и 𝑎(𝑛2) в явном виде, получим:

𝑊1 =
∑︁

𝑚1,𝑚2⩽𝑥

𝜇(𝑚1)𝜇(𝑚2)𝑊 (𝑚1,𝑚2), 𝑦 =

(︂
𝑇

2𝜋

)︂ 1
2

, (32)

𝑊 (𝑚1,𝑚2) =
∑︁

𝑁<𝑚1𝑛1⩽𝑁2
𝑛1⩽𝑦

∑︁
𝑚1𝑛1<𝑚2𝑛2⩽𝑚1𝑛1+𝐾

𝑛2⩽𝑦, 𝑚2𝑛2⩽𝑁2

exp

(︃
−
(︂
𝐻

2
ln
𝑚2𝑛2
𝑚1𝑛1

)︂2
)︃(︂

𝑚1𝑛1
𝑚2𝑛2

)︂−𝑖𝑇

.

Обозначим через 𝑑 наибольший общий делитель чисел 𝑚1 и 𝑚2. Тогда 𝑚1 = 𝑎𝑑, 𝑚2 = 𝑏𝑑,
(𝑎, 𝑏) = 1. Переменные суммирования представим так:

𝑛1 = 𝑏𝑛3 + 𝑛′3, 𝑛2 = 𝑎𝑛4 + 𝑛′4.

Причем 𝑛′3 и 𝑛
′
4 меняются в пределах 0 ⩽ 𝑛′3 < 𝑏, 0 ⩽ 𝑛′4 < 𝑎, а при заданных 𝑛′3, 𝑛

′
4 переменные

𝑛3, 𝑛4 меняются в пределах

𝑁3 = (𝑁𝑚−1
1 − 𝑛

′
3)𝑏

−1 < 𝑛3 ⩽ (𝑁2𝑚
−1
1 − 𝑛

′
3)𝑏

−1 = 𝑁 ′
3, 𝑛3 ⩽ (𝑦 − 𝑛′3)𝑏−1,

(𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4)𝑎

−1 < 𝑛4 ⩽ (𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4 +𝐾𝑚−1

2 )𝑎−1,

𝑛4 ⩽ (𝑦 − 𝑛′4)𝑎−1, 𝑛4 ⩽ (𝑁2𝑚
−1
2 − 𝑛

′
4)𝑎

−1 = 𝑁4.

Далее имеем:

(𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4)𝑎

−1 = ((𝑏𝑛3 + 𝑛′3)𝑎𝑏
−1 − 𝑛′4)𝑎−1 = 𝑛3 + 𝑛′3𝑏

−1 − 𝑛′4𝑎−1 = 𝑛3 + 𝛼− 𝛽,
𝛼 = 𝑛′3𝑏

−1, 𝛽 = 𝑛′4𝑎
−1.

Поэтому

𝑛3 + 𝛼− 𝛽 < 𝑛4 ⩽ 𝑛3 + 𝛼− 𝛽 +𝐾1, 𝐾1 = 𝐾(𝑎𝑏𝑑)−1, 𝑛4 ⩽ (𝑦 − 𝑛′4)𝑎−1, 𝑛4 ⩽ 𝑁4.

Пользуясь введенными обозначениями, дробь 𝑛1𝑚1/𝑛2𝑚2 представим так:

𝑚1𝑛1
𝑚2𝑛2

=
𝑎𝑛1
𝑏𝑛2

=
𝑎𝑏𝑛3 + 𝑎𝑛′3
𝑎𝑏𝑛4 + 𝑏𝑛′4

=
𝑛3 + 𝛼

𝑛4 + 𝛽
.

Сумма 𝑊 (𝑚1,𝑚2) будет теперь выглядеть следующим образом:

𝑊 (𝑚1,𝑚2) =
∑︁

0⩽𝑛′
3<𝑏

∑︁
0⩽𝑛′

4<𝑎

𝑊 (𝑛′3, 𝑛
′
4), (33)

𝑊 (𝑛′3, 𝑛
′
4) =

∑︁
𝑁3<𝑛3⩽𝑁 ′

3

𝑛3⩽(𝑦−𝑛′
3)𝑏

−1

∑︁
𝑛3+𝛼−𝛽<𝑛4⩽𝑛3+𝛼−𝛽+𝐾1

𝑛4⩽𝑁4, 𝑛4⩽(𝑦−𝑛′
4)𝑎

−1

exp

(︃
−
(︂
𝐻

2
ln
𝑛4 + 𝛽

𝑛3 + 𝛼

)︂2
)︃(︂

𝑛3 + 𝛼

𝑛4 + 𝛽

)︂−𝑖𝑇

.

Переменная суммирования 𝑛4 принимает все значения натуральных чисел из полуинтервала

ℎ3 + 𝛼− 𝛽 < 𝑛4 ⩽ min
{︀
𝑛3 + 𝛼− 𝛽 +𝐾1, 𝑁4, (𝑦 − 𝑛′4)𝑎−1

}︀
.

Поэтому 𝑛4 можно заменить величиной 𝑛3 + ℎ; 𝑛4 = 𝑛3 + ℎ, где ℎ принимает значения:

𝛼− 𝛽 < ℎ ⩽ min
{︀
𝛼− 𝛽 +𝐾1, 𝑁4 − 𝑛3, (𝑦 − 𝑛′4)𝑎−1 − 𝑛3

}︀
= ℎ1.
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Таким образом

𝑊 (𝑛′3, 𝑛
′
4) =

∑︁
𝑁3<𝑛3⩽𝑁 ′

3

𝑛3⩽(𝑦−𝑛′
3)𝑏

−1

∑︁
𝛼−𝛽<ℎ⩽ℎ1

𝐸(𝑛3, ℎ)

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇

,

𝐸(𝑛3, ℎ) = exp

(︃
−
(︂
𝐻

2
ln
𝑛3 + ℎ+ 𝛽

𝑛3 + 𝛼

)︂2
)︃
.

Меняя порядок суммирования, найдем:

𝑊 (𝑛′3, 𝑛
′
4) ⩽

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁3<𝑛3⩽𝑁5

𝐸(𝑛3, ℎ)

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇
⃒⃒⃒⃒
⃒⃒ ,

где
𝑁5 = min

{︀
𝑁 ′

3, (𝑦 − 𝑛′3)𝑏−1, 𝑁4 − ℎ, (𝑦 − 𝑛′4)𝑎−1 − ℎ
}︀
.

Во внутренней сумме по 𝑛3 сделаем частное суммирование, а затем с учетом следующих со-
отношений

𝐸′
𝑢(𝑢, ℎ) = 𝐸(𝑢, ℎ)

𝐻(𝛼− 𝛽 − ℎ)

(𝑢+ ℎ+ 𝛽)(𝑢+ 𝛼)
ln
𝑛3 + ℎ+ 𝛽

𝑛3 + 𝛼
< 0,

𝐶(𝑢, ℎ) =
∑︁

𝑁3<𝑛3⩽𝑢

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇

, 0 < 𝐸(𝑢, ℎ) ⩽ 1,

то есть в частности, пользуясь монотонностью функции 𝐸(𝑢, ℎ), последовательно получим:

𝑊 (𝑛′
3, 𝑛

′
4) ⩽

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒⃒⃒
⃒⃒−

𝑁5∫︁
𝑁3

𝐶(𝑢, ℎ)𝐸′
𝑢(𝑢, ℎ)𝑑𝑢+ 𝐸(𝑁5, ℎ)𝐶(𝑁5, ℎ)

⃒⃒⃒⃒
⃒⃒ ⩽

⩽
∑︁

𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒
𝐶(𝑁 ′

5, ℎ)
⃒⃒
(2𝐸(𝑁5, ℎ) + 𝐸(𝑁3, ℎ)) ≪

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁3<𝑛3⩽𝑁′

5

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇

⃒⃒⃒⃒
⃒⃒ ,

где 𝑁3 < 𝑁 ′
5 ⩽ 𝑁5. Отметим, что для 𝑊1(𝑛1, 𝑛

′
4) выполняются следующие условия, которыми

мы будем далее пользоваться:

ℎ+ 𝛽 − 𝛼 =
𝑚2𝑛2 −𝑚1𝑛1

𝑎𝑏𝑑
⩾ (𝑎𝑏)−1,

𝑁2 ⩽ 𝑚1𝑚2𝑦
2 ⩽ 𝑎𝑏𝑑2𝑇.

Для оценки внутренней суммы в𝑊1(𝑛
′
3, 𝑛

′
4) пользуемся методом экспоненциальных пар (опре-

деление 3). Положим

𝑓(𝑢) =
𝑇

2𝜋
ln
𝑢+ ℎ+ 𝛽

𝑢+ 𝛼
;

ℎ1 = 𝑁 ′
5 −𝑁3 ⩽ 𝑁3 = (𝑁𝑚−1

1 − 𝑛
′
3)𝑏

−1;

𝐵 = 𝑁(𝑎𝑏𝑑)−1;

𝐴 = 𝑇 (ℎ+ 𝛽 − 𝛼)(𝑎𝑏𝑑)2𝑁−2 ⩾ 1.

Производная порядка 𝑟, 𝑟 = 1, 2, · · · функции 𝑓(𝑢) имеет вид

𝑓 (𝑟)(𝑢) =
(−1)𝑟(𝑟 − 1)!𝑇

2𝜋(𝑢+ ℎ+ 𝛽)𝑟(𝑢+ 𝛼)𝑟

𝑟∑︁
𝑖=1

𝐶𝑖
𝑟(𝑢+ 𝛼)𝑟−1(ℎ+ 𝛽 − 𝛼),
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и выполняются следующие соотношения

𝐴𝐵1−𝑟 ≪ 𝑓 (𝑟)(𝑢)≪ 𝐴𝐵1−𝑟, 𝐴𝐵1−𝑟 = 𝑇 (ℎ+ 𝛽 − 𝛼)(𝑎𝑏𝑑)𝑟+1𝑁−𝑟−1.

Следовательно, для любой экспоненциальной пары (𝜅, 𝜆) имеем:

𝑊 (𝑛′3, 𝑛
′
4) ⩽

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

𝐴𝜅𝐵𝜆 ≪ 𝑇 𝜅𝑁𝜆−2𝜅(𝑎𝑏𝑑)2𝜅−𝜆𝐾𝜅+1
1 ≪

≪ 𝑁1+𝜆−𝜅𝑇 𝑘𝐻−𝜅−1(𝑎𝑏𝑑)𝜅−𝜆−1 ln𝜅+1 𝑇.

Тем самым из (32) и (33) получим:

𝑊 (𝑚1,𝑚2)≪ 𝑁1+𝜆−𝜅𝑇 𝑘𝐻−𝜅−1(𝑚1𝑚2)
𝜅−𝜆 ln𝜅+1 𝑇 ;

𝑊1 ≪ 𝑁1+𝜆−𝜅𝑇 𝜅𝐻−𝜅−1𝑥2(1+𝜅−𝜆) ln𝜅+1 𝑇.

Так как 𝑥 < 𝑁 ≪ 𝑥𝑇 0.5, 𝑥 = 𝑇 0.5𝜀 и 𝜅 ⩽ 𝜆, то

𝑊1 ≪ 𝑁𝑇
𝜅+𝜆
2 𝐻−𝜅−1𝑥2+𝜅−𝜆 ln𝜅+1 𝑇 ⩽ 𝑁𝑇

𝜅+𝜆
2

+𝜀𝐻−𝜅−1 ln𝜅+1 𝑇 =

= 𝑁

(︃
𝑇

𝜅+𝜆
2(𝜅+1)

+ 𝜀
𝜅+1

𝐻

)︃𝜅+1

ln𝜅+1 𝑇.

Поэтому, если 𝐻 ⩾ 𝑇
𝜅+𝜆
2𝜅+2

+𝜀, то
𝑊1 ≪ 𝑁 ln2 𝑇.

Объединяя это с оценками 𝑊0 и Σ0, находим:

𝐼1 ≪ 𝐻𝑁 ln2 𝑇.

Оценивая интеграл 𝐼2 также как и 𝐼1, получим:

𝐼2 ≪ 𝐻𝑁 ln3 𝑇.

Отсюда и из (31), пользуясь соотношением 𝑁 ⩾ 𝐻, найдем:

𝑅≪ 𝐻𝑁1−2𝛼 ln10 𝑇 ≪ 𝐻2(1−𝛼) ln10 𝑇.

Таким образом, случай, когда 𝑆(𝜌) имеет вид (10), рассмотрен полностью.

3.2. Сумма 𝑆(𝜌) имеет вид (11)

Пусть 𝑆(𝜌) имеет вид (11). Так как

|𝜒(𝜌)| ≪ 𝑇 0.5−𝛽, 𝛽 = Re 𝜌,

то, переходя в (11) к неравенствам, найдем:

1 ⩽ 𝑇 0.5−𝛽 ln2 𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑌 <𝑛⩽𝑌1

𝑛−1+𝜌
∑︁

𝑀<𝑚⩽𝑀1

𝜇(𝑚)𝑚−𝜌

⃒⃒⃒⃒
⃒⃒ , 𝑌 ⩽ 𝑦 =

(︂
𝑇

2𝜋

)︂ 1
2

, 𝑀1 ⩽ 𝑥 = 𝑇 0.5𝜀.

Производя частное суммирование по 𝑚 и 𝑛, приходим к неравенству:

1 ⩽ 𝑇 0.5−𝛽𝑌 −1+𝛽𝑀−𝛽 ln2 𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑌 <𝑛⩽𝑌2

𝑛−𝑖𝛾
∑︁

𝑀<𝑚⩽𝑀2

𝜇(𝑚)𝑚−𝑖𝛾

⃒⃒⃒⃒
⃒⃒ , 𝑌2 ⩽ 𝑌1, 𝑀2 ⩽𝑀1.
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Возводя это неравенство в квадрат и просуммировав обе части получившегося неравенства по
𝜌 ∈ 𝐸, получим:

𝑅≪ 𝑇 1−2𝛼𝑌 2𝛼−2𝑀−2𝛼 ln7 𝑇
∑︁
𝜌∈𝐸

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑀<𝑚⩽𝑀2

𝜇(𝑚)𝑚−𝑖𝛾
∑︁

𝑌 <𝑛⩽𝑌2

𝑛−𝑖𝛾

⃒⃒⃒⃒
⃒⃒
2

.

К сумме по 𝜌 применяя лемму 2, получим:

𝑅≪ 𝑇 1−2𝛼𝑌 2𝛼−2𝑀−2𝛼 ln7 𝑇
(︁
𝐼1 +

√︀
𝐼1𝐼2

)︁
, (34)

𝐼1 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑀<𝑚⩽𝑀2

𝜇(𝑚)𝑚−𝑖𝑡
∑︁

𝑌 <𝑛⩽𝑌2

𝑛−𝑖𝑡

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡,

𝐼2 =

𝑇+𝐻∫︁
𝑇

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑀<𝑚⩽𝑀2

𝜇(𝑚)𝑚−𝑖𝑡
∑︁

𝑌 <𝑛⩽𝑌2

𝑛−𝑖𝑡 ln𝑚𝑛

⃒⃒⃒⃒
⃒⃒
2

𝑑𝑡.

Оценим сверху интеграл 𝐼1. Применяя прием, который был использован при преобразовании
𝐼1 в пункте 3.1.5, найдем:

𝐼1 ⩽ 𝑒
√
𝜋𝐻

∑︁
𝑀<𝑚1,𝑚2⩽𝑀2

𝜇(𝑚1)𝜇(𝑚2)
∑︁

𝑌 <𝑛1,𝑛2⩽𝑌2

exp

(︃
−
(︂
𝐻

2
ln
𝑚1𝑛1
𝑚2𝑛2

)︂2
)︃(︂

𝑚1𝑛1
𝑚2𝑛2

)︂−𝑖𝑇

.

Представляя последнюю сумму в виде двух слагаемых, одно из которых получается при
𝑚1𝑛1 = 𝑚2𝑛2, приходим к оценке

𝐼1 ≪ 𝐻(Σ0 +𝑊0),

где

Σ0 =
∑︁

𝑀<𝑚1,𝑚2⩽𝑀2

𝜇(𝑚1)𝜇(𝑚2)
∑︁

𝑌 <𝑛1,𝑛2⩽𝑌2
𝑚1𝑛1=𝑚2𝑛2

1≪
∑︁

𝑀𝑌<𝑘⩽𝑀1𝑌1

𝜏2(𝑘)≪𝑀𝑌 ln3 𝑇,

𝑊0 =
∑︁

𝑀<𝑚1,𝑚2⩽𝑀2

𝜇(𝑚1)𝜇(𝑚2)
∑︁

𝑌 <𝑛1,𝑛2⩽𝑌2
𝑚1𝑛1<𝑚2𝑛2

exp

(︃
−
(︂
𝐻

2
ln
𝑚2𝑛2
𝑚1𝑛1

)︂2
)︃(︂

𝑚1𝑛1
𝑚2𝑛2

)︂−𝑖𝑇

.

Оценим 𝑊0. Если в 𝑊0 выполняется условие 𝑚2𝑛2 −𝑚1𝑛1 ⩾ 𝐾, 𝐾 = 𝑀𝑌𝐻−1 ln𝑇 , то

ln
𝑚2𝑛2
𝑚1𝑛1

= ln

(︂
1 +

𝑚2𝑛2 −𝑚1𝑛1
𝑚1𝑛1

)︂
⩾ ln

(︂
1 +

ln𝑇

4𝐻

)︂
⩾

ln𝑇

8𝐻
;

Следовательно

exp

(︃
−
(︂
𝐻

2
ln
𝑚2𝑛2
𝑚1𝑛1

)︂2
)︃

⩽ exp

(︂
− ln2 𝑇

256

)︂
.

Таким образом, если 𝑚2𝑛2 −𝑚1𝑛1 > 𝐾, то соответствующая часть суммы 𝑊0 есть величина
порядка

𝑂
(︀
exp

(︀
−0.01 ln2 𝑇

)︀)︀
. (35)

Отметим, что при 𝑌𝑀 ⩽ 𝐻 ln𝑇 , все суммы𝑊0 также имеют порядок (35). Оценим оставшуюся
часть суммы 𝑊0, которую обозначим 𝑊1:

𝑊1 =
∑︁

𝑀<𝑚1,𝑚2⩽𝑀2

𝜇(𝑚1)𝜇(𝑚2)𝑊 (𝑚1,𝑚2), (36)

𝑊 (𝑚1,𝑚2) =
∑︁

𝑌 <𝑛1,𝑛2⩽𝑌2

∑︁
𝑚1𝑛1<𝑚2𝑛2⩽𝑚1𝑛1+𝐾

𝑌<𝑛2⩽𝑌2

exp

(︃
−
(︂
𝐻

2
ln
𝑚2𝑛2
𝑚1𝑛1

)︂2
)︃(︂

𝑚1𝑛1
𝑚2𝑛2

)︂−𝑖𝑇

.
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Обозначим через 𝑑 наибольший общий делитель чисел 𝑚1 и 𝑚2. Тогда 𝑚1 = 𝑎𝑑, 𝑚2 = 𝑏𝑑,
(𝑎, 𝑏) = 1. Переменные суммирования представим так:

𝑛1 = 𝑏𝑛3 + 𝑛′3, 𝑛2 = 𝑎𝑛4 + 𝑛′4.

Причем 𝑛′3 и 𝑛
′
4 меняются в пределах 0 ⩽ 𝑛′3 < 𝑏, 0 ⩽ 𝑛′4 < 𝑎, а при заданных 𝑛′4, 𝑛

′
4 переменные

𝑛3, 𝑛4 меняются в пределах

𝑌3 = (𝑌 − 𝑛′3)𝑏−1 < 𝑛3 ⩽ (𝑌2 − 𝑛′3)𝑏−1 = 𝑌 ′
3 ,

(𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4)𝑎

−1 < 𝑛4 ⩽ (𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4 +𝐾𝑚−1

2 )𝑎−1,

𝑌4 = (𝑌 − 𝑛′4)𝑎−1 < 𝑛4 ⩽ (𝑌2 − 𝑛′4)𝑎−1 = 𝑌 ′
4 .

Далее имеем:

(𝑛1𝑚1𝑚
−1
2 − 𝑛

′
4)𝑎

−1 = ((𝑏𝑛3 + 𝑛′3)𝑎𝑏
−1 − 𝑛′4)𝑎−1 = 𝑛3 + 𝑛′3𝑏

−1 − 𝑛′4𝑎−1 =

= 𝑛3 + 𝛼− 𝛽, 𝛼 = 𝑛′3𝑏
−1, 𝛽 = 𝑛′4𝑎

−1.

Поэтому

𝑛3 + 𝛼− 𝛽 < 𝑛4 ⩽ 𝑛3 + 𝛼− 𝛽 +𝐾1, 𝐾1 = 𝐾(𝑎𝑏𝑑)−1, 𝑌4 < 𝑛4 ⩽ 𝑌 ′
4 .

Пользуясь введенными обозначениями, дробь 𝑚1𝑛1/𝑚2𝑛2 представим так:

𝑚1𝑛1
𝑚2𝑛2

=
𝑎𝑛1
𝑏𝑛2

=
𝑎𝑏𝑛3 + 𝑎𝑛′3
𝑎𝑏𝑛4 + 𝑏𝑛′4

=
𝑛3 + 𝛼

𝑛4 + 𝛽
.

Сумма 𝑊 (𝑚1,𝑚2) будет теперь выглядеть следующим образом:

𝑊 (𝑚1,𝑚2) =
∑︁

0⩽𝑛′
3<𝑏

∑︁
0⩽𝑛′

4<𝑎

𝑊 (𝑛′3, 𝑛
′
4), (37)

𝑊 (𝑛′3, 𝑛
′
4) =

∑︁
𝑌3<𝑛3⩽𝑌 ′

3

∑︁
𝑛3+𝛼−𝛽<𝑛4⩽𝑛3+𝛼−𝛽+𝐾1

𝑌4<𝑛4⩽𝑌 ′
4

exp

(︃
−
(︂
𝐻

2
ln
𝑛4 + 𝛽

𝑛3 + 𝛼

)︂2
)︃(︂

𝑛3 + 𝛼

𝑛4 + 𝛽

)︂−𝑖𝑇

.

Переменная суммирования 𝑛4 принимает все значения натуральных чисел из полуинтервала

max(𝑌4, ℎ3 + 𝛼− 𝛽) < 𝑛4 ⩽ min(𝑌 ′
4 , 𝑛3 + 𝛼− 𝛽 +𝐾1).

Поэтому 𝑛4 можно заменить величиной 𝑛3 + ℎ; 𝑛4 = 𝑛3 + ℎ, где ℎ принимает значения:

ℎ1 = max(𝑌4 − 𝑛3, 𝛼− 𝛽) < ℎ ⩽ min(𝑌 ′
4 − 𝑛3, 𝛼− 𝛽 +𝐾1) = ℎ2.

Таким образом

𝑊1(𝑛
′
3, 𝑛

′
4) =

∑︁
𝑌3<𝑛3⩽𝑌 ′

3

∑︁
ℎ1<ℎ⩽ℎ2

𝐸(𝑛3, ℎ)

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇

,

𝐸(𝑛3, ℎ) = exp

(︃
−
(︂
𝐻

2
ln
𝑛3 + ℎ+ 𝛽

𝑛3 + 𝛼

)︂2
)︃
.

Меняя порядок суммирования, найдем:

𝑊1(𝑛
′
3, 𝑛

′
4) ⩽

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛3⩽𝑁1

𝐸(𝑛3, ℎ)

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇
⃒⃒⃒⃒
⃒⃒ ,
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где 𝑁 = max(𝑌3, 𝑌4−ℎ), 𝑁1 = min(𝑌 ′
3 , 𝑌

′
4−ℎ). Поступая аналогично как при оценке𝑊 (𝑛′3, 𝑛

′
4)

пункта 3.1.5, найдем:

𝑊1(𝑛
′
3, 𝑛

′
4)≪

∑︁
𝛼−𝛽<ℎ⩽𝛼−𝛽+𝐾1

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑁<𝑛3⩽𝑁2

(︂
𝑛3 + 𝛼

𝑛3 + ℎ+ 𝛽

)︂−𝑖𝑇
⃒⃒⃒⃒
⃒⃒ ,

где 𝑁2 ⩽ 𝑁1. Отметим, что для 𝑊1(𝑛
′
3, 𝑛

′
4) выполняются следующие условия, которыми мы

будем далее пользоваться:

ℎ+ 𝛽 − 𝛼 =
𝑚2𝑛2 −𝑚1𝑛1

𝑎𝑏𝑑
⩾ (𝑎𝑏)−1,

𝑌 (𝑎𝑏)−0.5 ≪𝑌 𝑎−1 ≪ 𝑌 𝑏−1 ≪ 𝑌 𝑏−1 ≪ 𝑌 𝑎−1 ≪ 𝑌 (𝑎𝑏)−0.5, 𝑌 ⩽ 𝑇 0.5.

Для оценки внутренней суммы в 𝑊1(𝑛
′
3, 𝑛

′
4) применим метод экспоненциальных пар (опреде-

ление 3). Положим

𝑓(𝑢) =
𝑇

2𝜋
ln
𝑢+ ℎ+ 𝛽

𝑢+ 𝛼
, 𝐵 = 𝑌 (𝑎𝑏)−0.5;

ℎ1 = 𝑁2 −𝑁 ⩽ 𝑁, 𝐴 = 𝑇 (ℎ+ 𝛽 − 𝛼)𝑎𝑏𝑌 −2 ⩾ 1.

Следовательно, для произвольной экспоненциальной пары (𝜅, 𝜆) имеем:

𝑊1(𝑛
′
3, 𝑛

′
4) ⩽

∑︁
𝛼−𝛽<𝑛⩽𝛼−𝛽+𝐾1

𝐴𝜅𝐵𝜆 ≪ 𝑇 𝜅𝑌 𝜆−2𝜅(𝑎𝑏)𝜅−0.5𝜆𝐾𝑘+1
1 ≪

≪ 𝑌 1+𝜆−𝜅𝑀𝜅+1𝑇 𝜅𝐻−𝜅−1(𝑎𝑏)−1−0.5𝜆𝑑−𝜅−1 ln𝜅+1 𝑇.

Тем самым из (37) с учетом 𝜆− 𝜅− 1 < 0, а затем из (36) для 𝑊1 получаем:

𝑊 (𝑚1,𝑚2)≪ 𝑌 1+𝜆−𝜅𝑀𝜅+1𝑇 𝜅𝐻−𝜅−1(𝑎𝑏)−0.5𝜆𝑑−𝜅−1 ln𝜅+1 𝑇 ≪
≪ 𝑌 1+𝜆−𝜅𝑀𝜅+1𝑇 𝜅𝐻−𝜅−1(𝑚1𝑚2)

−0.5𝜆 ln𝜅+1 𝑇,

𝑊1 ≪ 𝑌 1+𝜆−𝜅𝑇 𝑘𝐻−𝜅−1𝑀3+𝜅−𝜆 ln𝜅+1 𝑇.

Так как 𝑌 ⩽ 𝑇 0.5, 𝑥 = 𝑇 0.5𝜀 и 𝜅− 𝜆 ⩽ 0, то

𝑊1 ≪ 𝑌𝑀𝑇
𝜅+𝜆
2

+𝜀𝐻−𝜅−1 ln𝑘+1 𝑇 = 𝑌𝑀

(︃
𝑇

𝜅+𝜆
2(𝜅+1)

+ 𝜀
𝜅+1

𝐻

)︃𝜅+1

ln𝑘+1 𝑇.

Поэтому, если 𝐻 ⩾ 𝑇
𝜅+𝜆
2𝜅+2

+𝜀, то
𝑊1 ≪ 𝑌𝑀 ln2 𝑇.

Объединяя это с оценками 𝑊0 и Σ0, находим:

𝐼1 ≪ 𝐻𝑌𝑀 ln2 𝑇.

Оценивая интеграл 𝐼2 также как и 𝐼1, получим:

𝐼2 ≪ 𝐻𝑌𝑀 ln3 𝑇.

Отсюда и из (34), пользуясь соотношениями

𝑌 ⩽ 𝑦 =

(︂
𝑇

2𝜋

)︂ 1
2

, 1 ⩽𝑀 ⩽ 𝑥 = 𝑇 0.5𝜀, 𝐻 = 𝑇 𝜃+𝜀 < 𝑇
1
2 ,

последовательно найдем:

𝑅≪ 𝑇 1−2𝛼𝑌 2𝛼−2𝑀−2𝛼 ln7 𝑇
(︁
𝐼1 +

√︀
𝐼1𝐼2

)︁
≪ 𝐻𝑇 1−2𝛼𝑌 2𝛼−1𝑀1−2𝛼 ln10 𝑇 ≪

≪ 𝐻𝑇 0,5(1−2𝛼) ln10 𝑇 ≪ 𝐻2(1−𝛼) ln10 𝑇.

Таким образом, случай, когда 𝑆(𝜌) имеет вид (11), рассмотрен полностью, и теорема 1 дока-
зана.
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Аннотация

При 𝐻 ⩾ 𝑁1− 1
2𝑐 (ln𝑁)2, где L = ln𝑁 , а 𝑐 — нецелое фиксированное число, удовлетво-

ряющее условиям

‖𝑐‖ ⩾ 3𝑐
(︁

2[𝑐]+1 − 1
)︁ ln L

L
, 𝑐 >

4

3

(︂
1 +

52 ln L

L

)︂
,

получена асимптотическая формула для количества представлений достаточно большого
натурального числа 𝑁 в виде

𝑝1 + 𝑝2 + [𝑛𝑐] = 𝑁,

где 𝑝1, 𝑝2 — простые числа, 𝑛 — натуральное число,

|𝑝𝑘 − 𝜇𝑘𝑁 | ⩽ 𝐻, 𝑘 = 1, 2, |[𝑛𝑐]− 𝜇3𝑁 | ⩽ 𝐻,

𝜇1, 𝜇2, 𝜇3 — положительные фиксированные числа, причём 𝜇1 + 𝜇2 + 𝜇3 = 1.

Ключевые слова: проблема Эстермана, почти пропорциональные слагаемые, короткая
тригонометрическая сумма с нецелой степенью натурального числа.
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Abstract

For 𝐻 ⩾ 𝑁1− 1
2𝑐 (ln𝑁)2, where L = ln𝑁 and 𝑐 is a fixed non-integer number satisfying

‖𝑐‖ ⩾ 3𝑐
(︁

2[𝑐]+1 − 1
)︁ ln L

L
, 𝑐 >

4

3

(︂
1 +

52 ln L

L

)︂
,

we obtain an asymptotic formula for the number of representations of a sufficiently large integer
𝑁 in the form

𝑝1 + 𝑝2 + [𝑛𝑐] = 𝑁,

where 𝑝1, 𝑝2 are prime numbers, 𝑛 is a natural number, and

|𝑝𝑘 − 𝜇𝑘𝑁 | ⩽ 𝐻, 𝑘 = 1, 2, |[𝑛𝑐]− 𝜇3𝑁 | ⩽ 𝐻,

with 𝜇1, 𝜇2, 𝜇3 being fixed positive constants satisfying 𝜇1 + 𝜇2 + 𝜇3 = 1.

Keywords: Estermann problem, almost proportional summands, short exponential sum with
a non-integer power of a natural number.

Bibliography: 21 titles.
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1. Введение

Эстерман [1] при 𝑛 = 2 доказал асимптотическую формулу для числа решений уравнения

𝑝1 + 𝑝2 +𝑚𝑛 = 𝑁, (1)

где 𝑝1, 𝑝2 — простые числа, 𝑚 — натуральное число. В работах [2, 3, 4] при 𝑛 = 2, 3, 4 эта
задача исследована при более жёстких условиях, а именно, когда слагаемые почти равны.
То есть получена асимптотическая формула для числа решений диофантова уравнения (1) с
условиями ⃒⃒⃒⃒

𝑝𝑖 −
𝑁

3

⃒⃒⃒⃒
⩽ 𝐻, 𝑖 = 1, 2,

⃒⃒⃒⃒
𝑚𝑛 − 𝑁

3

⃒⃒⃒⃒
⩽ 𝐻, 𝐻 ⩾ 𝑁1−𝜃(𝑛)L 𝑐𝑛 ,
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соответственно при

𝜃(2) =
1

4
, 𝑐2 = 2; 𝜃(3) =

1

6
, 𝑐3 = 3; 𝜃(4) =

1

12
, 𝑐4 =

40

3
. (2)

В работе [5] при произвольном фиксированном 𝑛 ⩾ 3, опираясь на новые оценки коротких
тригонометрических сумм Г. Вейля [6, 7, 8, 9, 10], исследована проблема Эстермана с почти
пропорциональными слагаемыми и получена асимптотическая формула для числа решений
уравнения (1) с условиями

|𝑝𝑘 − 𝜇𝑘𝑁 | ⩽ 𝐻, 𝑘 = 1, 2, |𝑚𝑛 − 𝜇3𝑁 | ⩽ 𝐻, 𝐻 ⩾ 𝑁
1− 1

𝑛(𝑛−1) L
2𝑛+1

𝑛−1
+𝑛−1. (3)

Заметим, что полученная асимптотическая формула при 𝜇1 = 𝜇2 = 𝜇3 = 1
3 превращается в

асимптотическую формулу для обобщённой проблемы Эстермана с почти равными слагаемы-
ми, а результаты [3, 4], приведённые в (2), являются частными случаями (3).

В. Н. Чубариков поставил следующую задачу: для фиксированных нецелых значений 𝑐
исследовать короткие тригонометрические суммы вида

𝑆𝑐(𝛼;𝑥, 𝑦) =
∑︁

𝑥−𝑦<𝑛⩽𝑥

𝑒
(︀
𝛼[𝑛𝑐]

)︀
,

а также уравнение (1), в котором слагаемое 𝑚𝑛 заменяется на [𝑚𝑐], причём рассматрива-
ется случай почти равных слагаемых.

Первая часть этой задачи была решена в работах [11, 12, 13]. Для сумм 𝑆𝑐(𝛼;𝑥, 𝑦) получена
оценка, равномерная по 𝑐, для всех 𝛼 ∈ [−0.5, 0.5], за исключением малой окрестности нуля,
а также получена асимптотическая формула с остаточным членом, равномерная по 𝑐 при 𝛼
из малой окрестности нуля. Эти результаты позволили доказать асимптотическую формулу
в обобщённой тернарной проблеме Эстермана для нецелых степеней с почти равными слага-
емыми [14, 15, 16], то есть при 𝐻 ⩾ 𝑁1− 1

2𝑐 L 2 найдена асимптотическая формула для числа
решений уравнения

𝑝1 + 𝑝2 + [𝑛𝑐] = 𝑁,

⃒⃒⃒⃒
𝑝𝑖 −

𝑁

3

⃒⃒⃒⃒
⩽ 𝐻, 𝑖 = 1, 2,

⃒⃒⃒⃒
[𝑛𝑐]− 𝑁

3

⃒⃒⃒⃒
⩽ 𝐻,

в простых числах 𝑝1, 𝑝2 и натуральном 𝑛, где 𝑐 — фиксированное нецелое число, удовлетво-
ряющее условиям

‖𝑐‖ ⩾ 3𝑐
(︀
2[𝑐]+1 − 1

)︀ ln L

L
, 𝑐 >

4

3
+ L −0.3.

В настоящей работе для произвольного фиксированного нецелого 𝑐, удовлетворяющего
условию (4), доказана теорема об асимптотической формуле в обобщённой проблеме Эстер-
мана с почти пропорциональными слагаемыми. Полученный результат представляет собой
обобщение и уточнение основной теоремы из работы [14].

Теорема 1. Пусть 𝑁 — достаточно большое натуральное число, L = ln𝑁 , 𝜇1, 𝜇2, 𝜇3
— положительные фиксированные числа, удовлетворяющие 𝜇1 + 𝜇2 + 𝜇3 = 1, а 𝑐 — фиксиро-
ванное нецелое число, удовлетворяющее условиям

‖𝑐‖ ⩾ 3𝑐
(︀
2[𝑐]+1 − 1

)︀ ln L

L
, 𝑐 >

4

3

(︂
1 +

52 ln L

L

)︂
. (4)

Пусть 𝐽𝑐(𝑁,𝐻) обозначает число решений диофантова уравнения

𝑝1 + 𝑝2 + [𝑛𝑐] = 𝑁
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в простых числах 𝑝1, 𝑝2 и натуральном 𝑛 при условиях

|𝑝𝑘 − 𝜇𝑘𝑁 | ⩽ 𝐻, 𝑘 = 1, 2, |[𝑛𝑐]− 𝜇3𝑁 | ⩽ 𝐻.

Тогда при 𝐻 ⩾ 𝑁 1− 1
2𝑐 L 2 справедлива асимптотическая формула

𝐽𝑐(𝑁,𝐻) =
3𝐻2

𝑐(𝜇3𝑁) 1−
1
𝑐 L 2

+𝑂

(︂
𝐻2

𝑁 1− 1
𝑐 L 3

)︂
,

где постоянная под знаком 𝑂 зависит от 𝜇1, 𝜇2, 𝜇3 и 𝑐.

2. Вспомагательные леммы

Лемма 1. [17]. Пусть 2 ⩽ 𝑇0 ⩽ 𝑥, 𝜌 = 𝛽 + 𝑖𝛾 — нетривиальные нули дзета-функции.
Тогда

𝜓(𝑥) = 𝑥−
∑︁

|𝛾|⩽𝑇0

𝑥𝜌

𝜌
+𝑅1(𝑥, 𝑇0), 𝑅1(𝑥, 𝑇0, )≪

𝑥L 2
𝑥

𝑇0
.

Лемма 2. [17]. Существует абсолютная постоянная 𝑐 > 0 такая, что 𝜁(𝑠) ̸= 0, в
области

𝜎 ⩾ 1− 𝛿(𝑡), 𝛿(𝑡) =
𝑐

ln
2
3 (2𝑡+ 2) ln ln(2𝑡+ 2)

,

Лемма 3. [18]. Пусть 𝜀 сколь угодна малая положительная постоянная, и 𝑇
35
108

+𝜀 ⩽
⩽ 𝐻 ⩽ 𝑇 , тогда справедливы оценки

𝑁(𝑢, 𝑇 +𝐻)−𝑁(𝑢, 𝑇 )≪

⎧⎪⎨⎪⎩
(𝑞𝐻)

4
3−2𝑢

(1−𝑢)(ln 𝑞𝐻)9, для
1

2
⩽ 𝑢 ⩽

3

4
,

(𝑞𝐻)
2
𝑢
(1−𝑢)+𝜀, для

3

4
⩽ 𝑢 ⩽ 1,

Лемма 4. [19]. Пусть 𝑦 ⩾ 𝑥0.534, тогда справедлива оценка

𝑦

ln𝑥
≪ 𝜋(𝑥)− 𝜋(𝑥− 𝑦)≪ 𝑦

ln𝑥
.

Лемма 5. [13]. Пусть 𝑥 ⩾ 𝑥0 > 0, L𝑥 = ln𝑥, 𝐴 – фиксированное положительное число
больше единицы, 𝑐 – нецелое число с условиями

1 < 𝑐 ⩽ log2 L𝑥 − log2 ln L 6𝐴
𝑥 , ‖𝑐‖ ⩾

(︁
2[𝑐]+1 − 1

)︁
(𝐴+ 1) L −1

𝑥 ln L𝑥. (5)

Тогда при 𝑦 ⩾
√

2𝑐𝑥L 𝐴+𝜃
𝑥 и 𝑥1−𝑐𝑦−1L 𝐴

𝑥 ⩽ |𝛼| ⩽ 0, 5 справедлива оценка

𝑆𝑐(𝛼;𝑥, 𝑦)≪ 𝑦L −𝐴
𝑥 ,

где 𝜃 = 0 при 𝑐 ⩾ 1, 1 и 𝜃 = 0, 5 при 𝑐 < 1, 1.

Лемма 6. [13]. Пусть 𝑥 ⩾ 𝑥0 > 0, 𝐴 – фиксированное положительное число боль-

ше единицы, 𝑐 – нецелое число, удовлетворяющее условиям (5). Тогда при 𝑦 ⩾
√

2𝑐𝑥
1
2 L 𝐴

𝑥 и
|𝛼| ⩽ 𝑥1−𝑐𝑦−1L 𝐴

𝑥 справедлива асимптотическая формула

𝑆𝑐(𝛼;𝑥, 𝑦) =
sin𝜋𝛼

𝜋𝛼

∫︁ 𝑥

𝑥−𝑦
𝑒(𝛼(𝑡𝑐 − 0, 5))𝑑𝑡+𝑂

(︂
𝑦| sin𝜋𝛼|

L 𝐴
𝑥

)︂
.



188 Ф. З. Рахмонов, П. З. Рахмонов

Лемма 7. [5] Пусть 𝜇𝑘 — фиксированное действительное число, 0 < 𝜇𝑘 < 1, 𝑁 —

достаточно большое натуральное число, 𝑁𝑘 = 𝜇𝑘𝑁 +𝐻, 𝑘 = 1, 2, 𝑁
1
2 ⩽ 𝐻 ⩽ 𝑁1− 1

30 ,

S(𝛼;𝑁𝑘, 2𝐻) =
∑︁

𝑁𝑘−2𝐻<𝑝⩽𝑁𝑘

𝑒(𝛼𝑝), 𝑆1(𝛼;𝑥, 𝑦) =
∑︁

𝑥−𝑦<𝑛⩽𝑥

Λ(𝑛)𝑒(𝛼𝑛).

Тогда имеет место соотношение

S(𝛼;𝑁𝑘, 2𝐻) =
𝑆1(𝛼;𝑁𝑘, 2𝐻)

ln(𝜇𝑘𝑁)
+𝑂

(︂
𝐻2

𝑁 ln(𝜇𝑘𝑁)

)︂
.

Лемма 8. Пусть 𝑥 ⩾ 𝑥0, 𝐴 — произвольное положительное фиксированное положитель-
ное число, 𝑦 ⩾ 𝑥

5
8 L 1.5𝐴+15

𝑥 и |𝛼| ⩽ 𝑥(2𝜋𝑦2)−1. Тогда справедлива асимптотическая формула:

𝑆1(𝛼;𝑥, 𝑦) =
∑︁

𝑥−𝑦<𝑛≤𝑥

Λ(𝑛)𝑒(𝛼𝑛) =
sin𝜋𝛼𝑦

𝜋𝛼
𝑒
(︁
𝛼
(︁
𝑥− 𝑦

2

)︁)︁
+𝑂

(︂
𝑦

L 𝐴
𝑥

)︂
.

Доказательство. Не ограничивая общности, будем считать, что

𝑦 = 𝑥
5
8 L 1.5𝐴+15

𝑥 . (6)

Применяя преобразование Абеля в интегральной форме, имеем:

𝑆1(𝛼;𝑥, 𝑦) = −
∫︁ 𝑥

𝑥−𝑦
𝜓(𝑢)𝑑𝑒(𝛼𝑢) + 𝑒(𝛼𝑥)𝜓(𝑥)− 𝑒(𝛼(𝑥− 𝑦))𝜓(𝑥− 𝑦).

Пользуясь представлением функции Чебышёва в виде суммы по нулям дзета-функции (лемма
1) при 𝑇0 =

(︀
𝑥𝑦−1 + |𝛼|𝑥

)︀
L 𝐴+2

𝑥 , найдем:

𝑆1(𝛼;𝑥, 𝑦) = −
∫︁ 𝑥

𝑥−𝑦

⎛⎝𝑢− ∑︁
|𝛾|⩽𝑇0

𝑢𝜌

𝜌

⎞⎠ 𝑑𝑒(𝛼𝑢) + 𝑒(𝛼𝑥)

⎛⎝𝑥− ∑︁
|𝛾|⩽𝑇0

𝑥𝜌

𝜌

⎞⎠−
− 𝑒(𝛼(𝑥− 𝑦))

⎛⎝(𝑥− 𝑦)−
∑︁

|𝛾|⩽𝑇0

(𝑥− 𝑦)𝜌

𝜌

⎞⎠−
−
∫︁ 𝑥

𝑥−𝑦
𝑅(𝑢, 𝑇0)2𝜋𝑖𝛼𝑒(𝛼𝑢)𝑑𝑢+ 𝑒(𝜆𝑥)𝑅(𝑥, 𝑇0)− 𝑒(𝛼(𝑥− 𝑦))𝑅(𝑥− 𝑦, 𝑇0).

Применяя к первому интегралу формулу интегрирования по частям, а также пользуясь оцен-
кой для 𝑅(𝑢, 𝑇0) из леммы 1 и значением параметра 𝑇0, найдём

𝑆1(𝛼;𝑥, 𝑦) =

∫︁ 𝑥

𝑥−𝑦
𝑒(𝜆𝑢)𝑑𝑢−

∑︁
|𝛾|⩽𝑇0

∫︁ 𝑥

𝑥−𝑦
𝑢𝜌−1𝑒(𝜆𝑢)𝑑𝑢+𝑂

(︃
𝑦

𝑞
1
2 L 𝐴

𝑥

)︃
=

=
sin𝜋𝜆𝑦

𝜋𝜆
𝑒
(︁
𝜆
(︁
𝑥− 𝑦

2

)︁)︁
−𝑊 (𝛼, 𝑥, 𝑦) +𝑂

(︂
𝑦

L 𝐴
𝑥

)︂
, (7)

где

𝑊 (𝛼, 𝑥, 𝑦) =
∑︁

|𝛾|⩽𝑇0

𝐼(𝜌), 𝐼(𝜌) =

∫︁ 𝑥

𝑥−𝑦
𝑢𝛽−1𝑒

(︁
𝛼𝑢+

𝛾

2𝜋
ln𝑢
)︁
𝑑𝑢.
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Сумму 𝑊 (𝛼, 𝑥, 𝑦) будем оценивать только в случае 𝛼 ⩾ 0. При 𝛼 ⩽ 0, воспользовавшись
соотношением

𝑊 (𝛼, 𝑥, 𝑦) =
∑︁

|𝛾|⩽𝑇0

∫︁ 𝑥

𝑥−𝑦
𝑢𝛽−1𝑒

(︁
−𝛼𝑢− 𝛾

2𝜋
ln𝑢
)︁
𝑑𝑢 =

=
∑︁

|𝛾|⩽𝑇0

∫︁ 𝑥

𝑥−𝑦
𝑢𝜌−1𝑢𝛽−1𝑒

(︁
−𝛼𝑢+

𝛾

2𝜋
ln𝑢
)︁
𝑑𝑢 = 𝑊 (−𝛼, 𝑥, 𝑦),

сведем ее оценку к случаю 𝛼 ⩾ 0. Оценивая интеграл 𝐼(𝜌) тривиально, а также по величине
производной первого порядка (см. [20], стр. 359), найдем:

|𝐼(𝜌)| ≪ 𝑥𝛽 min
𝑥−𝑦⩽𝑢⩽𝑥

(︂
𝑦

𝑥
,

1

min |𝛾 + 2𝜋𝛼𝑢|

)︂
. (8)

Все нули 𝜌 = 𝛽 + 𝑖𝛾 с условием |𝛾| ⩽ 𝑇0 разобьем на множества 𝐷1, 𝐷2 и 𝐷3 следующим
образом:

𝐷1 =

{︂
𝜌 : −𝑇0 + 2𝜋𝛼𝑢 ⩽ 𝛾 + 2𝜋𝛼𝑢 < −2𝜋𝛼𝑥+ 2𝜋𝛼𝑢− 𝑥

𝑦

}︂
,

𝐷2 =

{︂
𝜌 : −2𝜋𝛼𝑥+ 2𝜋𝛼𝑢− 𝑥

𝑦
⩽ 𝛾 + 2𝜋𝛼𝑢 ⩽ 2𝜋𝛼𝑢− 2𝜋𝛼(𝑥− 𝑦) +

𝑥

𝑦

}︂
,

𝐷3 =

{︂
𝜌 : 2𝜋𝛼𝑢− 2𝜋𝛼(𝑥− 𝑦) +

𝑥

𝑦
< 𝛾 + 2𝜋𝛼𝑢 ⩽ 𝑇0 + 2𝜋𝛼𝑢

}︂
.

Обозначая через 𝑊1, 𝑊2 и 𝑊3 соответственно суммы модулей интеграла 𝐼(𝜌) по нулям при-
надлежащим множествам 𝐷1, 𝐷2 и 𝐷3, имеем:

|𝑊 (𝛼, 𝑥, 𝑦)| ⩽
∑︁

|𝛾|⩽𝑇0

|𝐼(𝜌)| = 𝑊1 +𝑊2 +𝑊3. (9)

В отрезке 𝑥 − 𝑦 ≤ 𝑢 ⩽ 𝑥 функция 2𝜋𝛼𝑢 монотонно возрастает, поэтому для правой границы
𝐷1 и левой границы 𝐷3 соответственно имеем

−2𝜋𝛼𝑥+ 2𝜋𝛼𝑢− 𝑥

𝑦
⩽ −𝑥

𝑦
, 2𝜋𝛼𝑢− 2𝜋𝛼(𝑥− 𝑦) +

𝑥

𝑦
⩾
𝑥

𝑦
.

Следовательно, если 𝜌 принадлежит соответственно 𝐷1, 𝐷2 или 𝐷3, то соответственно

𝛾 + 2𝜋𝛼𝑢 < −𝑥
𝑦
, −𝑥

𝑦
⩽ 𝛾 + 2𝜋𝛼𝑢 ⩽

𝑥

𝑦
, 𝛾 + 2𝜋𝛼𝑢 >

𝑥

𝑦
.

Поэтому для монотонной возрастающей функции 𝛾 + 2𝜋𝛼𝑢 на отрезке 𝑥− 𝑦 ⩽ 𝑢 ⩽ 𝑥 справед-
ливы следующие соотношения

min
𝑥−𝑦⩽𝑢⩽𝑥

|𝛾 + 2𝜋𝛼𝑢| = − max
𝑥−𝑦⩽𝑢⩽𝑥

(𝛾 + 2𝜋𝛼𝑢) = −𝛾 − 2𝜋𝛼𝑥 ⩾
𝑥

𝑦
, если 𝜌 ∈ 𝐷1,

−𝑥
𝑦
− 2𝜋𝛼𝑦 ⩽ 𝛾 + 2𝜋𝛼𝑢 ⩽

𝑥

𝑦
+2𝜋𝛼𝑦, если 𝜌 ∈ 𝐷2,

min
𝑥−𝑦⩽𝑢⩽𝑥

|𝛾 + 2𝜋𝛼𝑢| = min
𝑥−𝑦⩽𝑢⩽𝑥

(𝛾 + 2𝜋𝛼𝑢) = 𝛾 + 2𝜋𝛼(𝑥− 𝑦) ⩾
𝑥

𝑦
, если 𝜌 ∈ 𝐷3.

Отсюда, с учетом оценки (8) для 𝑊1, 𝑊2, и 𝑊3, находим

𝑊1 ≪
∑︁
𝜌∈𝐷1

𝑥𝛽

−𝛾 − 2𝜋𝛼𝑥
, 𝑊2 ≪

∑︁
𝜌∈𝐷2

𝑦𝑥𝛽−1, 𝑊3 ≪
∑︁
𝜌∈𝐷3

𝑥𝛽

𝛾 + 2𝜋𝛼(𝑥− 𝑦)
.
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Суммы 𝑊1 и 𝑊3 оцениваются одинаково. Оценим 𝑊1. Все нули в множестве

𝐷1 =

{︂
𝜌 :

𝑥

𝑦
< −𝛾 − 2𝜋𝛼𝑥 ⩽ 𝑇0 − 2𝜋𝛼𝑥

}︂
,

разобьем на классы 𝐷11, . . . , 𝐷1𝑟, 𝑟 ≪ ln𝑇0 ≪ ln𝑥 следующим образом: в класс 𝐷1𝑛 отнесем
те нули 𝜌, для которых выполняется условия:

𝑛𝑥

𝑦
< −𝛾 − 2𝜋𝛼𝑥 ⩽

(𝑛+ 1)𝑥

𝑦
.

Поэтому

𝑊1 ≪
𝑟∑︁

𝑛=1

∑︁
𝜌∈𝐷1𝑛

𝑥𝛽

−𝛾 − 2𝜋𝜆𝑥
⩽
𝑦

𝑥

𝑟∑︁
𝑛=1

∑︁
𝜌∈𝐷1𝑛

𝑥𝛽

𝑛
⩽
𝑦L𝑥

𝑥
max
1⩽𝑛⩽𝑟

∑︁
𝜌∈𝐷1𝑛

𝑥𝛽 ⩽
𝑦L𝑥

𝑥
max
|𝑇 |⩽𝑇0

∑︁
𝑇−𝑥

𝑦
<𝛾⩽𝑇

𝑥𝛽.

Оценим 𝑊2. Представляя множество 𝐷2 в виде

𝐷2 =

{︂
𝜌 : 𝑇1 − 2𝜋𝛼𝑦 − 2𝑥

𝑦
⩽ −𝛾 ⩽ 𝑇1

}︂
, 𝑇1 = 2𝜋𝛼𝑥+

𝑥

𝑦
⩽ 𝑇0,

и имея в виду, что при 𝛼 ⩽ 𝑥
(︀
2𝜋𝑦2

)︀−1
для длины множества 𝐷2 выполняется неравенство

2𝜋𝜆𝑦 +
2𝑥

𝑦
⩽

3𝑥

𝑦
,

а также пользуясь тривиальной оценкой интеграла 𝐼(𝜌, 𝜆), то есть первой оценкой (8), имеем

𝑊2 ⩽
∑︁
𝜌∈𝐷2

|𝐼(𝜌)| ≪ 𝑦

𝑥

∑︁
𝜌∈𝐷2

𝑥𝛽 ⩽
3𝑦

𝑥
max
|𝑇 |⩽𝑇0

∑︁
𝑇−𝑥

𝑦
⩽−𝛾⩽𝑇

𝑥𝛽 ≪ 𝑦

𝑥
max
|𝑇 |⩽𝑇0

∑︁
𝑇−𝑥

𝑦
⩽𝛾⩽𝑇

𝑥𝛽.

Подставляя в (9) полученные оценки для 𝑊1, 𝑊2 и 𝑊3, имеем:

𝑊 (𝛼, 𝑥, 𝑦)≪ 𝑦L𝑥

𝑥
max
|𝑇 |⩽𝑇0

V, V =
∑︁

𝑇−𝑥
𝑦
⩽𝛾⩽𝑇

𝑥𝛽. (10)

Оценку суммы V сведём к оценке количества нулей дзета-функции Римана в узких прямо-
угольниках критической полосы. Имеем

V =
∑︁

𝑇−𝑥𝑦−1<𝛾⩽𝑇

(︂∫︁ 𝛽

0
𝑥𝑢𝑑𝑢+ 1

)︂
= L𝑥

∫︁ 1

0
𝑥𝑢

∑︁
𝑇−𝑥𝑦−1<𝛾⩽𝑇

𝛽⩾𝑢

𝑑𝑢+
∑︁

𝑇−𝑥𝑦−1<𝛾⩽𝑇

1

= L𝑥

∫︁ 1

0
𝑥𝑢
(︀
𝑁(𝑢, 𝑇 )−𝑁(𝑢, 𝑇 − 𝑥𝑦−1)

)︀
𝑑𝑢+

(︀
𝑁(𝑇 )−𝑁(𝑇 − 𝑥𝑦−1)

)︀
.

Отсюда, принимая во внимание, что нетривиальные нули 𝜌 = 𝛽+𝑖𝛾 расположены симметрично
относительно критической прямой 𝜎 = 0.5, получаем

V ⩽ L𝑥

∫︁ 1

0,5
𝑥𝑢
(︀
𝑁(𝑢, 𝑇 )−𝑁(𝑢, 𝑇 − 𝑥𝑦−1)

)︀
𝑑𝑢+

(︂√
𝑥L𝑥

2
+ 1

)︂(︀
𝑁(𝑇 )−𝑁(𝑇 − 𝑥𝑦−1)

)︀
⩽

⩽ L𝑥 max
𝑢⩾0,5

𝑥𝑢
(︀
𝑁(𝑢, 𝑇 )−𝑁(𝑢, 𝑇 − 𝑥𝑦−1, 𝜒)

)︀
+

(︂√
𝑥L𝑥

2
+ 1

)︂(︀
𝑁(𝑇 )−𝑁(𝑇 − 𝑥𝑦−1)

)︀
⩽

⩽ 2L𝑥 max
𝑢⩾0,5

𝑥𝑢
(︀
𝑁(𝑢, 𝑇 )−𝑁(𝑢, 𝑇 − 𝑥𝑦−1)

)︀
.
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Согласно лемме 2 функция 𝜁(𝜎 + 𝑖𝑡) не имеет нулей в области

𝜎 ⩾ 1− 𝛿(𝑡), 𝛿(𝑡) =
𝑐

ln
2
3 (2𝑡+ 2) ln ln(2𝑡+ 2)

.

Следовательно, учитывая, что 𝛿(𝑇 ) ⩾ 𝛿(𝑇0), получаем

V ⩽ 2L𝑥 max
0,5⩽𝑢⩽1−𝛿

𝑥𝑢
(︀
𝑁(𝑢, 𝑇 )−𝑁(𝑢, 𝑇 − 𝑥𝑦−1)

)︀
, 𝛿 = 𝛿(𝑇0).

Подставляя правую часть этого неравенства в (10), найдём

|𝑊 (𝛼;𝑥, 𝑦)| ≪ 𝑦L𝑥

𝑥
max
|𝑇 |⩽𝑇0

max
0,5⩽𝑢⩽1−𝛿

𝑥𝑢
(︂
𝑁(𝑢, 𝑇 )−𝑁

(︂
𝑢, 𝑇 − 𝑥

𝑦
, 𝜒

)︂)︂
. (11)

Из соотношения |𝑇 | ⩽ 𝑇0 =
(︀
𝑥𝑦−1 + |𝛼|𝑥

)︀
L 𝐴+2

𝑥 , 0 ⩽ 𝛼 ⩽ 𝑥
(︀
2𝜋𝑦2

)︀−1
и условия (6), имеем

𝑇

(𝑥𝑦−1)3
⩽

(︂
𝑦2

𝑥2
+ 𝛼

𝑦3

𝑥2

)︂
L 𝐴+2

𝑥 ⩽

(︂
𝑦2

𝑥2
+

𝑦

2𝜋𝑥

)︂
L 𝐴+2

𝑥 ⩽ 1.

Следовательно, для правой части неравенства (11) выполняется условие 𝑥
𝑦 ⩾ 𝑇

1
3 , то есть к

этой сумме можно применить плотностную теорему для узких прямоугольников критической
полосы (лемма 3). Полагая в этой лемме 𝜀 = 𝛿

3 −
𝛿2

1−𝛿 , получаем

|𝑊 (𝛼;𝑥, 𝑦)| ≪ A1 + A2, (12)

A1 =
𝑦L 10

𝑥

𝑥
max

0.5⩽𝑢⩽0.75
𝑥𝑢
(︂
𝑥

𝑦

)︂ 4−4𝑢
3−2𝑢

,

A2 =
𝑦L𝑥

𝑥
max

0.75⩽𝑢⩽1−𝛿
𝑥𝑢
(︂
𝑥

𝑦

)︂ 2
𝑢
(1−𝑢)+𝜀

.

Оценка A1. Имеем

A1 =
𝑥L 10

𝑥

𝑦
max

0,5⩽𝑢⩽0,75
𝑓1(𝑢), 𝑓1(𝑢) = 𝑥𝑢

(︂
𝑥

𝑦

)︂ 1
𝑢−1,5

> 0,

𝑓 ′1(𝑢) = 𝑓1(𝑢)

(︃
ln𝑥+

ln
(︀ 𝑦
𝑥

)︀
(𝑢− 1, 5)2

)︃
=

𝑓1(𝑢)

(𝑢− 1, 5)2
ln

𝑦

𝑥−𝑢2+3𝑢−1,25
.

Из условий (6) и из соотношения

max
0,5⩽𝑢⩽0,75

(︀
−𝑢2 + 3𝑢− 1, 25

)︀
=
(︀
−𝑢2 + 3𝑢− 1, 25

)︀⃒⃒
𝑢=0,75

=
7

16
,

следует, что

ln
𝑦

𝑥−𝑢2+3𝑢−1,25
⩾ ln

𝑦𝑥
5
8 L 1,5𝐴+15

𝑥

𝑥
7
16

= ln𝑥
3
16 L 1,5𝐴+15

𝑥 > ln𝑥
1
5 > 0.

Отсюда в свою очередь получаем, что на отрезке 0, 5 ⩽ 𝑢 ⩽ 0, 75 выполняется неравенство

𝑓 ′1(𝑢) ⩾
𝑓(𝑢)

(𝑢− 1, 5)2
ln𝑥

1
5 > 0,
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то есть 𝑓 ′1(𝑢) положительна и 𝑓1(𝑢) возрастающая функция в интервале 0, 5 ⩽ 𝑢 ⩽ 0, 75.
Воспользовавшись этим свойством, а затем соотношением (6), имеем

A1 =
𝑥L 10

𝑥

𝑦
𝑓1(0.75) =

𝑥L 10
𝑥

𝑦
𝑥

3
4

(︂
𝑥

𝑦

)︂− 4
3

= 𝑦 ·

(︃
𝑥

5
8 L 15

𝑥

𝑦

)︃ 2
3

= 𝑦L −𝐴
𝑥 .

Оценка A2. Имеем

A2 =
𝑦3−𝜀L𝑥

𝑥3−𝜀
max

0,75⩽𝑢⩽1−𝛿
𝑓2(𝑢), 𝑓2(𝑢) = 𝑥𝑢

(︂
𝑥

𝑦

)︂ 2
𝑢

> 0, 𝛿 = 𝛿(𝑇0).

𝑓 ′2(𝑢) = 𝑓2(𝑢)

(︃
ln𝑥+

ln
(︀ 𝑦
𝑥

)︀
𝑢2

)︃
=
𝑓2(𝑢)

𝑢2
ln

𝑦

𝑥1−𝑢2 .

Из условий (6) и из соотношения

max
0,75⩽𝑢⩽1−𝛿

(︀
−𝑢2 + 1

)︀
=
(︀
−𝑢2 + 1

)︀⃒⃒
𝑢=0,75

=
7

16
,

следует, что

𝑦

𝑥1−𝑢2 ⩾
𝑥

5
8 L 1,5𝐴+15

𝑥

𝑥
7
16

⩾ 𝑥
3
16 L 1,5𝐴+15

𝑥 .

Отсюда, в свою очередь, получаем, что на отрезке 0, 75 ⩽ 𝑢 ⩽ 1− 𝛿 выполняется неравенство

𝑓 ′2(𝑢) ⩾
𝑓2(𝑢)

𝑢2
ln𝑥

3
16 > 0,

то есть 𝑓 ′2(𝑢) положительна и 𝑓2(𝑢) возрастающая функция в интервале 0, 75 ⩽ 𝑢 ⩽ 1 − 𝛿.
Воспользовавшись этим свойством, имеем

A2 =
𝑦3−𝜀L𝑥

𝑥3−𝜀
𝑥1−𝛿

(︂
𝑥

𝑦

)︂ 2
1−𝛿

= 𝑦 · 𝑥
2𝛿
1−𝛿

−𝛿+𝜀L𝑥

𝑦
2𝛿
1−𝛿

+𝜀
= 𝑦L𝑥

⎛⎝𝑥 𝛿+𝛿2+(1−𝛿)𝜀
2𝛿+(1−𝛿)𝜀

𝑦

⎞⎠
2𝛿
1−𝛿

+𝜀

=

= 𝑦L𝑥

(︃
𝑥
5
8L 1,5𝐴+15

𝑥

𝑦
𝑥𝑓(𝛿,𝜀)L −1,5𝐴−15

𝑥

)︃ 2𝛿
1−𝛿

+𝜀

, 𝑓(𝛿, 𝜀) =
𝛿 + 𝛿2 + (1− 𝛿)𝜀

2𝛿 + (1− 𝛿)𝜀
− 5

8
.

Отсюда, и из соотношения (6), получим

A2 ≪ 𝑦 · 𝑥𝑓(𝛿,𝜀)
2𝛿+(1−𝛿)𝜀

1−𝛿 L𝑥.

Далее при 𝜀 = 𝛿
3 −

𝛿2

1−𝛿 , воспользовавшись соотношением

𝑓(𝛿, 𝜀)
2𝛿 + (1− 𝛿)𝜀

1− 𝛿
=
𝛿 + 𝛿2 + (1− 𝛿)𝜀

1− 𝛿
− 5(2𝛿 + (1− 𝛿)𝜀)

8(1− 𝛿)
=

=
−2𝛿 + 8𝛿2 + 3(1− 𝛿)𝜀

8(1− 𝛿)
= −𝛿

8
+

3(1− 𝛿)𝜀− 𝛿 + 7𝛿2

8(1− 𝛿)
= −𝛿

8
,

находим

A2 ≪ 𝑦𝑥−0,125𝛿L𝑥 = 𝑦L𝑥 exp (−0, 125𝛿L ) . (13)
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Пользуясь условиями 𝛼 ⩽ 𝑥
(︀
2𝜋𝑦2

)︀−1
и (6), имеем

𝑇0 =

(︂
𝑥

𝑦
+ 𝛼𝑥

)︂
L 𝐴+3

𝑥 ⩽

(︂
𝑥

𝑦
+

𝑥2

2𝜋𝑦2

)︂
L 𝐴+3

𝑥 ⩽
𝑥2

𝑦2
L 𝐴+3

𝑥 = 𝑥
3
4 L −2𝐴−33

𝑥 < 𝑥
4
5 ,

Воспользовавшись этим неравенством, оценим снизу параметр 𝛿 = 𝛿(𝑇0):

𝛿(𝑇0) =
𝑐1

(ln(2𝑇0 + 2))
2
3 ln ln(2𝑇0 + 2)

⩾
𝑐1

L
2
3
𝑐 ln L𝑥

⩾ 𝑐1L
−0.6
𝑥 .

Поэтому из (13) получаем

A2 ≪ 𝑦L𝑥 exp
(︀
−0, 125𝑐1L

0.4
𝑥

)︀
≪ 𝑦L −𝐴

𝑥 .

Подставляя эту оценку и оценку для суммы A1 в (12), имеем

|𝑊 (𝛼;𝑥, 𝑦)| ≪ 𝑦L −𝐴
𝑥 .

Из этой оценки и (7) получим утверждение леммы 8.

2.1. Доказательство теоремы

Не ограничивая общности, будем считать, что

𝐻 = 𝑁1− 1
2𝑐 L 2. (14)

Вводя обозначения 𝑁 𝑐
3 = 𝜇3𝑁 +𝐻 и (𝑁3 −𝐻3)

𝑐 = 𝜇3𝑁 −𝐻, а затем пользуясь определением
суммы 𝑆𝑐(𝛼;𝑥, 𝑦), имеем∑︁

|[𝑛𝑐]−𝜇3𝑁 |⩽𝐻

𝑒(𝛼[𝑛𝑐]) =
∑︁

(𝑁3−𝐻3)𝑐+{𝑛𝑐}⩽𝑛𝑐⩽𝑁𝑐
3+{𝑛𝑐}

𝑒(𝛼[𝑛𝑐]) =

=
∑︁

(𝑁3−𝐻3)𝑐<𝑛𝑐⩽𝑁𝑐
3

𝑒(𝛼[𝑛𝑐]) + 𝜃31 + 𝜃32 = 𝑆𝑐 (𝛼;𝑁3, 𝐻3) + 𝜃3, (15)

где 𝜃3 = 𝜃31 + 𝜃32, причём 𝜃31 и 𝜃32 определяются следующим образом:

� |𝜃31| = 1, если в интервале
[︁
𝑁3 −𝐻3, ((𝑁3 −𝐻3)

𝑐 + {𝑛𝑐})
1
𝑐

]︁
длина которого меньше еди-

ницы, существует целое число, и |𝜃32| = 0 в противном случае;

� |𝜃32| = 1, если в полуинтервале
(︁
𝑁3, (𝑁 𝑐

3 + {𝑛𝑐})
1
𝑐

]︁
длина которого также меньше еди-

ницы, существует целое число, и |𝜃32| = 0 в противном случае.

Для параметров 𝑁3 и 𝐻3 справедливы следующие соотношения, которыми далее неодно-
кратно будем пользоваться

𝑁3 = (𝜇3𝑁 +𝐻)
1
𝑐 = (𝜇3𝑁)

1
𝑐

(︂
1 +

𝐻

𝜇3𝑁

)︂ 1
𝑐

= (𝜇3𝑁)
1
𝑐

(︂
1 +

𝐻

𝑐𝜇3𝑁
+𝑂

(︂
𝐻2

𝑁2

)︂)︂
, (16)

𝐻3 = (𝜇3𝑁 +𝐻)
1
𝑐 − (𝜇3𝑁 −𝐻)

1
𝑐 =

2𝐻

𝑐(𝜇3𝑁)1−
1
𝑐

+𝑂

(︂
𝐻2

𝑁2− 1
𝑐

)︂
. (17)

Пользуясь соотношением (15) и обозначениями

S1(𝛼;𝑁𝑘, 2𝐻) =
∑︁

𝑁𝑘−2𝐻<𝑝⩽𝑁𝑘

𝑒(𝛼𝑝), 𝑁𝑘 = 𝜇𝑘𝑁 +𝐻, 𝑘 = 1, 2;
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𝐽𝑐(𝑁,𝐻) — число решений диофантова уравнения

𝑝1 + 𝑝2 + [𝑛𝑐] = 𝑁,

относительно простых чисел 𝑝1, 𝑝2 и натуральных чисел 𝑛 с условиями

|𝑝𝑘 − 𝜇𝑘𝑁 | ⩽ 𝐻, 𝑘 = 1, 2, |[𝑛𝑐]− 𝜇3𝑁 | ⩽ 𝐻,

представим в виде

𝐽𝑐(𝑁,𝐻) =

∫︁ 0,5

−0.5
𝑒(−𝛼𝑁)

∑︁
|𝑝1−𝜇1𝑁 |⩽𝐻

𝑒(𝛼𝑝1)
∑︁

|𝑝2−𝜇2𝑁 |⩽𝐻

𝑒(𝛼𝑝2)
∑︁

|[𝑛𝑐]−𝜇3𝑁 |⩽𝐻

𝑒(𝛼[𝑛𝑐]) =

=

∫︁ 0.5

−0.5
𝑒(−𝛼𝑁) (S1(𝛼;𝑁1, 2𝐻) + 𝜃1) (S1(𝛼;𝑁2, 2𝐻) + 𝜃2) (𝑆𝑐(𝛼;𝑁3, 𝐻3) + 𝜃3) 𝑑𝛼, (18)

где |𝜃𝑘|, (при 𝑘 = 1, 2) равен 1, если соответственно нижние пределы тригонометрических
сумм S1(𝛼;𝑁1, 2𝐻), S1(𝛼;𝑁2, 2𝐻), 𝑇 (𝛼;𝑁3, 𝐻3), то есть числа 𝑁1 − 2𝐻, 𝑁2 − 2𝐻, 𝑁3 − 𝐻3

целые числа, и 0 в противном случае. Перемножая скобки в подинтегральной функции в (18),
получим

𝐽𝑐(𝑁,𝐻) =

∫︁ 0.5

−0.5
𝑒(−𝛼𝑁)S1(𝛼;𝑁1, 2𝐻)S1(𝛼;𝑁2, 2𝐻)𝑆𝑐(𝛼;𝑁3, 𝐻3)𝑑𝛼+ R1, (19)

R1 =

∫︁ 0.5

−0.5
𝑒(−𝛼𝑁) (𝜃3S1(𝛼;𝑁1, 2𝐻)S1(𝛼;𝑁2, 2𝐻) + 𝜃1𝜃2𝑆𝑐(𝛼;𝑁3, 𝐻3)+

+𝜃2S1(𝛼;𝑁1, 2𝐻)𝑆𝑐(𝛼;𝑁3, 𝐻3) + 𝜃1𝜃3S1(𝛼;𝑁2, 2𝐻)+

+𝜃1S1(𝛼;𝑁2, 2𝐻)𝑆𝑐(𝛼;𝑁3, 𝐻3) + 𝜃2𝜃3S1(𝛼;𝑁1, 2𝐻)) 𝑑𝛼.

В R1, переходя к оценкам, пользуясь неравенством Коши, а затем соотношениями∫︁ 0.5

−0.5
|S1(𝛼;𝑁𝑘, 2𝐻)|2𝑑𝛼 = 𝜋(𝑁𝑘)− 𝜋(𝑁𝑘 − 2𝐻) ⩽ 2𝐻, 𝑘 = 1, 2;∫︁ 0.5

−0.5
|𝑆𝑐(𝛼;𝑁3, 𝐻3)|2𝑑𝛼 = [𝑁3]− [𝑁3 −𝐻3] ⩽ 𝐻3 + 1≪ 𝐻

𝑁1− 1
𝑐

,

где при выводе второго из них используется соотношение (17), имеем

R1 ⩽

(︂∫︁ 0.5

−0.5
|S1(𝛼;𝑁1, 2𝐻)|2𝑑𝛼

∫︁ 0.5

−0.5
|S1(𝛼;𝑁2, 2𝐻)|2𝑑𝛼

)︂ 1
2

+

(︂∫︁ 0.5

−0.5
|𝑆𝑐(𝛼;𝑁3, 𝐻3)|2𝑑𝛼

)︂ 1
2

+

+

(︂∫︁ 0.5

−0.5
|S1(𝛼;𝑁1, 2𝐻)|2𝑑𝛼

∫︁ 0.5

−0.5
|𝑆𝑐(𝛼;𝑁3, 𝐻3)|2𝑑𝛼

)︂ 1
2

+

(︂∫︁ 0.5

−0.5
|S1(𝛼;𝑁2, 2𝐻)|2𝑑𝛼

)︂ 1
2

+

+

(︂∫︁ 0.5

−0.5
|S1(𝛼;𝑁2, 2𝐻)|2𝑑𝛼

∫︁ 0.5

−0.5
|𝑆𝑐(𝛼;𝑁3, 𝐻3)|2𝑑𝛼

)︂ 1
2

+

(︂∫︁ 0.5

−0.5
|S1(𝛼;𝑁1, 2𝐻)|2𝑑𝛼

)︂ 1
2

≪

≪ 𝐻 +

(︂
𝐻

𝑁1− 1
𝑐

)︂ 1
2

+

(︂
𝐻2

𝑁1− 1
𝑐

)︂ 1
2

+𝐻
1
2 ≪ 𝐻 ≪ 𝐻2

𝑁1− 1
𝑐 L 3

.

Отсюда и из (19), имеем

𝐽𝑐(𝑁,𝐻) =

∫︁ 0.5

−0.5
F(𝛼)𝑒(−𝛼𝑁)𝑑𝛼+𝑂

(︂
𝐻2

𝑁1− 1
𝑐 L 3

)︂
,

F(𝛼) =S1(𝛼;𝑁1, 2𝐻)S1(𝛼;𝑁2, 2𝐻)𝑆𝑐(𝛼;𝑁3, 𝐻3).
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Отрезок интегрирования [−0, 5, 0, 5] разделим на точки двух классов. К точкам первого класса
отнесем интервал

M = [−æ,æ], где æ = (2𝑐𝐻)−1 L 2.

Оставшиеся интервалы

m+ = [æ, 0, 5] и m− = [−0, 5,−æ]

отнесем к точкам второго класса. Обозначим через 𝐼(M), 𝐼(m+) и 𝐼(m−) соответственно ин-
тегралы по множествам M, m+ и m−. Будем иметь

𝐽𝑐(𝑁,𝐻) = 𝐼(M) + 𝐼(m+) + 𝐼(m−).

В последней формуле первый член, то есть 𝐼(M) доставляет главный член асимптотической
формулы для 𝐽𝑐(𝑁,𝐻), а 𝐼(m+) и 𝐼(m−) входят в его остаточный член.

2.2. Оценка интегралов 𝐼(m+) и 𝐼(m−)

Имеем

𝐼(m+) =

∫︁
m+

𝑒(−𝛼𝑁)S1(𝛼;𝑁1, 2𝐻)S1(𝛼;𝑁2, 2𝐻)𝑆𝑐(𝛼;𝑁3, 𝐻3)𝑑𝛼.

Переходя к оценкам, а затем воспользовавшись неравенством Коши для интегралов, находим

𝐼(m+)≪ max
𝛼∈m+

|𝑇 (𝛼;𝑁3, 𝐻3)|
∫︁ 1

0
|S1(𝛼;𝑁1, 2𝐻)||S1(𝛼;𝑁2, 2𝐻)|𝑑𝛼 =

= max
𝛼∈m+

|𝑆𝑐(𝛼;𝑁3, 𝐻3)|
(︂∫︁ 1

0
|S1(𝛼;𝑁1, 2𝐻)|2𝑑𝛼

)︂ 1
2
(︂∫︁ 1

0
|S1(𝛼;𝑁2, 2𝐻)|2𝑑𝛼

)︂ 1
2

=

= max
𝛼∈m+

|𝑆𝑐(𝛼;𝑁3, 𝐻3)| (𝜋 (𝜇1𝑁 +𝐻)− 𝜋 (𝜇1𝑁 −𝐻))
1
2 (𝜋 (𝜇2𝑁 +𝐻)− 𝜋 (𝜇2𝑁 −𝐻))

1
2 .

Применяя к двум последним множителям правой части полученной формулы, c учётом соот-
ношения

𝐻 = 𝑁1− 1
2𝑐 L 2 ⩾ 𝑁

5
8 L 2 ⩾ (𝜇𝑘𝑁 +𝐻)0.534 , 𝑘 = 1,

леммы 4, найдём

𝜋(𝜇𝑘𝑁 +𝐻)− 𝜋(𝜇𝑘𝑁 −𝐻)≪ 𝐻

L
.

Следовательно

𝐼(m+)≪ 𝐻

L
max
𝛼∈m+

|𝑆𝑐(𝛼;𝑁3, 𝐻3)|. (20)

Оценим 𝑆𝑐(𝛼,𝑁3, 𝐻3) для 𝛼 из множества m+, используя лемму 5 в случае 𝑐 > 1, 1 при

𝐴 = 2, 𝑥 = 𝑁3, 𝑦 = 𝐻3,

а также проверим выполнение каждого из следующих условий:

‖𝑐‖ ⩾ 3
(︁

2[𝑐]+1 − 1
)︁ ln ln𝑁3

ln𝑁3
, (21)

𝐻3 ⩾
√︀

2𝑐𝑁3(ln𝑁3)
2, (22)

æ = (2𝑐𝐻)−1L 2 ⩾
(ln𝑁3)

2

𝐻3𝑁
𝑐−1
3

. (23)
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Воспользовавшись определением параметра 𝑁3 = (𝜇3𝑁 +𝐻)
1
𝑐 , имеем

ln𝑁3 =
1

𝑐
ln

(︂
𝑁

(︂
𝜇3 +

𝐻

𝑁

)︂)︂
=

1

𝑐

(︂
L + ln

(︂
𝜇3 +

𝐻

𝑁

)︂)︂
=

=
L

𝑐

(︃
1 +

ln
(︀
𝜇3 + 𝐻

𝑁

)︀
L

)︃
=

L

𝑐
(1 + R(𝑛)) , R(𝑛)≪ L −1. (24)

Логарифмируя обе части последнего равенства, находим

ln ln𝑁3 = ln L − ln 𝑐+ ln

(︃
1 +

ln
(︀
𝜇3 + 𝐻

𝑁

)︀
L

)︃
= ln L +𝑂(1) = ln L

(︂
1 +𝑂

(︂
1

ln L

)︂)︂
. (25)

Воспользовавшись формулами (24) и (25), получим

ln ln𝑁3

ln𝑁3
=
𝑐 ln L

L
· 1

1 + R(𝑁)

(︂
1 +𝑂

(︂
1

ln L

)︂)︂
=
𝑐 ln L

L

(︂
1 +𝑂

(︂
1

L

)︂)︂(︂
1 +𝑂

(︂
1

ln L

)︂)︂
=

=
𝑐 ln L

L
+𝑂

(︂
1

ln L

)︂
.

Отсюда и из условия ‖𝑐‖ ⩾ 3
(︀
2[𝑐]+1 − 1

)︀ 𝑐 ln L

L
, следует, что

‖𝑐‖ ⩾ 3
(︁

2[𝑐]+1 − 1
)︁(︂ ln ln(𝑁1 +𝐻1)

ln(𝑁1 +𝐻1)
+𝑂

(︂
1

L

)︂)︂
,

то есть выполняется условие (21). Используя соотношения (17), (14), (16) и (24), можно уста-
новить справедливость условия (22):

𝐻3√
2𝑐𝑁3(ln𝑁3)2

=

2𝑁1− 1
2𝑐 L 2

𝑐(𝜇3𝑁)1−
1
𝑐

(︂
1 +𝑂

(︂
𝐻

𝑁

)︂)︂
(︂

2𝑐(𝜇3𝑁)
1
𝑐

(︂
1 +𝑂

(︂
𝐻

𝑁

)︂)︂)︂ 1
2
(︂

L

𝑐

(︂
1 +𝑂

(︂
1

L

)︂)︂)︂2
=

=

√
2𝑐

𝜇
1− 1

2𝑐
3

(︂
1 +𝑂

(︂
1

L

)︂)︂
> 1.

Аналогично, используя соотношения (24), (17) и (16), получаем:

ln2𝑁3

𝐻3𝑁
𝑐−1
3

=

(︂
L

𝑐

(︂
1 +𝑂

(︂
1

L

)︂)︂)︂2

2𝐻

𝑐(𝜇3𝑁)1−
1
𝑐

(︂
1 +𝑂

(︂
𝐻

𝑁

)︂)︂(︂
(𝜇3𝑁)

1
𝑐

(︂
1 +𝑂

(︂
𝐻

𝑁

)︂)︂)︂𝑐−1 =

=
L 2

2𝑐𝐻

(︂
1 +𝑂

(︂
1

L

)︂)︂
= æ +𝑂

(︁ æ

L

)︁
. (26)

Из условия 𝛼 ∈ m+ = [æ, 0.5] следует условие (23). Таким образом, согласно лемме 5, с учетом
соотношений (17), имеем

𝑆𝑐(𝛼;𝑁3, 𝐻3)≪
𝐻3

(ln𝑁3)2
≪ 𝐻

𝑁1− 1
𝑐 L 2

.

Подставляя эту оценку в (20), найдем

𝐼(m+)≪ 𝐻

L
· max
𝛼∈m+

|𝑆𝑐(𝛼;𝑁3, 𝐻3)| ≪
𝐻2

𝑁1− 1
𝑐 L 3

.

Модули интегралов 𝐼(m+) и 𝐼(m−) совпадают, поэтому последняя оценка справедлива и для
𝐼(m−).
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2.3. Вычисление интеграла 𝐼(M)

По определению интеграла 𝐼(M) имеем:

𝐼(M) =

∫︁ æ

−æ
F(𝛼)𝑒(−𝛼𝑁)𝑑𝛼, æ =

L 2

2𝑐𝐻
, (27)

F(𝛼) = S1(𝛼;𝑁1, 2𝐻)S1(𝛼;𝑁2, 2𝐻)𝑆𝑐(𝛼;𝑁3, 𝐻3).

Пользуясь условием 𝑐 ⩾
4

3

(︂
1 + 52

ln L

L

)︂
и формулой суммы бесконечно убывающей геомет-

рической прогрессии, множитель которого равен
52 ln L

L
, имеем

3

8
− 1

2𝑐
=

3

8

(︂
1− 4

3𝑐

)︂
⩾

3

8

(︃
1−

(︂
1 +

52 ln L

L

)︂−1
)︃

=
3

8

∞∑︁
𝑘=1

(−1)𝑘−1

(︂
52 ln L

L

)︂𝑘

>

>
3

8

(︂
52 ln L

L
− 522 ln2 L

L 2

)︂
= 18.5

ln L

L
+

ln L

L

(︂
1− 1014

ln L

L

)︂
> 18.5

ln L

L
. (28)

Для нахождения асимптотической формулы функции F(𝛼;𝑁,𝐻) сначала определим
асимптотическое поведение суммы 𝑆1(𝛼;𝑁𝑘, 2𝐻) при 𝑘 = 1, 2. Полагая

𝑥 = 𝑁𝑘 = 𝜇𝑘𝑁 +𝐻, 𝑦 = 2𝐻, 𝐴 = 3,

применим к этим суммам лемму 8. Проверим выполнение следующих двух условий этой лем-
мы:

2𝐻 ⩾ (𝜇𝑘𝑁 +𝐻)
5
8 (ln(𝜇𝑘𝑁 +𝐻))19.5, æ = (2𝑐𝐻)−1 L 2 ⩽

𝜇𝑘𝑁 +𝐻

8𝜋𝐻2
. (29)

Используя условие (14) и для краткости введя обозначение

𝑐2 = 2

(︂
𝜇𝑘 +

𝐻

𝑁

)︂− 5
8

(︃
1 +

ln
(︀
𝜇𝑘 + 𝐻

𝑁

)︀
L

)︃−19.5

,

а затем применяя неравенство (28), последовательно получаем

2𝐻

(𝜇𝑘𝑁 +𝐻)
5
8 (ln(𝜇𝑘𝑁 +𝐻))19.5

=
2𝑁1− 1

2𝑐 L 2

(𝜇𝑘𝑁 +𝐻)
5
8 (ln(𝜇𝑘𝑁 +𝐻))19.5

= 𝑐2𝑁
3
8
− 1

2𝑐 L −17.5 =

= 𝑐2 exp

(︂(︂
3

8
− 1

2𝑐

)︂
L − 17.5 ln L

)︂
> 𝑐2 exp

(︂
18.5

ln L

L
·L − 17.5 ln L

)︂
= 𝑐2L ,

то есть выполняется первое условие (29). Далее, используя условие (14), покажем, что второе
условие (29) также выполняется:

æ

𝑥(2𝜋𝑦)−2
=

(2𝑐𝐻)−1L 2

(𝜇𝑘𝑁 + 2𝐻)(2𝜋 · 2𝐻)−2
=

8𝜋2𝐻L 2

𝑐(𝜇𝑘𝑁 + 2𝐻)
=

8𝜋2

𝑐
(︀
𝜇𝑘 + 2𝐻

𝑁

)︀ · L 2

𝑁
1
2𝑐

< 1.

Таким образом, оба условия леммы 8 выполнены, и поэтому имеем

𝑆1(𝛼;𝑁𝑘, 2𝐻) =
sin 2𝜋𝛼𝐻

𝜋𝛼
𝑒 (𝛼𝜇𝑘𝑁) +𝑂

(︂
𝐻

L 3

)︂
.

Используя лемму 7, сумму S1(𝛼;𝑁𝑘, 2𝐻), 𝑘 = 1, 2, выражаем через сумму 𝑆1(𝛼;𝑁𝑘, 2𝐻), а
затем, пользуясь последней формулой, получаем

S1(𝛼;𝑁𝑘, 2𝐻) =
𝑆1(𝛼;𝑁𝑘, 2𝐻)

ln(𝜇𝑘𝑁)
+𝑂

(︂
𝐻2

𝑁L

)︂
=

1

ln(𝜇𝑘𝑁)

sin 2𝜋𝛼𝐻

𝜋𝛼
𝑒(𝛼𝜇𝑘𝑁) +𝑂

(︂
𝐻

L 4

)︂
.
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Отсюда, и из соотношения
sin 2𝜋𝛼𝐻

𝜋𝛼
≪ 𝐻, найдём

S1(𝛼;𝑁1, 2𝐻)S1(𝛼;𝑁2𝑁, 2𝐻) =
sin2 2𝜋𝛼𝐻

𝜋2𝛼2

𝑒(𝛼(𝜇1 + 𝜇2)𝑁)

ln(𝜇1𝑁) ln(𝜇2𝑁)
+𝑂

(︂
𝐻2

L 5

)︂
. (30)

Теперь, используя лемму 6 при 𝐴 = 2, 𝑥 = 𝑁3, 𝑦 = 𝐻3, найдем асимптотическое поведение
суммы

𝑆𝑐(𝛼;𝑁3, 𝐻3) =
∑︁

𝑁3−𝐻3<𝑛⩽𝑁3

𝑒(𝛼[𝑛𝑐]), 𝛼 ∈ [−æ, æ].

Условия (21) и (22) леммы 5, выполнение которых было продемонстрировано при оценке
𝐼(m+), совпадают с условиями леммы 6. При оценке суммы 𝑆𝑐(𝛼,𝑁3, 𝐻3) для 𝛼 из множе-
ства m+ в (26) показано, что имеет место

ln2𝑁3

𝐻3𝑁
𝑐−1
3

= æ +𝑂
(︁ æ

L

)︁
.

Из этой формулы и условия 𝛼 ∈M = [−æ,æ] непосредственно следует выполнение условия

|𝛼| ⩽ ln2𝑁3

𝐻3𝑁
𝑐−1
3

.

Следовательно, согласно лемме 6, имеем

𝑆𝑐(𝛼;𝑁3, 𝐻3) =
sin𝜋𝛼

𝜋𝛼

∫︁ 𝑁3

𝑁3−𝐻3

𝑒(𝛼(𝑡𝑐 − 0, 5))𝑑𝑡+𝑂

(︂
𝐻3| sin𝜋𝛼|
(ln(𝑁3)

2

)︂
. (31)

Оценивая остаточный член последней формулы с использованием соотношений (24) и (17),
получаем

𝐻3| sin𝜋𝛼|
(ln(𝑁3)

2 ⩽
𝐻3 sin𝜋æ

(ln(𝑁3)
2 ≪

𝐻3

L 2
· sin

(︂
𝜋L 2

2𝑐𝐻

)︂
≪ 𝐻

𝑁1− 1
𝑐 L 2

· L
2

𝐻
≪ 1

𝑁1− 1
𝑐

.

Подставляя эту оценку в правую часть формулы (31), находим

𝑆𝑐(𝛼;𝑁3, 𝐻) =
1− 𝑒(−𝛼)

2𝜋𝑖𝛼

∫︁ 𝑁3

𝑁3−𝐻3

𝑒(𝛼𝑡𝑐)𝑑𝑡+𝑂

(︂
1

𝑁1− 1
𝑐

)︂
=

=
𝐻3(1− 𝑒(−𝛼))

2𝜋𝑖𝛼
𝛾𝑐(𝛼;𝑁3, 𝐻3) +𝑂

(︂
1

𝑁1− 1
𝑐

)︂
, (32)

𝛾𝑐(𝛼;𝑁3, 𝐻3) =

∫︁ 0,5

−0,5
𝑒 (𝛼(𝑁3 +𝐻3(𝑡− 0.5))𝑐) 𝑑𝑡. (33)

Найдем асимптотическую формулу для интеграла 𝛾𝑐(𝛼;𝑁3, 𝐻3). Пользуясь соотношениями

𝑁 𝑐
3 = 𝜇3𝑁 +𝐻, 𝐻2

3𝑁
𝑐−2
3 ≪ 𝐻2

𝑁2− 2
𝑐

·𝑁
𝑐−2
𝑐 =

𝐻2

𝑁
,

𝑐𝐻3𝑁
𝑐−1
3 = 𝑐

(︃
2𝐻

𝑐(𝜇3𝑁)1−
1
𝑐

+𝑂

(︂
𝐻2

𝑁2− 1
𝑐

)︂)︃
(𝜇3𝑁)

𝑐−1
𝑐

(︂
1 +𝑂

(︂
𝐻

𝑁

)︂)︂
= 2𝐻 +𝑂

(︂
𝐻2

𝑁

)︂
,

которые следуют из соотношений (17) и (16), получаем

(𝑁3 +𝐻3(𝑡− 0.5))𝑐 = 𝑁 𝑐
3

(︂
1 +

𝐻3(𝑡− 0.5)

𝑁3

)︂𝑐

= 𝑁 𝑐
3

(︂
1 +

𝑐𝐻3(𝑡− 0.5)

𝑁3
+𝑂

(︂
𝐻2

3

𝑁2
3

)︂)︂
=

= 𝑁 𝑐
3 + 𝑐𝐻3𝑁

𝑐−1
3 (𝑡− 0.5) +𝑂

(︀
𝐻2

3𝑁
𝑐−2
3

)︀
=

= 𝜇3𝑁 +𝐻 + 2𝐻(𝑡− 0.5) +𝑂

(︂
𝐻2

𝑁

)︂
= 𝜇3𝑁 + 2𝐻𝑡+ R2, R2 ≪

𝐻2

𝑁
.
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Отсюда и из (33), учитывая, что 𝑒(𝛼R2)− 1≪ |𝛼|R2 и |𝛼| ≪ L 2𝐻−1, получаем

𝛾(𝛼;𝑁3, 𝐻3) =

∫︁ 0,5

−0,5
𝑒 (𝛼 (𝜇3𝑁 + 2𝐻𝑡+ R2)) 𝑑𝑡 = 𝑒 (𝜇3𝑁𝛼)

sin (2𝜋𝛼𝐻)

2𝜋𝛼𝐻
+𝑂

(︂
𝐻L 2

𝑁

)︂
. (34)

Используя формулу Тейлора для функций cos 2𝜋𝛼 и sin 2𝜋𝛼 в окрестности нуля |𝛼| ⩽ æ,
найдем

1− 𝑒(−𝛼)

2𝜋𝑖𝛼
=

1− cos 2𝜋𝛼+ 𝑖 sin 2𝜋𝛼

2𝜋𝑖𝛼
=

1− (1 +𝑂(𝛼2)) + 2𝜋𝑖𝛼+𝑂(𝛼3)

2𝜋𝑖𝛼
= 1 +𝑂

(︂
L 2

𝐻

)︂
. (35)

Далее, перемножая почленно формулы (34) и (35) и воспользовавшись неравенством⃒⃒⃒⃒
sin (2𝜋𝛼𝐻)

2𝜋𝛼𝐻

⃒⃒⃒⃒
≪ 1, получим

1− 𝑒(−𝛼)

2𝜋𝑖𝛼
𝛾(𝛼;𝑁3, 𝐻3) = (𝑒 (𝜇3𝑁𝛼)

sin (2𝜋𝛼𝐻)

2𝜋𝛼𝐻
+𝑂

(︂
𝐻L 2

𝑁

)︂
.

Отсюда и из (32) получим

𝑆𝑐(𝛼;𝑁3, 𝐻) = 𝐻3
sin(2𝜋𝛼𝐻)

2𝜋𝛼𝐻
𝑒(𝜇3𝑁𝛼) +𝑂

(︂
𝐻2L 2

𝑁2− 1
𝑐

)︂
. (36)

Почленно перемножая формулы (30) и (36), а затем оценивая остаточный член этого про-
изведения, обозначенный через R4, с использованием неравенства | sin(2𝜋𝛼𝐻)| ≪ |2𝜋𝛼𝐻| и
соотношения (17), получаем

F(𝛼) =
𝐻3

2𝐻 ln(𝜇1𝑁) ln(𝜇2𝑁)
· sin3 2𝜋𝛼𝐻

𝜋3𝛼3
𝑒(𝛼(𝜇1 + 𝜇2 + 𝜇3)𝑁) + R4,

R4 ≪
sin2 2𝜋𝛼𝐻

𝜋2𝛼2L 2
· 𝐻

2L 2

𝑁2− 1
𝑐

+
𝐻3| sin(2𝜋𝐻𝛼)|
|2𝜋𝐻𝛼|

𝐻2

L 5
+

𝐻4

𝑁2− 1
𝑐 L 3

≪

≪ 𝐻4

𝑁2− 1
𝑐

+
𝐻3

𝑁1− 1
𝑐 L 5

+
𝐻4

𝑁2− 1
𝑐 L 3

≪ 𝐻3

𝑁1− 1
𝑐 L 5

.

Подставляя выражение для функции F(𝛼), то есть правую часть последней формулы, в (27),
получаем

𝐼(M) =
𝐻3

2𝐻 ln(𝜇1𝑁) ln(𝜇2𝑁)
𝐽(𝐻) +𝑂

(︂
𝐻2

𝑁1− 1
𝑐 L 3

)︂
, (37)

𝐽(𝐻) =

∫︁ æ

−æ

sin3 2𝜋𝛼𝐻

𝜋3𝛼3
𝑑𝛼.

Заменяя 𝐽(𝐻) близким к нему несобственным интегралом, не зависящим от L , и используя
формулу (см. [21], стр. 174)

∞∫︁
0

sin𝑛𝑚𝑢

𝑢𝑛
𝑑𝑢 =

𝜋𝑚𝑚−1

2𝑛(𝑛− 1)!

[︂
𝑛𝑛−1 − 𝑛

1!
(𝑛− 2)𝑛−1 +

𝑛(𝑛− 1)

2!
(𝑛− 4)𝑛−1 + . . .

]︂
,

при 𝑚 = 1 и 𝑛 = 3, найдём

𝐽(𝐻) =
8𝐻2

𝜋

∫︁ 2𝜋æ𝐻

0

sin3 𝑢

𝑢3
𝑑𝑢 =

8𝐻2

𝜋

(︂∫︁ ∞

0

sin3

𝑢3
𝑑𝑢−

∫︁ ∞

2𝜋æ𝐻

sin3 𝑢

𝑢3
𝑑𝑢

)︂
=

=
8𝐻2

𝜋

∫︁ ∞

0

sin3 𝑢

𝑢3
𝑑𝑢+𝑂

(︂
𝐻

L 6

)︂
= 3𝐻2 +𝑂

(︂
𝐻2

L 6

)︂
.
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Подставляя значение интеграла 𝐽(𝐻) в формулу (37), найдём

𝐼(M) =
3𝐻𝐻3

2 ln(𝜇1𝑁) ln(𝜇2𝑁)
+𝑂

(︂
𝐻2

𝑁1− 1
𝑐 L 𝐴

)︂
+𝑂

(︂
𝐻2

𝑁1− 1
𝑐 L 8

)︂
.

Воспользовавшись формулой (17) и соотношением

1

ln(𝜇𝑘𝑁)
− 1

L
=

− ln𝜇𝑘
(L − ln𝜇𝑘)L

≪ 1

L 2
,

получим

𝐼(M) =
3𝐻2

𝑐(𝜇3𝑁)1−
1
𝑐 L 2

+𝑂

(︂
𝐻2

𝑁1− 1
𝑐 L 3

)︂
.

Теорема доказана. 2
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Аннотация

В статье на классе K бесконечных двоичных последовательностей без 1-серий строит-
ся согласованное распределение вероятностей P, которое индуцируется однородной цепью
Маркова с матрицей перехода за один шаг P𝜑 , и полностью определяемой золотым сече-
нием 𝜑. Использование цепи Маркова при построении вероятностной меры P позволяет
применить теорему А.Н. Колмогорова о продолжении меры. Асимптотическое распреде-
ление подкласса K 0 бесконечных двоичных последовательностей без 1-серий, начинаю-
щихся с нуля, совпадает с аналогичным асимптотическим распределением классической
равновероятностной модели. При этом асимптотическое распределение данного класса K 0
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Markov chain with a one-step transition matrix P𝜑 , and is completely determined by the
golden ratio 𝜑. Using a Markov chain to construct a probability measure P allows us to apply
Kolmogorov’s existence theorem. The asymptotic distribution of the subclass K 0 of infinite
binary sequences without the runs of ones starting with zero coincides with the analogous
asymptotic distribution of the classical equiprobable scheme . And in this case, the asymptotic
distribution of the class K 0 coincides with the probability P(K 0).

Keywords: Kolmogorov’s existence theorem, Markov chains, entropy of Markov chains,
Fibonacci numbers, golden ratio, binary sequences, equidistributed sequences, probability
distribution, uniform distribution, frequency distribution, asymptotic distribution, asymptotic
behavior, limiting distribution, entropy.

Bibliography: 19 titles.

For citation:

Sobolev, V. N., Frolov, A. A. 2025, “On the application of A.N. Kolmogorov’s Theorem” , Cheby-
shevskii sbornik, vol. 26, no. 5, pp. 203–220.

1. Введение

Построение асимптотических распределений [1, стр. 82] в своём основании содержит за-
кон равномерного распределения. В силу чего используемые при таком построении семейства
распределений оказываются несогласованными. Что в свою очередь приводит к тому, что по-
лучаемые асимптотические распределения оказываются вероятностно не связаными с исход-
ными семействами распределений. Следующая фундаментальная теорема А.Н. Колмогорова
о продолжении вероятностной меры [2, стр. 67, 398] позволяет избежать этого.

Теорема 1. Задание на конечномерных пространствах K𝑛 согласованных распределений
P𝑛 определяет на измеримом пространстве (K ,F ) такую единственную вероятностную
меру P, что каждая P𝑛 есть проекция P на K𝑛.
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В работе на конкретном примере показано, как с помощью теоремы А.Н. Колмогорова
вероятностно обосновывать построение асимптотических распределений. При этом само по-
строение согласованных распределений для применения данной теоремы опирается на теорию
цепей Маркова.

Так в статье на классе бесконечных двоичных последовательностей без 1-серий (нет двух
подряд идущих единиц) [3, 4, 5]

K = {𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛, . . .) : 𝑥𝑘 · 𝑥𝑘+1 ̸= 1} , 𝑥𝑘 ∈ {0, 1}

двумя разными наборами вероятностных мер: {̃︀P𝑛} и {P𝑛}, заданных на конечных подпро-
странствах

K𝑛 = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) : 𝑥𝑘 · 𝑥𝑘+1 ̸= 1} ,

будет построено одно и тоже асимптотическое распределение вероятностей [6, 7, 8] появление
последовательности из множеств

K 0 = {𝑥 ∈ K : 𝑥1 = 0} , K 1 = {𝑥 ∈ K : 𝑥1 = 1} .

Первый тип распределений {̃︀P𝑛} определяется на основе равновероятностной модели. Для
его построения на каждом конечном пространстве K𝑛 в качестве вероятностного закона бе-
рётся равномерное распределение ̃︀P𝑛, то есть вероятности ̃︀P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) появления любой
последовательности (𝑥1, 𝑥2, . . . , 𝑥𝑛) из K𝑛 при фиксированном 𝑛 берутся равными между со-
бой. Данные распределения {̃︀P𝑛} в силу равномерного закона распределения оказываются
несогласованными (см. далее п. 2.2). Поэтому их предельное распределение на K оказывает-
ся вероятностно не связанным с ними.

Построение второго семейства распределений {P𝑛}, доставляющего такое же асимптоти-
ческое распределение, что и семейство {̃︀P𝑛}, как уже говорилось выше, опирается на теорему
А.Н. Колмогорова (см., также [7, стр. 204] и [9, стр. 110]) и задаётся с помощью однородной
цепи Маркова [10].

Таким образом, данное распределение {P𝑛} гарантирует существование на множестве всех
двоичных последовательностей бесконечной длины с носителем K вероятностной меры P,
которая соответствует асимптотическому распределению. В силу чего асимптотическое рас-
пределение равновероятностных мер ̃︀P𝑛 приобретает в ней законное с вероятностной точки
зрения основание. Значение энтропии такой цепи Маркова, как будет показано ниже, наи-
более близко к энтропии равновероятностной модели. Кроме того, построеная в работе цепь
Маркова может быть задана достаточно простым способом, описанным в теореме 4.

2. Основные определения и понятия

2.1. Множество последовательностей без 1-серий

Поскольку носитель K рассматриваемых далее распределений есть множество последо-
вательностей без 1-серий [3, 4], то вначале дадим их определения и рассмотрим основные
свойства и структуру данных множеств.

Обозначим при каждом натуральном 𝑛 ∈ N множество двоичных последовательностей
(цепочек, векторов) без 1-серий как и множество подобных последовательностей бесконечной
длины K .

В [5] доказывается, что

|K𝑛| = |(𝑥1, 𝑥2, . . . , 𝑥𝑛) : 𝑥𝑘 · 𝑥𝑘+1 ̸= 1} | = 𝐹𝑛+2 ,
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где 𝐹𝑛 – числа Фибоначчи, которые можно определить рекуррентно [5, 11] как

𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛 , 𝐹1 = 𝐹2 = 1 .

Множества K𝑛 распадаются на два подкласса

K 0
𝑛 = {𝑥 ∈ K𝑛 : 𝑥𝑘𝑥𝑘+1 ̸= 1 , 𝑥1 = 0} , K 1

𝑛 = {𝑥 ∈ K𝑛 : 𝑥𝑘𝑥𝑘+1 ̸= 1 , 𝑥1 = 1} ,

а множество K соответственно на

K 0 = {𝑥 ∈ K : 𝑥1 = 0} , K 1 = {𝑥 ∈ K : 𝑥1 = 1} .

Мощности множеств K 0
𝑛 , K

1
𝑛 , также как и мощность K𝑛, выражаются (см. доказательство

в [5]) через соответствующие числа Фибоначчи:⃒⃒
K 0

𝑛

⃒⃒
= 𝐹𝑛+1 ,

⃒⃒
K 1

𝑛

⃒⃒
= 𝐹𝑛 .

В силу существования предела

lim
𝑛→∞

𝐹𝑛+1

𝐹𝑛
= 𝜑 (1)

соотношение между числом элементов в данных двух поклассах K𝑛 с ростом 𝑛 асимптотиче-
ски [12, стр. 72] сохраняется: ⃒⃒

K 0
𝑛

⃒⃒
|K 1

𝑛 |
∼ 𝜑 =

1 +
√

5

2
. (2)

Здесь 𝜑 – золотое сечение или число Фидия [11].

Нам так же понадобится разложение каждого из множеств K 0
𝑛 , K 1

𝑛 на части:

K 0
𝑛 = K 00

𝑛

⨆︁
K 01

𝑛 , K 1
𝑛 = K 10

𝑛

⨆︁
K 11

𝑛 ,

где

K 00
𝑛 = {𝑥 ∈ K𝑛 : 𝑥1 = 0 , 𝑥𝑛 = 0} , K 01

𝑛 = {𝑥 ∈ K𝑛 : 𝑥1 = 0 , 𝑥𝑛 = 1} ,

K 10
𝑛 = {𝑥 ∈ K𝑛 : 𝑥1 = 1 , 𝑥𝑛 = 0} , K 11

𝑛 = {𝑥 ∈ K𝑛 : 𝑥1 = 1 , 𝑥𝑛 = 1} .

Мощности классов K 𝑖𝑗
𝑛 , как и раньше мощности классов K 𝑖

𝑛 , будут выражаться через числа
Фибоначчи: ⃒⃒

K 00
𝑛

⃒⃒
= 𝐹𝑛 ,

⃒⃒
K 10

𝑛

⃒⃒
= 𝐹𝑛−1 ,

⃒⃒
K 01

𝑛

⃒⃒
= 𝐹𝑛−1 ,

⃒⃒
K 11

𝑛

⃒⃒
= 𝐹𝑛−2 ,

и ⃒⃒
K 00

𝑛

⃒⃒
+
⃒⃒
K 10

𝑛

⃒⃒
=
⃒⃒
K 0

𝑛

⃒⃒
,
⃒⃒
K 01

𝑛

⃒⃒
+
⃒⃒
K 11

𝑛

⃒⃒
=
⃒⃒
K 1

𝑛

⃒⃒
.

В связи с таким разбиением также возникает класс векторов

̃︁K 0
𝑛 = {𝑥 ∈ K𝑛 : 𝑥𝑛 = 0} = K 00

𝑛

⨆︁
K 10

𝑛 ,

которые заканчиваются единицей, и класс векторов

̃︁K 1
𝑛 = {𝑥 ∈ K𝑛 : 𝑥𝑛 = 1} = K 11

𝑛

⨆︁
K 01

𝑛 ,

которые заканчиваются нулём.
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2.2. Вероятностные пространства

Положим в качестве пространства элементарных событий (исходов) Ω множество всех
бесконечных последовательностей без 1-серий, то есть Ω = K . Элементарными событиями
данного пространства будут двоичные последовательности без 1-серий 𝑥 = (𝑥1, 𝑥2, . . .) . С
пространством Ω связаны конечномерные пространства элементарных исходов Ω𝑛 = K𝑛 .

Кроме пространств элементарных событий Ω𝑛 определим алгебры событий ℱ𝑛 = 2Ω𝑛 как
множества всех подмножеств соответствующих пространств элементарных событий. В силу
конечности Ω𝑛 будут конечны и ℱ𝑛, поскольку |ℱ𝑛| = 2|Ω𝑛|.

Вероятность P𝑛 (𝐴) для любого события (подмножества последовательностей) 𝐴 ∈ ℱ𝑛 суть
аддитивная, неотрицательная и нормированная функция событий (множеств). Её можно за-
давать разными способами. В нашем случае в силу конечности пространств Ω𝑛 для полного
описания вероятностной меры P𝑛 на Ω𝑛 достаточно определить P𝑛 на множестве элементар-
ных событий, то есть на множестве двоичных последовательностей (цепочек) из Ω𝑛

𝑥𝑛 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ,

приписав каждой такой последовательности вероятность её появления:

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) := 𝑃𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) .

Тогда любая вероятностная мера P𝑛 полностью описывается [2, стр. 33] таким конеч-
ным набором вероятностей и для произвольного события 𝐴 ∈ ℱ𝑛 вероятность P𝑛 (𝐴) может
быть представлена в виде суммы соответствующих ей значений 𝑃𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) вероятно-
стей P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) :

P𝑛 (𝐴) =
∑︁

(𝑥1,𝑥2,...,𝑥𝑛)∈𝐴

𝑃𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) .

В общем случае в силу несчётности K возникает вопрос о задании на ℱ вероятностной
меры P. Для его решения, как уже говорилось выше, удобно использовать фундаменталь-
ную теорему А.Н. Колмогорова о продолжении вероятностной меры, в формулировке которой
используется понятие согласованности вероятностных мер. Для полного описания данной тео-
ремы кратко напомним основные моменты, связанные с этим понятием.

Говорят, что распределения P𝑛 на (Ω𝑛,ℱ𝑛) и P𝑚 на (Ω𝑚,ℱ𝑚) согласованы, если две меры
P*
𝑛 и P*

𝑚, индуцированые на пересечении Ω𝑛 ·Ω𝑚 соответственно мерами P𝑛 и P𝑚, на данном
пересечении совпадают.

В последнем определении без ограничения общности можно считать, что 𝑚 < 𝑛. Тогда
в рассматриваемом нами случае в силу определения Ω𝑛 и Ω𝑚 имеем Ω𝑚 = Ω𝑛 · Ω𝑚. Таким
образом, согласованность P𝑛 и P𝑚 означает, что P𝑛 (𝐴) = P𝑚 (𝐴) при всех 𝐴 ∈ ℱ𝑚. В этом
случае говорят, что вероятностная мера P𝑚 является проекцией меры P𝑛.

Совпадение P𝑛 (𝐴) = P𝑚 (𝐴) при всех 𝐴 ∈ ℱ𝑚 в нашем дискретном случае может быть
заменено выполнением следующих равенств для всех (𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ K𝑚

P𝑚 (𝑥1, 𝑥2, . . . , 𝑥𝑚) =
∑︁

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛) ,

в которых суммирование ведётся по всевозможным наборам (𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛) из
K𝑛 таким, что начало вектора (𝑥1, 𝑥2, . . . , 𝑥𝑚) фиксировано.

Система таких согласованных распределений и используется в формулировке теоремы
Колмогорова [2, стр. 67, 398].
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3. Частотная модель распределения конечного набора векторов

3.1. Построение частотной модели как равномерного равномерного распре-
деления

На множестве всех последовательностей K𝑛 рассмотрим вероятности попадания произ-
вольной цепочки (𝑥1, 𝑥2, . . . , 𝑥𝑛) в множества K 0

𝑛 и K 1
𝑛 в предположении о том, что появление

любой последовательности из K𝑛 равновозможно. Поскольку количество таких цепочек, как
мы уже указывали выше, равно 𝐹𝑛+2, то вероятности их появления одинаковы и определяется
формулой ̃︀P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =

1

𝐹𝑛+2
.

В этом случае говорят, что на K𝑛 задано равномерное распределение ̃︀P𝑛, а вероятности попа-
дания произвольной цепочки (𝑥1, 𝑥2, . . . , 𝑥𝑛) в множества K 0

𝑛 и K 1
𝑛 находятся как отношения

мощностей соответствующих множеств:

̃︀P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 0

𝑛

}︀
=

⃒⃒
K 0

𝑛

⃒⃒
|K𝑛|

=
𝐹𝑛+1

𝐹𝑛+2
, (3)

̃︀P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 1

𝑛

}︀
=

⃒⃒
K 1

𝑛

⃒⃒
|K𝑛|

=
𝐹𝑛

𝐹𝑛+2
, (4)

то есть для их определения используется классическое определение вероятностей.

3.2. Определение асимптотического распределения в рамках частотной мо-
дели

При классическом определении вероятностей ̃︀P𝑛 асимптотическое распределение находит-
ся как обычные пределы отношения вероятностей (3) и (4):

lim
𝑛→+∞

̃︀P𝑛

(︀
𝑥𝑛 ∈ K 0

𝑛

)︀
= lim

𝑛→+∞

𝐹𝑛+1

𝐹𝑛+2
=

1

𝜑
, lim

𝑛→+∞
̃︀P𝑛

(︀
𝑥𝑛 ∈ K 1

𝑛

)︀
= lim

𝑛→+∞

𝐹𝑛

𝐹𝑛+2
=

1

𝜑2
, (5)

где 𝑥𝑛 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K𝑛.

Значениям пределов (5) часто сопоставляются вероятностям попадания последовательно-
сти 𝑥=(𝑥1, 𝑥2, . . . ,
𝑥𝑛, . . .) ∈ K в множества K 0 и K 1соответственно , то есть в соответствии с (5) на данных
двух множествах определяется вероятностная мера ̃︀P так, чтобы попаданию произвольной
цепочки 𝑥 в множества K 0 и K 1 соответствовали вероятности

̃︀P{︀(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 0
}︀

:=
1

𝜑
, (6)

̃︀P{︀(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 1
}︀

:=
1

𝜑2
. (7)

В силу справедливости равенств 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛 и свойств предела вектор

𝑞⃗ = (𝑞0, 𝑞1) =

(︂
1

𝜑
,

1

𝜑2

)︂
(8)

является стохастическим. Это также следует из известного для золотого сечения [11, стр. 24]
равенства 𝜑2 = 1 + 𝜑.
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3.3. Несогласованность распределений в рамках частотной модели

Сопоставление вектора 𝑞⃗ = (𝑞0, 𝑞1) вероятностям попадания в множества K 0 и K 1 с веро-
ятностной точки зрения носит условный характер. Это можно объяснить тем, что распределе-
ния ̃︀P𝑛 , 𝑛 ∈ N не согласованы, то есть не удовлетворяют теореме Колмогорова о продолжении
меры (см. выше теорему 2). В связи с этим они не позволяют определить на K согласованную
с ними вероятность ̃︀P так, чтобы выполнялись равенства ̃︀P{︀(𝑥1, 𝑥2, . . . , 𝑥𝑛, . . .) ∈ K 0

}︀
= 𝜑−1

и ̃︀P{︀(𝑥1, 𝑥2, . . . , 𝑥𝑛, . . .) ∈ K 1
}︀

= 𝜑−2.

Для дальнейших рассуждений отметим, что в предельном случае (8) отношение асимп-
тотических вероятностей 𝑞0 и 𝑞1 в точности равно 𝜑, в то время как согласно (1) отношение
вероятностей (3) и (4)

̃︀P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 0

𝑛

}︀
̃︀P𝑛 {(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 1

𝑛 }
=

⃒⃒
K 0

𝑛

⃒⃒
|K 1

𝑛 |
=
𝐹𝑛+1

𝐹𝑛
∼ 𝜑 (9)

зависит от 𝑛 (длины вектора) и только стремится к 𝜑 с ростом 𝑛.

4. Марковская модель как метод построения согласованных рас-

пределений

Для построения согласованных распределений будем использовать цепь Маркова.

4.1. Построение распределения вероятностей как цепи Маркова

Цепь Маркова или иначе модель испытаний, связанных в цепь Маркова можно полно-
стью определить (подробнее см. [7, стр. 140]), задав вероятности P𝑛 на всех двоичных последо-
вательностях (𝑥1, 𝑥2, . . . , 𝑥𝑛) из K𝑛 по формуле (в ней нижнии индексы вероятностей перехода
и составляют «цепь», последовательно «зацепляясь друг за друга»)

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) := 𝑞𝑥1 · 𝑝𝑥1𝑥2 · 𝑝𝑥2𝑥3 · . . . · 𝑝𝑥𝑛−1𝑥𝑛 , (10)

в которой вероятности перехода 𝑝𝑥𝑘𝑥𝑘+1
от числа 𝑥𝑘 к числу 𝑥𝑘+1 в силу того, что 𝑥𝑘 ∈ {0, 1},

имеют всего четыре значения: 𝑝00, 𝑝01, 𝑝11, 𝑝10 , а вероятности 𝑞𝑥1 появления первого зна-
чения 𝑥1 в последовательности (𝑥1, 𝑥2, . . . , 𝑥𝑛) только два: 𝑞0, 𝑞1. Значения 𝑝00, 𝑝01, 𝑝11, 𝑝10
записанные в виде матрицы

P =

(︂
𝑝00 𝑝01
𝑝10 𝑝11

)︂
составляют матрицу перехода однородной цепи Маркова за один шаг [7, 2], а значения 𝑞0,
𝑞1, записанные в виде стохастического вектора 𝑞⃗ = (𝑞0, 𝑞1) — начальное распределение цепи
Маркова.

Цепь Маркова полностью определяется своей матрицей перехода и своим начальным рас-
пределением. В контексте нашей задачи цепь Маркова используется как способ задания рас-
пределений P𝑛 с помощью формулы (10).

Семейство распределений {P𝑛}, построенное по правилу (10), является согласованным.
Поэтому согласно теореме Колмогорова на множестве бесконечных бинарных последователь-
ностей K оно определяет некоторое распределение P.
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4.2. Условие совпадения асимптотических распределений

Найдём среди множества согласованных семейств распределений вида (10) те, которые
индуцируют на K меру P так, чтобы вероятности множеств K 0 и K 1 совпадали бы со зна-
чениями вероятностей (6) и (7) асимптотического распределения ̃︀P из классической частотной
модели, то есть так, чтобы гарантировать для P выполнение равенств

P
{︀

(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 0
}︀

=
1

𝜑
, (11)

P
{︀

(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 1
}︀

=
1

𝜑2
(12)

и, следовательно, соотношения

P
{︀

(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 0
}︀

P {(𝑥1, 𝑥2, . . . , 𝑥𝑛,...) ∈ K 1}
= 𝜑 .

Аналогичные требования наложим и на сами вероятностные меры P𝑛:

P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 0

𝑛

}︀
=

1

𝜑
, (13)

P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 1

𝑛

}︀
=

1

𝜑2
. (14)

Таким образом, построеные распределения P𝑛 будут не просто гарантировать существова-
ние на пространстве бесконечных последовательностей распределения P со свойствами (11) и
(12), но и при каждом натуральном 𝑛 сами будут обладать подобными свойствами (13) и (14).
Такое свойство данных распределений, в частности позволяет заменять при статистических
исследованиях распределение P на P𝑛 при любом натуральном 𝑛.

Обратим внимание на то, что асимптотическое распределение в смысле равенств (6) и (7)
не совпадает с предельным распределением цепи Маркова [13, стр. 118] как численно так и по
определению. Изучение связи между ними требует отдельного рассмотрения.

Оказывается, что за численные значения асимптотического распределения цепи Маркова в
рассматриваемой нами задаче отвечает только её начальное распределение. При этом матрица
переходных вероятностей может быть любой из класса матриц вида

P𝛼 =

(︂
1− 𝛼 𝛼

1 0

)︂
, (15)

где 0 < 𝛼 < 1. Обозначим класс распределений вероятностей, определяемых матрицами вида
P𝛼, 0 < 𝛼 < 1, через P.

Лемма 1. Распределение вероятностей цепи Маркова, порождаемое матрицей (15) и
начальным вектором 𝑞⃗ =

(︀
𝜑−1, 𝜑−2

)︀
, определяет на множестве K распределение P, для

которого выполнены равенства (11) и (12).

Доказательство. 1. По построению 𝑞⃗ =
(︀
𝜑−1, 𝜑−2

)︀
есть начальное распределение цепи, то

есть 𝜑−1 – это вероятность появления на первом месте последовательности (𝑥1, 𝑥2, . . . , 𝑥𝑛, . . .)
нуля, а 𝜑−2 – вероятность появления единицы. Поэтому равенства (11) и (12) верны, как
вероятности появления на первом месте нуля и единицы соответственно. Их можно рассмат-
ривать как вероятностные меры одномерных цилиндров (одномерных цилиндрических мно-
жеств) (0, 𝑥2, . . . , 𝑥𝑛,...) и (1, 𝑥2, . . . , 𝑥𝑛,...).

2. Распределение цепи Маркова (10) порождаемое матрицей (15) будет иметь своим носите-
лем (множество, на котором оно невырождено) только такие последовательности, в которых
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никакие две единицы не стоят рядом, поскольку вероятность такого события определяется
элементом 𝑝11 = 0 матрицы P𝛼, то есть вероятность того, что две единицы стоят рядом рав-
на нулю. Из этого условия следует, что 𝑝10 = 1, то есть для любой последовательности из
носителя с вероятностью единица после 1 следует 0. Такие последовательности и составляют
множество K .

2

Аналогичное доказательство имеет подобная лемма и для пространств K𝑛 c распределе-
нием P𝑛.

Лемма 2. Распределение вероятностей цепи Маркова, порождаемое матрицей (15) и
начальным вектором 𝑞⃗ =

(︀
𝜑−1, 𝜑−2

)︀
, определяет на множестве K𝑛 распределение P𝑛, для

которого выполнены равенства (13) и (14).

4.3. Энтропия как условие близости цепи Маркова к статистической модели

Согласно результатам предыдущего пункта имеется бесконечно много распределений (мо-
делей), построенных с помощью цепей Маркова, асимптотические распределения которых
совпадают с асимптотическим распределением частотной модели. Как известно, частотная
модель описывается с помощью равномерного распределения и в теории вероятностей назы-
вается классической.

Среди всех моделей, построенных нами выше с помощью цепи Маркова, определим
наиболее близкую к классической частотной модели, аппелируя к понятию энтропии (см.
[14, 15, 16]). Поскольку самая большая энтропия соответствует равномерному распределе-
нию [2, стр. 295], то среди всех распределений из класса P, описываемого матрицами (15)
и начальным вектором (8), возьмём только то, которое имеет максимальную данном классе
распределений энтропию.

Поскольку "выравнивание" вероятностей приводит к увеличению энтропии, то не вызы-
вает удивления, что самой большой энтропией обладает равномерное распределение, посколь-
ку у него вероятности "выравнены" на всей области определения, то есть вероятности всех
цепочек из K равны. Ближайшей ступенью близости с точки зрения разбиения простран-
ства элементарных исходов (последовательностей) на классы (далее классы равномерности),
внутри которых элементарные исходы имеют одинаковые значения вероятностей, являются
распределения с двумя классами равномерности.

Ниже мы докажем, что модель с максимальной энтропией единствена, имеет ровно два
класса равномерности и может быть определена с помощью матрицы перехода (17), началь-
ного распределения (8), которое совпадает с асимптотическим распределением частотной мо-
дели.

Для описания энтропии кроме матрицы P введём матрицу переходных вероятностей цепи
Маркова за 𝑚 ∈ N0 шагов:

P(𝑚) :=
⃦⃦⃦
𝑝
(𝑚)
𝑖𝑗

⃦⃦⃦
.

Согласно определению P(0) := 𝐸, P(1) := P. Для таких матриц P(𝑚) однородных цепей Маркова
верно равенство P(𝑚) = P𝑚 .

В нашем случае путем подстановки соответствующих значений вероятностей в общую фор-

мулу [7, стр. 145] для цепей Маркова с двумя состояниями для P(𝑚)
𝛼 получается представление

P𝑚
𝛼 =

1

1 + 𝛼

(︂
1 𝛼
1 𝛼

)︂
+

(−𝛼)𝑚

1 + 𝛼

(︂
𝛼 −𝛼
−1 1

)︂
.

Из него следует, что если 0 < 𝛼 < 1, то при 𝑚 → +∞ существуют предельные вероятности
(см. [7, стр. 833] и [13, стр. 118])
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𝜋𝑗 := lim
𝑛→∞

𝑝
(𝑛)
𝑖𝑗 > 0 ,

такие, что

P𝑚 −→ 1
1+𝛼

(︂
1 𝛼
1 𝛼

)︂
=

(︂
𝜋⃗
𝜋⃗

)︂
,

где предельная матрица состоит из двух одинаковых стохастических векторов

𝜋 =
(︀

1
1+𝛼 ,

𝛼
1+𝛼

)︀
. (16)

В силу определения компонент вектор 𝜋 через определение предела последовательности чисел
вектор 𝜋 единственен. Поскольку при 0 < 𝛼 < 1 все финальные вероятности положительны,
то есть

𝜋 = (𝜋0, 𝜋1) > 0 ,

то любая цепь Маркова с такими параметрами эргодическая [7, стр. 811]. Напомним, что в
этом случае стохастический вектор 𝜋⃗ так же является стационарным (или инвариантным)
распределением [7, стр. 147, 809] однородной цепи Маркова, то есть он является левым соб-
ственным вектором матрицы переходных вероятностей P с собственным значением 𝜆 = 1:

𝑞⃗ (P− 𝐸) = 0 .

К тому же вектор 𝜋⃗ будет совпадать с предельным распределением цепи Маркова [10, стр. 117].
Каждому стохастическому вектору 𝑞⃗ = (1− 𝑞, 𝑞) сопоставим число 𝐻 (𝑞⃗), воспользовавшись
формулой

𝐻 (𝑞⃗) = − (1− 𝑞) log2 (1− 𝑞)− 𝑞 log2 (𝑞) ,

которое называется энтропией вектора 𝑞⃗ (при этом log2 (0) заменяется на 0).
Для эргодической цепи Маркова c P𝛼 вида (15) существует величина 𝐻∞ (P𝛼), называемая

предельной энтропией или энтропией цепи Маркова [15], которая определяется равенством

𝐻∞ (P𝛼) =

1∑︁
𝑘=0

𝜋𝑘𝐻
(︀
P(𝑘+1)

)︀
=

= 𝜋0 ·𝐻
(︀
P(1)

)︀
= −𝜋0 · ((1− 𝛼) log2 (1− 𝛼) + 𝛼 log2 (𝛼)) .

где P(𝑘+1) означает 𝑘-ю строку матрицы перехода P𝛼 вида (15).
Из определения следует, что предельная энтропия 𝐻∞ (P𝛼) при каждом фиксированном 𝛼

из интервала (0, 1) в силу эргодичности цепи Маркова не зависит от начального распределе-
ния 𝑞⃗ , и поэтому будет одинакова при фиксированной матрице P𝛼 и различных начальных
распределениях 𝑞⃗ = (𝑞0, 𝑞1).

4.4. Марковская модель с максимальной энтропией

Приведём доказательство того, что модель с максимальной энтропией и фиксированным
начальным распределением единственна, точнее верна следующая теорема.

Теорема 2. Максимум энтропии 𝐻∞ (P𝛼) из класса P достигается на цепи Маркова с
матрицей перехода за один шаг

P𝜑−2 =
1

2

(︂ √
5− 1 3−

√
5

2 0

)︂
=

(︂ 1
𝜑

1
𝜑2

1 0

)︂
(17)

и равен

𝐻𝜑 := 𝐻
(︀
𝜑−2

)︀
= log2 𝜑 ≈

25

36
.
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Доказательство. Поскольку, как указано выше, для каждого представителя рассматривае-
мого семейства цепей Маркова с P𝛼 существует 𝐻∞ (P𝛼), а стационарное распределение имеет
вид (16), то при 0 < 𝛼 < 1 для решения задачи нужно найти максимум функции

𝐻 (𝛼) := 𝐻∞ (P𝛼) = 𝜋0 · ℎ (𝛼) =

= −1− 𝛼
1 + 𝛼

log2 (1− 𝛼)− 𝛼

1 + 𝛼
log2 (𝛼) .

Её производная

𝐻 ′ (𝛼) =
2 log2 (1− 𝛼)− log2 (𝛼)

1 + 𝛼
.

Тогда равенство 𝐻 ′ (𝛼) = 0 возможно при

𝛼 = (1− 𝛼)2 , 1− 3𝛼+ 𝛼2 = 0 .

Откуда при таких соотношениях на 𝛼 в силу равенств

𝐻 (𝛼) =
𝛼− 1

1 + 𝛼
log2 (1− 𝛼)− 2𝛼

1 + 𝛼
log2 (1− 𝛼) =

= −
(︂

1− 𝛼
1 + 𝛼

+
2𝛼

1 + 𝛼

)︂
log2 (1− 𝛼) = − log2 (1− 𝛼)

следует, что

𝐻 (𝛼) = − log2 (1− 𝛼) .

Единственным положительным решением уравнения 𝐻 ′ (𝛼) = 0 является число

𝛼0 =
3−
√

5

2
= 1− 1

𝜑
,

где 𝜑 было определено выше формулой (2). Поэтому

𝐻 (𝛼0) = − log2 (1− 𝛼0) = log2 𝜑 ≈
25

36

и

𝐻𝜑 := max
𝛼

𝐻 (𝛼) = log2 𝜑 ≈ 0, 6942419 .

Данное значение соответствует цепи Маркова с матрицей перехода за один шаг

P =

(︂
1− 𝛼0 𝛼0

1
2 0

)︂
=

(︂ 1
𝜑 1− 1

𝜑
1
2 0

)︂
.

2

Найдём явное значение стационарного вектора для такой матрицы, проверив тем самым,
что асимптотическое распределение численно не совпадает с предельным распределением цепи
Маркова.

Лемма 3. Стационарный вектор цепи Маркова с матрицей P𝜑−2 равен

𝜋 =
(︁

𝜑√
5
, 𝜑−1√

5

)︁
=
(︁

𝜑2

1+𝜑2 ,
1

1+𝜑2

)︁
. (18)
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Доказательство. 1. Поскольку в рассматриваемом случае

𝜋 =
(︀

1
1+𝛼0

, 𝛼0
1+𝛼0

)︀
, 𝛼0 =

3−
√

5

2
= 1− 1

𝜑
,

то

𝛼0 = 1− 1

𝜑
= 1−

(︂
1− 1

𝜑2

)︂
=

1

𝜑2

и

𝜋 =
(︁

1
1+1/𝜑2 ,

1/𝜑2

1+1/𝜑2

)︁
=
(︁

𝜑2

1+𝜑2 ,
1

1+𝜑2

)︁
.

2. Иначе
1

1 + 𝛼0
=

1

1 + 3−
√
5

2

=
2

5−
√

5
=

=
5 +
√

5

10
=

√
5 + 1

2
√

5
=

𝜑√
5
.

Откуда

𝜋 =
(︁

𝜑√
5
, 𝜑−1√

5

)︁
=
(︁

5+
√
5

10 , 5−
√
5

10

)︁
=
(︁

1
2 + 1

2
√
5
, 1
2 −

1
2
√
5

)︁
.

2

Замечание 6. Согласно (18) при совпадении начального распределения 𝑞⃗ со стационар-
ным 𝜋 вероятность появления нуля в 𝜑2 раз больше появления единицы.

Замечание 7. Также при любом начальном распределении 𝑞⃗ согласно (18) асимптоти-
чески (при больших 𝑛) появления нуля в 𝜑2 раз больше появления единицы .

В качестве примера для сравнения укажем, что для цепи Маркова с матрицей перехода за
один шаг

P 1
2

=
1

2

(︂
1 1
2 0

)︂
,

то есть в случае, когда переход в состояния 1 или 0 после появления 0 равновероятностен,
соответствующее значение энтропии равно

𝐻2 := 𝐻∞

(︂
1

2

)︂
=

2

3
=

24

36
.

4.5. Построение распределения цепи Маркова через классы равномерности

Как уже говорилось выше, поскольку равномерную модель определяют как модель, у ко-
торой все исходы равноправны, то в этом смысле наиболее близкой к ней является модель,
у которой все исходы делятся на два класса, внутри которых все реализации равноправны
между собой. В рассматриваемой модели в общем случае таких равновероятностных классов
векторов оказывается не более четырёх. Четыре класса появляются при большинстве про-
извольных значений начального распределения цепи Маркова 𝑞⃗ = (𝑞0, 𝑞1). А при начальном
распределении 𝑞⃗ =

(︀
𝜑−1, 𝜑−2

)︀
таких классов всего два. Меньше для случая согласованных

распределений быть не может, поскольку тогда существует только один класс равнораспре-
делённых векторов, то есть цепь Маркова вырождается в равномерное на K распределение
(частотную модель), при котором в нашей задаче, как мы уже видели, исчезает свойство
согласованности распределений. Таким образом, построенная выше цепь Маркова является
наилучшей на K в смысле числа таких классов.
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Теорема 3. Распределение вероятностей цепи Маркова, порождаемое матрицей (17) и
начальным вектором 𝑞⃗ = (𝑞0, 𝑞1), разбивает множество K𝑛 на четыре класса K 𝑖𝑗

𝑛 , 𝑖, 𝑗 = 0, 1
равновероятностных векторов. При этом для 𝑥𝑛 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 00

𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞0 ·
1

𝜑𝑛−1
,

для 𝑥𝑛 ∈ K 10
𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞1 ·
1

𝜑𝑛−2
,

для 𝑥𝑛 ∈ K 01
𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞0 ·
1

𝜑𝑛
,

для 𝑥𝑛 ∈ K 11
𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞1 ·
1

𝜑𝑛−1
.

Доказательство. 1. Равнораспределённость цепочек (𝑥1, 𝑥2, . . . , 𝑥𝑛) в каждом из четырёх
рассматриваемых классов докажем методом математической индукции опираясь на равенство
вероятностей появления в них подпоследовательностей 010 и 000. Вероятности появления под-
последовательностей 010 и 000 равны в силу справедливости следующих равенств:

𝑝01 · 𝑝10 =
1

𝜑2
· 1 =

1

𝜑
· 1

𝜑
= 𝑝00 · 𝑝00 , (19)

где вероятности 𝑝01, 𝑝10, 𝑝00 берутся из (17).
2. Если рассмотреть 𝑥𝑛 = (0, . . . , 0) ∈ K 00

𝑛 , то

P𝑛 (0, . . . , 0) = 𝑞𝑖1 · 𝑝𝑖1𝑖2 · 𝑝𝑖2𝑖3 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= 𝑞0 ·
1

𝜑
· 1

𝜑
· . . . · 1

𝜑
= 𝑞0 ·

1

𝜑𝑛−1
.

Возьмём вектор 𝑥𝑛 = (0, . . . , 0) ∈ K 00
𝑛 в качестве базы индукции для доказательства

равновероятности цепочек из класса K 00
𝑛 . Индукцию будем проводить по количеству единиц

в векторе. Предположим, что утверждение верно для любых векторов 𝑥𝑛(𝑘), содержащих
ровно 𝑘 единиц, из класса K 00

𝑛 .
Рассмотрим произвольный вектор 𝑥𝑛(𝑘+1) ∈ K 00

𝑛 , содержащий 𝑘+1 единицу. Пусть у него
первая единица стоит на 𝑗-ом месте. Рассмотрим вектор 𝑥𝑛(𝑘) ∈ K 00

𝑛 , у которого отсутствует
единица на 𝑗-ом месте, а все остальные позиции единиц совпадают с позициями единиц у
вектора 𝑥𝑛(𝑘 + 1) ∈ K 00

𝑛 . Тогда

P𝑛 (𝑥𝑛(𝑘 + 1)) = 𝑞𝑖1 · 𝑝𝑖1𝑖2 · . . . · 𝑝𝑖𝑗−1𝑖𝑗 · 𝑝𝑖𝑗𝑖𝑗+1 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= 𝑞0 · 𝑝𝑖1𝑖2 · . . . · 𝑝01 · 𝑝10 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= 𝑞0 · 𝑝𝑖1𝑖2 · . . . · 𝑝00 · 𝑝00 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= P𝑛 (𝑥𝑛(𝑘)) = 𝑞0 ·
1

𝜑𝑛−1
.

Таким образом, утверждение доказано для любого вектора 𝑥𝑛 из класса K 00
𝑛 .

3. Если теперь рассмотреть вектор 𝑥𝑛 = (1, 0, . . . , 0) ∈ K 10
𝑛 , содержащий ровно одну единицу,

то
P𝑛 (1, 0, . . . , 0) = 𝑞𝑖1 · 𝑝𝑖1𝑖2 · 𝑝𝑖2𝑖3 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =
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= 𝑞1 · 1 ·
1

𝜑
· . . . · 1

𝜑
= 𝑞1 ·

1

𝜑𝑛−2
.

Для вектора с одной единицей 𝑥𝑛 = (0, . . . , 0, 1) ∈ K 01
𝑛 имеем

P𝑛 (0, . . . , 0, 1) = 𝑞𝑖1 · 𝑝𝑖1𝑖2 · 𝑝𝑖2𝑖3 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= 𝑞0 ·
1

𝜑
· . . . · 1

𝜑2
= 𝑞0

1

𝜑𝑛
.

Для вектора 𝑥𝑛 = (1, 0, . . . , 0, 1) ∈ K 11
𝑛 ровно с двумя единицами

P𝑛 (1, 0, . . . , 0, 1) = 𝑞𝑖1 · 𝑝𝑖1𝑖2 · 𝑝𝑖2𝑖3 · . . . · 𝑝𝑖𝑛−1𝑖𝑛 =

= 𝑞1 · 1 ·
1

𝜑
· . . . · 1

𝜑2
=

1

𝜑𝑛−1
.

Доказательства совпадения значения вероятностей внитри одного данного класса векторов
для классов K 10

𝑛 , K 01
𝑛 , K 11

𝑛 проводим аналогично доказательству для класса K 00
𝑛 , толь-

ко в качестве базиса индукции нужно взять соответственно вектора (1, 0, . . . , 0), (0, . . . 0, 1),
(1, 0, . . . 0, 1).

2

Последняя теорема позволяет определить изучаемое нами распределение не матрицей (17)
и начальным распределением (8), а вероятностями появления только двух векторов из двух
классов равновероятностных подмножеств. Такой способ определения данного распределения
не требует никаких утверждений из теории цепей Маркова и достаточно лаконичен.

Теорема 4. Согласованные распределения вероятностей

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =
1

𝜑𝑛
, (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ̃︁K 0

𝑛 ,

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =
1

𝜑𝑛+1
, (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ̃︁K 1

𝑛

определяют на множестве K распределение P, для которого выполнены равенства (11) и
(12). Оно так же совпадает с распределением, порождаемым матрицей (17) и начальным
вектором 𝑞⃗ =

(︀
𝜑−1, 𝜑−2

)︀
.

Доказательство. Заметим, что в теореме 3 вероятности появления любой последователь-
ности из множеств K 00

𝑛 и K 10
𝑛 при 𝑞⃗ =

(︀
𝜑−1, 𝜑−2

)︀
совпадают: для 𝑥𝑛 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 00

𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞0 ·
1

𝜑𝑛−1
=

1

𝜑𝑛
,

для 𝑥𝑛 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 10
𝑛

P𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑞1 ·
1

𝜑𝑛−2
=

1

𝜑𝑛
.

На этом основании их можно объединить в один равновероятностный класс:̃︁K 0
𝑛 = {𝑥𝑛 ∈ K𝑛 : 𝑥𝑛 = 0} = K 00

𝑛

⨆︁
K 10

𝑛 ,

мощность которого согласно формулам из пункта 2. равна 𝐹𝑛+1.
Аналогичная картина с множествами K 11

𝑛 и K 01
𝑛 . Поэтому определим множество

̃︁K 1
𝑛 = {𝑥𝑛 ∈ K𝑛 : 𝑥𝑛 = 1} = K 11

𝑛

⨆︁
K 01

𝑛 ,

мощность которого равна 𝐹𝑛, а вероятность появления вектора из него – 𝜑
−𝑛−1. 2
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4.6. Некоторые следствия

Одним из следствий доказанной выше теоремы 5 является следующее известное утвержде-
ние о числах Фибоначчи и золотом сечении. В рамках нашей задачи оно имеет вероятностный
смысл и вероятностное доказательство.

Следствие 1. Справедливо равенство

𝐹𝑛+1

𝜑𝑛
+

𝐹𝑛

𝜑𝑛+1
= 1 . (20)

Доказательство. Поскольку общее количество векторов из класса ̃︁K 0
𝑛 равно 𝐹𝑛+1, а ве-

роятность появления любого из них равна 𝜑−𝑛, произведение 𝐹𝑛+1 · 𝜑−𝑛 есть вероятность

появления любого вектора из класса ̃︁K 0
𝑛 .

Аналогично общее количество векторов из класса ̃︁K 1
𝑛 равно 𝐹𝑛, а вероятность появления

любого из них равна 𝜑−𝑛−1. Поэтому вероятность появления любого вектора из класса ̃︁K 1
𝑛

равна произведению 𝐹𝑛 · 𝜑−𝑛−1.

Сумма данных вероятностей равна единице, поскольку они составляют полную группу со-
бытий, и поэтому одно из данных событий появится обязательно. Данные рассуждения можно
записать как

𝐹𝑛+1 · 𝜑−𝑛 + 𝐹𝑛 · 𝜑−𝑛−1 = P𝑛

{︁
𝑥𝑛 ∈ ̃︁K 0

𝑛

}︁
+ P𝑛

{︁
𝑥𝑛 ∈ ̃︁K 1

𝑛

}︁
=

= P𝑛

{︁
𝑥𝑛 ∈ ̃︁K 0

𝑛 , 𝑥𝑛 ∈ ̃︁K 1
𝑛

}︁
= P𝑛

{︁
𝑥 ∈ ̃︁K𝑛

}︁
= 1 .

2

Замечание 8. Соотношение (20) соответствует известному представлению степени
числа 𝜑:

𝜑𝑛+1 = 𝐹𝑛 + 𝜑𝐹𝑛+1.

Следствием теоремы 4 является другое доказательство равенств (13) и (14), которое по-
казывает структуру сохранения асимптотических значений распределения при переходе от
векторов длины 𝑛− 1 к векторам длины 𝑛.

Следствие 2. Вероятности последовательностей из K 0
𝑛 (или K 1

𝑛 ) при любом фиксиро-
ванном 𝑛 ∈ N совпадают между собой и с вероятностями (6) (или (7)) асимптотического
распределения частотной модели.

Доказательство. Вероятности попадания произвольной цепочки в множества K 0
𝑛 и K 1

𝑛

можно легко найти исходя из теоремы 4:

P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 0

𝑛

}︀
=
𝐹𝑛

𝜑𝑛
+
𝐹𝑛−1

𝜑𝑛+1
=
𝐹𝑛−1 + 𝜑𝐹𝑛

𝜑𝑛+1
=

𝜑𝑛

𝜑𝑛+1
=

1

𝜑
, (21)

P𝑛

{︀
(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ K 1

𝑛

}︀
=
𝐹𝑛−1

𝜑𝑛
+
𝐹𝑛−2

𝜑𝑛+1
=
𝐹𝑛−2 + 𝜑𝐹𝑛−1

𝜑𝑛+1
=
𝜑𝑛−1

𝜑𝑛+1
=

1

𝜑2
. (22)

2

В заключение данного пункта отметим, что рассматриваемое нами распределение встреча-
ется в других задачах и обладает ещё рядом дополнительных свойств (см, например, работы
[17, стр. 111] и [18, стр. 348]), изучение которых выходят за рамки данной работы.
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5. Заключение

На примере последовательностей без 1-серий в статье показано, как строить множество
согласованных распределений, которые задаются с помощью однородной цепи Маркова. Эти
распределения строятся согласованными так, чтобы асимптотическое распределение вероят-
ностей (8) из классической частотной модели совпадало с аналогичным распределением пред-
ложенной модели, а само распределение было максимально близко к равномерному в смысле
близости энтропий.

Такой подход, благодаря выполнению теоремы А.Н. Колмогорова о продолжении меры,
позволяет использовать методы теории вероятностей при изучении свойств бесконечных по-
следовательностей без 1-серий в контексте множеств ̃︁K 0

𝑛 и ̃︁K 1
𝑛 , что даёт строгое математиче-

ское обоснование получаемым результатам, а кроме того позволяет применять вероятностные
методы при её дальнейшем исследовании, и математически обосновывают совпадение резуль-
татов для пространств статистических экспериментова в рамках предложенной марковской
модели.

Отметим, что стационарное распределение предложенной здесь цепи Маркова для обос-
нования асимптотического распределения равновероятностной модели появляется в качестве
предельного распределения в теореме А.О. Гельфонда [19] об остатках разложения чисел из
интервала (0, 1], если в ней в качестве основания разложения 𝜃 взять 𝜑.

Предложенный метод можно очевидным образом повторять в других подобных задачах
для изменения частотной модели на модель согласованных распределений.
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1. Введение

Первые результаты, связанные с законом повторного логарифма, были получены в рамках
симметричной схемы Бернулли с нулевым математическим ожиданием и дисперсией, равной

1: 𝑃 (𝑋𝑖 = −1) = 𝑃 (𝑋𝑖 = 1) =
1

2
,

𝑖 = 1, . . . , 𝑛 ([1]). Обозначим 𝑆𝑛 = 𝑋1 +𝑋2 + . . .+𝑋𝑛.

В 1913 году Ф. Хаусдорф доказал, что |𝑆𝑛| = 𝑂(𝑛
1
2
+𝜀) п.н. для любого 𝜀 > 0.

В 1914 году Г. Х. Харди и Дж. Литтлвуд получили более точную оценку, согласно которой
|𝑆𝑛| = 𝑂(

√
𝑛 ln𝑛) п.н.

В 1923 году А. Я. Хинчин показал, что |𝑆𝑛| = 𝑂(
√
𝑛 ln ln𝑛) п.н.

Годом позже он уточнил данный результат и получил закон повторного логарифма, а
именно:

lim sup
𝑛→∞

|𝑆𝑛|√
2𝑛 ln ln𝑛

= 1 п.н.

Пусть 𝑝 обозначает простое число, 𝑚 и 𝑛 – натуральные числа, 𝜔, 𝜔1, 𝜔2 – действительные
числа.

Обозначим 𝐷(𝜔) =
1√
2𝜋

𝜔∫︀
−∞

𝑒−
𝑥2

2 𝑑𝑥.

Рассмотрим функцию количества простых делителей числа: 𝜈(𝑚) =
∑︀
𝑝|𝑚

1.

В 1917 году Г. Х. Харди и С. Рамануджан ([2]) получили результат, похожий на закон по-
вторного логарифма для функции 𝜈(𝑚), согласно которому если 𝑓(𝑛) – действительнозначная
функция, стремящаяся к бесконечности при 𝑛→∞, то количество чисел 𝑚 ⩽ 𝑛 таких, что

ln ln𝑛− 𝑓(𝑛)
√

ln ln𝑛 < 𝜈(𝑚) < ln ln𝑛+ 𝑓(𝑛)
√

ln ln𝑛,

равно 𝑛+ 𝑜(𝑛) при 𝑛→∞.
В 1940 году П. Эрдёш и М. Кац ([3]) обобщили данный результат, доказав, что количество

чисел 𝑚 ⩽ 𝑛, удовлетворяющих условию

𝜈(𝑚) < ln ln𝑛+ 𝜔
√

2 ln ln𝑛,

равно 𝑛𝐷(𝜔) + 𝑜(𝑛) при 𝑛→∞.
В. М. Левек в работе [4] рассмотрел систему неравенств на функцию 𝜈 и доказал, что

количество 𝑚 ⩽ 𝑛, удовлетворяющих условию{︃
𝜈(𝑚) < ln ln𝑛+ 𝜔1

√
ln ln𝑛

𝜈(𝑚+ 1) < ln ln𝑛+ 𝜔2

√
ln ln𝑛

,

равно 𝑛𝐷(𝜔1)𝐷(𝜔2) + 𝑜(𝑛) при 𝑛→∞.
Мы будем рассматривать функцию количества простых делителей в точках вида 𝑚𝑞 + 1:

𝜈(𝑚𝑞 + 1) =
∑︁

𝑝|𝑚𝑞+1

1,

где 𝑞 = 𝑞(𝑛) – некоторая последовательность, принимающая натуральные значения.
Основным результатом данной работы являются следующие теоремы:
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Теорема 1. Пусть 𝑞 = 𝑞(𝑛) – некоторая последовательность с условием

∃𝐶 > 0 : 𝑞(𝑛) < 𝑛𝐶 , ∀𝑛.

Тогда количество 𝑚 ⩽ 𝑛 таких, что выполняются неравенства{︃
𝜈(𝑚𝑞 + 1) < ln ln𝑛+ 𝜔1

√
ln ln𝑛

𝜈((𝑚+ 1)𝑞 + 1) < ln ln𝑛+ 𝜔2

√
ln ln𝑛

равно 𝑛𝐷(𝜔1)𝐷(𝜔2) + 𝑜(𝑛) при 𝑛→∞.

Теорема 2. Пусть 𝑞 = 𝑞(𝑛) – некоторая последовательность с условием

∃𝐶 > 0 : 𝑞(𝑛) < 𝑛𝐶 , ∀𝑛.

Пусть 𝑡𝑛(𝜔) = |{𝑚 ⩽ 𝑛 : 𝜈(𝑚𝑞 + 1) < 𝜈((𝑚+ 1)𝑞 + 1) + 𝜔
√

2 ln ln𝑛}|. Тогда

𝑡𝑛(𝜔) = 𝑛𝐷(𝜔) + 𝑜(𝑛) при 𝑛→∞,

откуда следует, что

𝑃

(︂
𝜈(𝑚𝑞 + 1)− 𝜈((𝑚+ 1)𝑞 + 1)√

2 ln ln𝑛
< 𝑥

)︂
→ 1√

2𝜋

𝑥∫︁
−∞

𝑒−
𝑡2

2 𝑑𝑡 = 𝐷(𝑥), 𝑛→∞,

где 𝑃 (𝑓(𝑚) < 𝑥) =
|{𝑚 ⩽ 𝑛 : 𝑓(𝑚) < 𝑥}|

𝑛
.

2. Вспомогательные утверждения

Пусть 𝑓(𝑚) – аддитивная функция, т.е. 𝑓(𝑚𝑛) = 𝑓(𝑚) + 𝑓(𝑛), если (𝑚,𝑛) = 1. Если при
этом 𝑓(𝑝𝑛) = 𝑓(𝑝), то такая функция называется сильно аддитивной.

Если 𝑓(𝑚) – сильно аддитивная функция, то 𝑓(𝑚) =
∑︀
𝑝|𝑚

𝑓(𝑝).

Назовем функции 𝑓1(𝑚), 𝑓2(𝑚), . . . , 𝑓𝑘(𝑚) статистически независимыми, если

𝑀

{︂
𝑒
𝑖

𝑘∑︀
𝑗=1

𝑓𝑗(𝑚)
}︂

=

𝑘∏︁
𝑗=1

𝑀{𝑒𝑖𝑓𝑗(𝑚)},

где 𝑀{𝑡(𝑚)} = lim
𝑛→∞

𝑛∑︀
𝑚=1

𝑡(𝑚)

𝑛
.

Нам потребуется следующая

Теорема 3. Пусть 𝑓 – сильно аддитивная функция такая, что |𝑓(𝑝)| ⩽ 1 для всех
простых 𝑝. Пусть 𝜔1, 𝜔2 ∈ R, 𝑞 = 𝑞(𝑛) – член некоторой последовательности, принимающей
натуральные значения с условием

∃𝐶 > 0 : 𝑞(𝑛) < 𝑛𝐶 ∀𝑛.

Обозначим

𝐴𝑛 =
∑︁
𝑝 ⩽ 𝑛,
𝑝 ∤ 𝑞

𝑓(𝑝)

𝑝
, 𝐵𝑛 =

⎯⎸⎸⎸⎸⎸⎷
∑︁
𝑝 ⩽ 𝑛,
𝑝 ∤ 𝑞

𝑓2(𝑝)

𝑝
,
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причем 𝐵𝑛 →∞ при 𝑛→∞.
Пусть 𝑁(𝑛) – количество натуральных чисел 𝑚 ⩽ 𝑛 таких, что выполняются условия{︃

𝑓(𝑚𝑞 + 1) < 𝐴𝑛 + 𝜔1𝐵𝑛

𝑓((𝑚+ 1)𝑞 + 1) < 𝐴𝑛 + 𝜔2𝐵𝑛

. (1)

Тогда 𝑁(𝑛) = 𝑛𝐷(𝜔1)𝐷(𝜔2) + 𝑜(𝑛).

Чтобы доказать теорему 3, нам потребуется сначала доказать предварительные леммы.

Лемма 1. Пусть 𝑓(𝑝) – сильно аддитивная функция, 𝑓 𝑞𝑙 (𝑚) =
∑︀

𝑝|𝑚𝑞+1, 𝑝⩽𝑙

𝑓(𝑝), |𝑓(𝑝)| ⩽ 1.

Обозначим

𝐴𝑛 =
∑︁
𝑝 ⩽ 𝑛,
𝑝 ∤ 𝑞

𝑓(𝑝)

𝑝
, 𝐵𝑛 =

⎯⎸⎸⎸⎸⎸⎷
∑︁
𝑝 ⩽ 𝑛,
𝑝 ∤ 𝑞

𝑓2(𝑝)

𝑝
,

причем 𝐵𝑛 →∞ при 𝑛→∞.
Пусть 𝑁(𝑙, 𝑛) – количество натуральных чисел 𝑚 ⩽ 𝑛 таких, что выполняются условия{︃

𝑓 𝑞𝑙 (𝑚) < 𝐴𝑙 + 𝜔1𝐵𝑙

𝑓 𝑞𝑙 (𝑚+ 1) < 𝐴𝑙 + 𝜔2𝐵𝑙

. (2)

Обозначим 𝛿𝑙 = lim
𝑛→∞

𝑁(𝑙, 𝑛)

𝑛
– плотность натуральных чисел 𝑚, удовлетворяющих усло-

вию (2). Тогда
lim
𝑙→∞

𝛿𝑙 = 𝐷(𝜔1)𝐷(𝜔2).

Доказательство. Пусть

𝜌𝑞𝑝(𝑚) =

{︃
𝑓(𝑝), если 𝑝 | 𝑚𝑞 + 1,

0, если 𝑝 ∤ 𝑚𝑞 + 1.

Тогда 𝑓 𝑞𝑙 (𝑚) переписывается в следующем виде:

𝑓 𝑞𝑙 (𝑚) =
∑︁
𝑝⩽𝑙

𝜌𝑞𝑝(𝑚).

1. Докажем, что функции 𝑎𝜌𝑞𝑝(𝑚) + 𝑏𝜌𝑞𝑝(𝑚 + 1), где 𝑎, 𝑏 – произвольные фиксированные
константы, не равные одновременно 0, статистически независимы. Для этого достаточно
доказать, что

𝑀

{︂
𝑒
𝑖
∑︀
𝑝∈𝑃

(𝑎𝜌𝑞𝑝(𝑚)+𝑏𝜌𝑞𝑝(𝑚+1))
}︂

=
∏︁
𝑝∈𝑃

𝑀{𝑒𝑖(𝑎𝜌
𝑞
𝑝(𝑚)+𝑏𝜌𝑞𝑝(𝑚+1))},

где 𝑀{𝑡(𝑚)} = lim
𝑛→∞

𝑛∑︀
𝑚=1

𝑡(𝑚)

𝑛
, 𝑃 – произвольное множество, состоящее из простых чисел,

меньших 𝑙.
Докажем данное утверждение для случая, когда 𝑃 состоит из двух простых чисел 𝑝1 и 𝑝2.

Для других случаев доказательство аналогично. Таким образом, докажем, что

𝑀

{︂
𝑒𝑖(𝑎𝜌

𝑞
𝑝1

(𝑚)+𝑏𝜌𝑞𝑝1 (𝑚+1)+𝑎𝜌𝑞𝑝2 (𝑚)+𝑏𝜌𝑞𝑝2 (𝑚+1))

}︂
=

= 𝑀{𝑒𝑖(𝑎𝜌
𝑞
𝑝1

(𝑚)+𝑏𝜌𝑞𝑝1 (𝑚+1))}𝑀{𝑒𝑖(𝑎𝜌
𝑞
𝑝2

(𝑚)+𝑏𝜌𝑞𝑝2 (𝑚+1))}. (3)
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Заметим, что

𝑒𝑖𝑎𝜌
𝑞
𝑝1

(𝑚) = 1 +
𝑒𝑖𝑎𝛼 − 1

𝛼
𝜌𝑞𝑝1(𝑚), где 𝛼 = 𝑓(𝑝1) ̸= 0.

Действительно, если 𝑝 | 𝑚𝑞 + 1, то получаем 𝑒𝑖𝑎𝑓(𝑝1) = 1 +
𝑒𝑖𝑎𝑓(𝑝1) − 1

𝑓(𝑝1)
𝑓(𝑝1) – верное равен-

ство; если 𝑝 ∤ 𝑚𝑞 + 1, то 𝑒0 = 1 + 0 – тоже верное равенство.
Аналогично

𝑒𝑖𝑎𝜌
𝑞
𝑝2

(𝑚) = 1 +
𝑒𝑖𝑎𝛽 − 1

𝛽
𝜌𝑞𝑝2(𝑚), где 𝛽 = 𝑓(𝑝2) ̸= 0.

Обозначим 𝒜𝑝1 =
𝑒𝑖𝑎𝛼 − 1

𝛼
, 𝒜𝑝2 =

𝑒𝑖𝑎𝛽 − 1

𝛽
, ℬ𝑝1 =

𝑒𝑖𝑏𝛼 − 1

𝛼
, ℬ𝑝2 =

𝑒𝑖𝑏𝛽 − 1

𝛽
. Тогда левая

часть (3) переписывается в следующем виде:

𝑀

{︂
𝑒𝑖(𝑎𝜌

𝑞
𝑝1

(𝑚)+𝑏𝜌𝑞𝑝1 (𝑚+1)+𝑎𝜌𝑞𝑝2 (𝑚)+𝑏𝜌𝑞𝑝2 (𝑚+1))

}︂
=

= 𝑀{(1 +𝒜𝑝1𝜌
𝑞
𝑝1(𝑚))(1 + ℬ𝑝1𝜌𝑞𝑝1(𝑚+ 1))(1 +𝒜𝑝2𝜌

𝑞
𝑝2(𝑚))(1 + ℬ𝑝2𝜌𝑞𝑝2(𝑚+ 1))}. (4)

Заметим, что 𝜌𝑞𝑝𝑖(𝑚) · 𝜌𝑞𝑝𝑖(𝑚+ 1) = 0. Действительно,

𝜌𝑞𝑝𝑖(𝑚) · 𝜌𝑞𝑝𝑖(𝑚+ 1) =

{︃
𝑓(𝑝𝑖) · 𝑓(𝑝𝑖), если 𝑝 | 𝑚𝑞 + 1, 𝑝 | (𝑚+ 1)𝑞 + 1,

0, иначе.

Если 𝑝 | 𝑚𝑞+1, 𝑝 | (𝑚+1)𝑞+1, то 𝑝 | 𝑚𝑞+1 и 𝑝 | 𝑞. Отсюда следует, что 𝑝 | 1 – противоречие.
Следовательно, произведение в левой части (4) можно представить следующим образом:

(1 +𝒜𝑝1𝜌
𝑞
𝑝1(𝑚))(1 + ℬ𝑝1𝜌𝑞𝑝1(𝑚+ 1))(1 +𝒜𝑝2𝜌

𝑞
𝑝2(𝑚))(1 + ℬ𝑝2𝜌𝑞𝑝2(𝑚+ 1)) =

= 1 +𝒜𝑝1𝜌
𝑞
𝑝1(𝑚) + ℬ𝑝1𝜌𝑞𝑝1(𝑚+ 1) +𝒜𝑝2𝜌

𝑞
𝑝2(𝑚) + ℬ𝑝2𝜌𝑞𝑝2(𝑚+ 1)+

+𝒜𝑝1𝒜𝑝2𝜌
𝑞
𝑝1(𝑚)𝜌𝑞𝑝2(𝑚) + ℬ𝑝1ℬ𝑝2𝜌𝑞𝑝1(𝑚+ 1)𝜌𝑞𝑝2(𝑚+ 1)+

+𝒜𝑝1ℬ𝑝2𝜌𝑞𝑝1(𝑚)𝜌𝑞𝑝2(𝑚+ 1) +𝒜𝑝2ℬ𝑝1𝜌𝑞𝑝2(𝑚)𝜌𝑞𝑝1(𝑚+ 1). (5)

Применим оператор 𝑀 к слагаемым в правой части последнего равенства, получим:

1)𝑀{𝜌𝑞𝑝𝑖(𝑚))} = lim
𝑛→∞

𝑛∑︁
𝑚=1

𝜌𝑞𝑝𝑖(𝑚)

𝑛
= lim

𝑛→∞

1

𝑛
𝑓(𝑝𝑖) ·

⃒⃒⃒⃒
⃒
{︃ 𝑚 ∈ N :

1 ⩽ 𝑚 ⩽ 𝑛,
𝑝𝑖 | 𝑚𝑞 + 1

}︃⃒⃒⃒⃒
⃒ =

⎧⎨⎩
𝑓(𝑝𝑖)

𝑝𝑖
, 𝑝𝑖 ∤ 𝑞

0, 𝑝𝑖 | 𝑞
.

Действительно, количество 𝑚 ∈ N,𝑚 ⩽ 𝑛, 𝑝𝑖 | 𝑚𝑞 + 1 совпадает с количеством решений
сравнения 𝑚𝑞 ≡ −1 (mod 𝑝𝑖), 𝑚 ⩽ 𝑛. Это сравнение разрешимо тогда и только тогда, когда
(𝑝𝑖, 𝑞) | −1, то есть 𝑝𝑖 и 𝑞 взаимно просты (т.е. 𝑝𝑖 ∤ 𝑞). В таком случае существует единственное
решение 𝑚0 : 0 < 𝑚0 ⩽ 𝑝𝑖− 1, а все другие решения представимы в виде 𝑚0 + 𝑡𝑝𝑖. Количество

таких решений, меньших 𝑛, равно 1 +

[︃
𝑛−𝑚0

𝑝𝑖

]︃
, откуда следует равенство выше.

Если же 𝑝𝑖 и 𝑞 не взаимно просты, то решений сравнения не существует и предел равен 0.

2)𝑀{𝜌𝑞𝑝𝑖(𝑚+ 1))} =

⎧⎨⎩
𝑓(𝑝𝑖)

𝑝𝑖
, 𝑝𝑖 ∤ 𝑞

0, 𝑝𝑖 | 𝑞
аналогично.
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3)𝑀{𝜌𝑞𝑝1(𝑚)𝜌𝑞𝑝2(𝑚)} = lim
𝑛→∞

𝑛∑︁
𝑚=1

𝜌𝑞𝑝1(𝑚)𝜌𝑞𝑝2(𝑚)

𝑛
=

= lim
𝑛→∞

1

𝑛
𝑓(𝑝1)𝑓(𝑝2) ·

⃒⃒⃒⃒
⃒
{︃

𝑚 ∈ N : 1 ⩽ 𝑚 ⩽ 𝑛,
𝑝1 | 𝑚𝑞 + 1, 𝑝2 | 𝑚𝑞 + 1

}︃⃒⃒⃒⃒
⃒ =

⎧⎨⎩
𝑓(𝑝1)𝑓(𝑝2)

𝑝1𝑝2
, 𝑝1, 𝑝2 ∤ 𝑞,

0, иначе
.

Действительно, количество 𝑚 ∈ N,𝑚 ⩽ 𝑛, 𝑝𝑖 | 𝑚𝑞 + 1, 𝑖 = 1, 2, совпадает с количеством

решений системы сравнений

{︃
𝑚𝑞 ≡ −1 (mod 𝑝1)

𝑚𝑞 ≡ −1 (mod 𝑝2)
при 𝑚 ⩽ 𝑛. Каждое из этих сравнений

разрешимо тогда и только тогда, когда (𝑝𝑖, 𝑞) | −1, то есть 𝑝𝑖 ∤ 𝑞. В таком случае 𝑞 обратимо в

кольцах Z𝑝1 , Z𝑝2 и исходная система сравнений равносильна системе

{︃
𝑚 ≡ 𝑟1 (mod 𝑝1)

𝑚 ≡ 𝑟2 (mod 𝑝2)
.

По китайской теореме об остатках у данной системы существует единственное решение
𝑚0 : 0 < 𝑚0 ⩽ 𝑝1𝑝2 − 1, а все другие решения представимы в виде 𝑚0 + 𝑡𝑝1𝑝2. Количество

таких решений, меньших 𝑛, равно 1 +

[︃
𝑛−𝑚0

𝑝1𝑝2

]︃
, откуда следует равенство выше.

Если же 𝑝𝑖 и 𝑞 для некоторого 𝑖 не взаимно просты, то решений системы не существует и
предел равен 0.

4)𝑀{𝜌𝑝𝑝1(𝑚+ 1)𝜌𝑞𝑝2(𝑚+ 1)} =

⎧⎨⎩
𝑓(𝑝1)𝑓(𝑝2)

𝑝1𝑝2
, 𝑝1, 𝑝2 ∤ 𝑞,

0, иначе
аналогично.

5)𝑀{𝜌𝑞𝑝𝑖(𝑚)𝜌𝑞𝑝𝑗 (𝑚+ 1)} = lim
𝑛→∞

𝑛∑︁
𝑚=1

𝜌𝑞𝑝𝑖(𝑚)𝜌𝑞𝑝𝑗 (𝑚+ 1)

𝑛
=

= lim
𝑛→∞

1

𝑛
𝑓(𝑝𝑖)𝑓(𝑝𝑗) ·

⃒⃒⃒⃒
⃒
{︃

𝑚 ∈ N : 1 ⩽ 𝑚 ⩽ 𝑛,
𝑝𝑖 | 𝑚𝑞 + 1, 𝑝𝑗 | (𝑚+ 1)𝑞 + 1

}︃⃒⃒⃒⃒
⃒ =

⎧⎨⎩
𝑓(𝑝1)𝑓(𝑝2)

𝑝1𝑝2
, 𝑝1, 𝑝2 ∤ 𝑞,

0, иначе

Действительно, количество 𝑚 ∈ N,𝑚 ⩽ 𝑛, 𝑝𝑖 | 𝑚𝑞 + 1, 𝑝𝑗 | (𝑚 + 1)𝑞 + 1 совпадает с ко-

личеством решений системы сравнений

{︃
𝑚𝑞 ≡ −1 (mod 𝑝1)

(𝑚+ 1)𝑞 ≡ −1 (mod 𝑝2)
при 𝑚 ⩽ 𝑛. Каждое из

этих сравнений разрешимо тогда и только тогда, когда (𝑝𝑖, 𝑞) | −1, то есть 𝑝𝑖 ∤ 𝑞. В таком
случае 𝑞 обратимо в кольцах Z𝑝1 , Z𝑝2 и исходная система сравнений равносильна системе{︃
𝑚 ≡ 𝑟1 (mod 𝑝1)

𝑚+ 1 ≡ 𝑟2 (mod 𝑝2)
⇐⇒

{︃
𝑚 ≡ 𝑟1 (mod 𝑝1)

𝑚 ≡ 𝑟2 − 1 (mod 𝑝2)
. По китайской теореме об остатках

у данной системы существует единственное решение 𝑚0 : 0 < 𝑚0 ⩽ 𝑝1𝑝2 − 1, а все дру-
гие решения представимы в виде 𝑚0 + 𝑡𝑝1𝑝2. Количество таких решений, меньших 𝑛, равно

1 +

[︃
𝑛−𝑚0

𝑝1𝑝2

]︃
, откуда следует равенство выше.

Если же 𝑝𝑖 и 𝑞 для некоторого 𝑖 не взаимно просты, то система не имеет решений и предел
равен 0.

Следовательно, применив оператор 𝑀 к обеим частям равенства (5), получим:
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1) Если 𝑝1, 𝑝2 ∤ 𝑞:

𝑀{(1 +𝒜𝑝1𝜌
𝑞
𝑝1(𝑚))(1 + ℬ𝑝1𝜌𝑞𝑝1(𝑚+ 1))(1 +𝒜𝑝2𝜌

𝑞
𝑝2(𝑚))(1 + ℬ𝑝2𝜌𝑞𝑝2(𝑚+ 1))} =

= 1 +𝒜𝑝1

𝛼

𝑝1
+ ℬ𝑝1

𝛼

𝑝1
+𝒜𝑝2

𝛽

𝑝2
+ ℬ𝑝2

𝛽

𝑝2
+

𝛼𝛽

𝑝1𝑝2

(︃
𝒜𝑝1𝒜𝑝2 + ℬ𝑝1ℬ𝑝2 +𝒜𝑝1ℬ𝑝2 +𝒜𝑝2ℬ𝑝1

)︃
=

=

(︃
1 +

𝛼𝒜𝑝1

𝑝1
+
𝛼ℬ𝑝1
𝑝1

)︃(︃
1 +

𝛽𝒜𝑝2

𝑝2
+
𝛽ℬ𝑝2
𝑝2

)︃
.

Правая часть последнего равенства в силу аналогичных рассуждений равна

𝑀{𝑒𝑖(𝑎𝜌
𝑞
𝑝1

(𝑚)+𝑏𝜌𝑞𝑝1 (𝑚+1))} ·𝑀{𝑒𝑖(𝑎𝜌
𝑞
𝑝2

(𝑚)+𝑏𝜌𝑞𝑝2 (𝑚+1)} =

= 𝑀{(1 +𝒜𝑝1𝜌
𝑞
𝑝1(𝑚))(1 + ℬ𝑝1𝜌𝑞𝑝1(𝑚+ 1))} ·𝑀{(1 +𝒜𝑝2𝜌

𝑞
𝑝2(𝑚))(1 + ℬ𝑝2𝜌𝑞𝑝2(𝑚+ 1))},

что и требовалось доказать.
2) Если 𝑝1 | 𝑞, 𝑝2 ∤ 𝑞:

𝑀{(1 +𝒜𝑝1𝜌
𝑞
𝑝1(𝑚))(1 + ℬ𝑝1𝜌𝑞𝑝1(𝑚+ 1))(1 +𝒜𝑝2𝜌

𝑞
𝑝2(𝑚))(1 + ℬ𝑝2𝜌𝑞𝑝2(𝑚+ 1))} =

= 1 +𝒜𝑝2

𝛽

𝑝2
+ ℬ𝑝2

𝛽

𝑝2
= 𝑀{(1 +𝒜𝑝1𝜌

𝑞
𝑝1(𝑚))(1 + ℬ𝑝1𝜌𝑞𝑝1(𝑚+ 1))}⏟  ⏞  

=1

×

×𝑀{(1 +𝒜𝑝2𝜌
𝑞
𝑝2(𝑚))(1 + ℬ𝑝2𝜌𝑞𝑝2(𝑚+ 1))},

что и требовалось доказать.
Случай 𝑝1 ∤ 𝑞, 𝑝2 | 𝑞 аналогичен.
3) Если 𝑝1 | 𝑞, 𝑝2 | 𝑞:

𝑀{(1 +𝒜𝑝1𝜌
𝑞
𝑝1(𝑚))(1 + ℬ𝑝1𝜌𝑞𝑝1(𝑚+ 1))(1 +𝒜𝑝2𝜌

𝑞
𝑝2(𝑚))(1 + ℬ𝑝2𝜌𝑞𝑝2(𝑚+ 1))} = 1 =

= 𝑀{(1 +𝒜𝑝1𝜌
𝑞
𝑝1(𝑚))(1 + ℬ𝑝1𝜌𝑞𝑝1(𝑚+ 1))} ·𝑀{(1 +𝒜𝑝2𝜌

𝑞
𝑝2(𝑚))(1 + ℬ𝑝2𝜌𝑞𝑝2(𝑚+ 1))},

что и требовалось доказать.
Равенство (3) доказано.
2. Докажем, что

𝑀

{︃
𝑒
𝑖𝜉

𝑓
𝑞
𝑙
(𝑚)−𝐴𝑙
𝐵𝑙

+𝑖𝜂
𝑓
𝑞
𝑙
(𝑚+1)−𝐴𝑙

𝐵𝑙

}︃
→ 𝑒−

𝜉2+𝜂2

2 , 𝑙→∞. (6)

Согласно пункту 1 доказательства

𝑀𝑒𝑖(𝑎𝜌
𝑞
𝑝(𝑚)+𝑏𝜌𝑞𝑝(𝑚+1)) =

⎧⎨⎩1 +
𝛼𝒜𝑝

𝑝
+
𝛼ℬ𝑝
𝑝

= 1 +
𝑒𝑖𝑎𝛼 − 1

𝑝
+
𝑒𝑖𝑏𝛼 − 1

𝑝
, 𝑝 ∤ 𝑞,

1, 𝑝 | 𝑞.
(7)

Преобразуем левую часть (6), пользуясь (7) и статистической независимостью функций
𝑎𝜌𝑞𝑝(𝑚) + 𝑏𝜌𝑞𝑝(𝑚+ 1):
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𝑀

{︃
𝑒
𝑖𝜉

𝑓
𝑞
𝑙
(𝑚)−𝐴𝑙
𝐵𝑙

+𝑖𝜂
𝑓
𝑞
𝑙
(𝑚+1)−𝐴𝑙

𝐵𝑙

}︃
= 𝑒

−𝑖
𝐴𝑙
𝐵𝑙

(𝜉+𝜂)
𝑀

{︃
𝑒

𝑖
𝐵𝑙

(𝜉𝑓𝑞
𝑙 (𝑚)+𝜂𝑓𝑞

𝑙 (𝑚+1))

}︃
=

= 𝑒
−𝑖

𝐴𝑙
𝐵𝑙

(𝜉+𝜂)∏︁
𝑝⩽𝑙

𝑀

{︃
𝑒
𝑖
(︀

𝜉
𝐵𝑙

𝜌𝑞𝑝(𝑚)+ 𝜂
𝐵𝑙

𝜌𝑞𝑝(𝑚+1)
)︀}︃

= 𝑒
−𝑖

𝐴𝑙
𝐵𝑙

(𝜉+𝜂) ∏︁
𝑝⩽𝑙, 𝑝∤𝑞

(︃
1 +

𝑒
𝑖𝜉

𝑓(𝑝)
𝐵𝑙 − 1

𝑝
+
𝑒
𝑖𝜂

𝑓(𝑝)
𝐵𝑙 − 1

𝑝

)︃
=

= 𝑒
−𝑖

𝐴𝑙
𝐵𝑙

(𝜉+𝜂) ∏︁
𝑝⩽𝑙, 𝑝∤𝑞

(︃
1 +

𝑖𝑓(𝑝)

𝑝𝐵𝑙
(𝜉 + 𝜂)− 1

2

𝑓2(𝑝)

𝑝𝐵2
𝑙

(𝜉2 + 𝜂2)− 𝑖

6

𝑓3(𝑝)

𝑝𝐵3
𝑙

(𝜉3 + 𝜂3) + . . .

)︃
=

= 𝑒
−𝑖

𝐴𝑙
𝐵𝑙

(𝜉+𝜂)
exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁

𝑝⩽𝑙, 𝑝∤𝑞

ln

(︃
1 +

𝑖𝑓(𝑝)

𝑝𝐵𝑙
(𝜉 + 𝜂)− 1

2

𝑓2(𝑝)

𝑝𝐵2
𝑙

(𝜉2 + 𝜂2)− 𝑖

6

𝑓3(𝑝)

𝑝𝐵3
𝑙

(𝜉3 + 𝜂3) + . . .⏟  ⏞  
→0 при 𝑙→∞, так как 𝐵𝑙→∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭
)︃

=

= 𝑒
−𝑖

𝐴𝑙
𝐵𝑙

(𝜉+𝜂)
exp

{︃ ∑︁
𝑝⩽𝑙, 𝑝∤𝑞

(︃
𝑖𝑓(𝑝)

𝑝𝐵𝑙
(𝜉 + 𝜂)− 1

2

𝑓2(𝑝)

𝑝𝐵2
𝑙

(𝜉2 + 𝜂2)− 𝑖

6

𝑓3(𝑝)

𝑝𝐵3
𝑙

(𝜉3 + 𝜂3) + . . .

)︃
−

−1

2

(︃
𝑖𝑓(𝑝)

𝑝𝐵𝑙
(𝜉 + 𝜂)− 1

2

𝑓2(𝑝)

𝑝𝐵2
𝑙

(𝜉2 + 𝜂2)− 𝑖

6

𝑓3(𝑝)

𝑝𝐵3
𝑙

(𝜉3 + 𝜂3) + . . .

)︃2

+ . . .

}︃
=

= 𝑒
−𝑖

𝐴𝑙
𝐵𝑙

(𝜉+𝜂)
exp

{︃
𝑖(𝜉 + 𝜂)

𝐵𝑙

∑︁
𝑝⩽𝑙, 𝑝∤𝑞

𝑓(𝑝)

𝑝⏟  ⏞  
𝐴𝑙

−1

2

(𝜉2 + 𝜂2)

𝐵2
𝑙

∑︁
𝑝⩽𝑙, 𝑝∤𝑞

𝑓2(𝑝)

𝑝⏟  ⏞  
𝐵2

𝑙

− 𝑖
6

𝜉3 + 𝜂3

𝐵3
𝑙

∑︁
𝑝⩽𝑙, 𝑝∤𝑞

𝑓3(𝑝)

𝑝
. . .−

−1

2

∑︁
𝑝⩽𝑙, 𝑝∤𝑞

1

𝑝2

(︃
𝑖𝑓(𝑝)

𝐵𝑙
(𝜉 + 𝜂)− 1

2

𝑓2(𝑝)

𝐵2
𝑙

(𝜉2 + 𝜂2) + . . .

)︃2

+ . . .

}︃
=

= 𝑒
−𝑖

𝐴𝑙
𝐵𝑙

(𝜉+𝜂)
𝑒

𝑖(𝜉+𝜂)𝐴𝑙
𝐵𝑙⏟  ⏞  

=1

exp

{︃
− 1

2
(𝜉2 + 𝜂2)− 𝑖𝜉

3 + 𝜂3

6
·

∑︀
𝑝⩽𝑙, 𝑝∤𝑞

𝑓3(𝑝)

𝑝

𝐵3
𝑙⏟  ⏞  

⩽
𝐵2

𝑙

𝐵3
𝑙

=
1

𝐵𝑙
→0, т.к. |𝑓(𝑝)|⩽1

− . . .−

− 1

2𝐵2
𝑙⏟ ⏞ 

→0

∑︁
𝑝⩽𝑙, 𝑝∤𝑞

1

𝑝2

(︃
𝑖𝑓(𝑝)(𝜉 + 𝜂)− 1

2

𝑓2(𝑝)

𝐵𝑙
(𝜉2 + 𝜂2) + . . .

⏟  ⏞  
)︃2

ограничено

+ . . .

}︃
→ 𝑒−

1
2
(𝜉2+𝜂2), 𝑙→∞.

Отсюда по теореме о непрерывности преобразования Фурье-Стилтьеса (см. [5], с. 105-120)
следует утверждение леммы 1.

Сформулируем предварительные утверждения и теорему, на которую будет опираться до-
казательство леммы 2.

Утверждение 1.

1)
∑︀
𝑝⩽𝑥

ln 𝑝

𝑝
⩽ ln𝑥+

ln𝑥

𝑥
+

1

𝑥
+

3

2
;

2)
∑︀
𝑝⩽𝑥

ln 𝑝

𝑝
⩾ ln𝑥+

ln𝑥

2𝑥
+

3

𝑥
− 3.

Доказательство. 1) Заметим, что
1

𝑥
ln[𝑥]! =

1

𝑥

∑︀
1<𝑘⩽𝑥

ln 𝑘 =
1

𝑥

∑︀
1<𝑘⩽𝑥

ln
(︁
𝑝
𝛼𝑘1
𝑘1

𝑝
𝛼𝑘2
𝑘2

· . . . · 𝑝𝛼𝑘𝑟
𝑘𝑟

)︁
=
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=
1

𝑥

∑︀
1<𝑝⩽𝑥

ln 𝑝

(︃[︃
𝑥

𝑝

]︃
+

[︃
𝑥

𝑝2

]︃
+ . . .

)︃
⩾

1

𝑥

∑︀
1<𝑝⩽𝑥

ln 𝑝

[︃
𝑥

𝑝

]︃
=

∑︀
1<𝑝⩽𝑥

ln 𝑝

𝑝
− 1

𝑥

∑︀
1<𝑝⩽𝑥

ln 𝑝

{︃
𝑥

𝑝

}︃
. Значит,

∑︁
1<𝑝⩽𝑥

ln 𝑝

𝑝
⩽

1

𝑥

∑︁
1<𝑘⩽𝑥

ln 𝑘 +
1

𝑥

∑︁
1<𝑝⩽𝑥

ln 𝑝

{︃
𝑥

𝑝

}︃
.

Применим формулу суммирования Эйлера∑︁
𝑎<𝑛⩽𝑥

𝑓(𝑛)− 𝜌(𝑥)𝑓(𝑥) =

𝑥∫︁
𝑎

𝑓(𝑢)𝑑𝑢−
𝑥∫︁

𝑎

𝜌(𝑢)𝑓 ′(𝑢)𝑑𝑢− 𝜌(𝑎)𝑓(𝑎)

к
∑︀

1<𝑘⩽𝑥

ln 𝑘:

∑︁
1<𝑘⩽𝑥

ln 𝑘 = 𝜌(𝑥) ln𝑥+

𝑥∫︁
1

ln𝑢𝑑𝑢−
𝑥∫︁

1

𝜌(𝑢)

𝑢
𝑑𝑢− 𝜌(1) ln 1 = 𝜌(𝑥) ln𝑥+

(︃
𝑥 ln𝑥−

𝑥∫︁
1

1𝑑𝑢

)︃
−

−
𝑥∫︁

1

𝜌(𝑢)

𝑢
𝑑𝑢 = 𝑥 ln𝑥− 𝑥+ 𝜌(𝑥) ln𝑥−

𝑥∫︁
1

𝜌(𝑢)

𝑢
𝑑𝑢+ 1.

Таким образом,

∑︁
1<𝑝⩽𝑥

ln 𝑝

𝑝
⩽ ln𝑥−1+

𝜌(𝑥) ln𝑥

𝑥
− 1

𝑥

𝑥∫︁
1

𝜌(𝑢)

𝑢
𝑑𝑢+

1

𝑥
+

1

𝑥

∑︁
1<𝑝⩽𝑥

ln 𝑝

{︃
𝑥

𝑝

}︃
= ln𝑥+

𝜌(𝑥) ln𝑥

𝑥
+

1

𝑥
−1+

+
1

𝑥

(︃ ∑︁
1<𝑝⩽𝑥

ln 𝑝

{︃
𝑥

𝑝

}︃
−

𝑥∫︁
1

𝜌(𝑢)

𝑢
𝑑𝑢

)︃
.

Оценим отдельно последнее слагаемое:

1

𝑥

(︃ ∑︁
1<𝑝⩽𝑥

ln 𝑝

{︃
𝑥

𝑝

}︃
−

𝑥∫︁
1

𝜌(𝑢)

𝑢
𝑑𝑢

)︃
⩽

1

𝑥

(︃ ∑︁
1<𝑝⩽𝑥

ln 𝑝−
𝑥∫︁

1

𝜌(𝑢)

𝑢
𝑑𝑢

)︃
=

1

𝑥

(︂ ∑︁
1<𝑝⩽𝑥

ln 𝑝−

−
∑︁

1⩽𝑘⩽[𝑥]−1

𝑘+1∫︁
𝑘

𝜌(𝑢)

𝑢
𝑑𝑢−

𝑥∫︁
[𝑥]

𝜌(𝑢)

𝑢
𝑑𝑢

)︂
=

1

𝑥

(︃ ∑︁
1<𝑝⩽𝑥

ln 𝑝−
∑︁

1⩽𝑘⩽[𝑥]−1

(︃
𝜌(𝑢) ln𝑢

⃒⃒⃒⃒
⃒
𝑘+1

𝑘

+

𝑘+1∫︁
𝑘

ln𝑢𝑑𝑢

)︃
−

−
𝑥∫︁

[𝑥]

𝜌(𝑢)

𝑢
𝑑𝑢

)︃
=

1

𝑥

(︃ ∑︁
1<𝑝⩽𝑥

ln 𝑝− 𝜌([𝑥]) ln[𝑥]−
[𝑥]∫︁
1

ln𝑢𝑑𝑢− 𝜌(𝑥) ln𝑥+ 𝜌([𝑥])[𝑥]−
𝑥∫︁

[𝑥]

ln𝑢𝑑𝑢

)︃
⩽

⩽
1

𝑥

(︃ ∑︁
1<𝑘⩽𝑥

ln 𝑘 −
𝑥∫︁

1

ln𝑢𝑑𝑢− 𝜌(𝑥) ln𝑥

)︃
⩽

1

𝑥

(︃ 𝑥+1∫︁
1

ln𝑢𝑑𝑢−
𝑥∫︁

1

ln𝑢𝑑𝑢− 𝜌(𝑥) ln𝑥

)︃
⩽

⩽
ln(𝑥+ 1)− 𝜌(𝑥) ln𝑥

𝑥
.

Следовательно,∑︁
1<𝑝⩽𝑥

ln 𝑝

𝑝
⩽ ln𝑥+

𝜌(𝑥) ln𝑥

𝑥
+

1

𝑥
− 1 +

ln(𝑥+ 1)− 𝜌(𝑥) ln𝑥

𝑥
= ln𝑥+

1

𝑥
− 1 +

ln𝑥

𝑥
+

ln
(︀
1 + 1

𝑥

)︀
𝑥

⩽

⩽ ln𝑥+
ln𝑥

𝑥
+

1

𝑥
− 1 + ln 2,
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откуда следует пункт 1) утверждения.

2) Оценим сверху выражение
1

𝑥
ln[𝑥]! =

1

𝑥

∑︀
1<𝑘⩽𝑥

ln 𝑘 =
1

𝑥

∑︀
1<𝑘⩽𝑥

ln
(︁
𝑝
𝛼𝑘1
𝑘1

𝑝
𝛼𝑘2
𝑘2
· . . . · 𝑝𝛼𝑘𝑟

𝑘𝑟

)︁
=

=
1

𝑥

∑︀
1<𝑝⩽𝑥

ln 𝑝

(︃[︃
𝑥

𝑝

]︃
+

[︃
𝑥

𝑝2

]︃
+. . .

)︃
⩽

∑︀
1<𝑝⩽𝑥

ln 𝑝

(︃
1

𝑝
+

1

𝑝2
+

1

𝑝3
+. . .

)︃
=

∑︀
1<𝑝⩽𝑥

ln 𝑝

𝑝
+
∑︀

1<𝑝⩽𝑥

ln 𝑝

𝑝2
1

1− 1
𝑝⏟  ⏞  

ln 𝑝

𝑝2 − 𝑝

.

Следовательно, в силу формулы суммирования Эйлера, имеем:

∑︁
1<𝑝⩽𝑥

ln 𝑝

𝑝
⩾

1

𝑥

∑︁
1<𝑘⩽𝑥

ln 𝑘 −
∑︁

1<𝑝⩽𝑥

ln 𝑝

𝑝2 − 𝑝
= ln𝑥− 1 +

𝜌(𝑥) ln𝑥

𝑥
+

1

𝑥
− 1

𝑥

𝑥∫︁
1

𝜌(𝑢)𝑑𝑢

𝑢⏟  ⏞  
<ln𝑥, т.к. |𝜌(𝑢)|⩽ 1

2

−

−
∑︁

1<𝑝⩽𝑥

ln 𝑝

𝑝2 − 𝑝
⩾ ln𝑥− 1 +

(𝜌(𝑥)− 1) ln𝑥

𝑥
+

1

𝑥
−
∑︁

1<𝑛⩽𝑥

ln𝑛

𝑛2 − 𝑛⏟  ⏞  
⩾ 1

2
𝑛2 при 𝑛⩾2

⩾ ln𝑥− 1− 3 ln𝑥

2𝑥
+

1

𝑥
−

−
∑︁

1<𝑛⩽𝑥

2 ln𝑛

𝑛2
⩾ ln𝑥−1−3 ln𝑥

2𝑥
+

1

𝑥
−
∑︁

1<𝑛⩽𝑥

2 ln𝑛

𝑛2⏟  ⏞  
↓ при 𝑛>

√
𝑒≈1,65

⩾ ln𝑥−1−3 ln𝑥

2𝑥
+

1

𝑥
−2

𝑥∫︁
1

ln𝑢𝑑

(︃
− 1

𝑢

)︃
=

= ln𝑥− 1− 3 ln𝑥

2𝑥
+

1

𝑥
+ 2

ln𝑥

𝑥
+

2

𝑥
− 2 ⩾ ln𝑥+

ln𝑥

2𝑥
+

3

𝑥
− 3.

Теорема А. ([4])

Пусть выполнены условия:

a) 𝐴,𝑄 – положительные константы.

b) 𝑞1, 𝑞2, . . . 𝑞𝑟 – простые числа, 𝑘 > 0 – целое число, взаимно простое с 𝑞𝑖 для любого
𝑖 = 1, . . . 𝑟;

𝛼𝑖 ∈ N, 0 < 𝛼𝑖 < 𝑞𝑖 при 0 < 𝑖 ⩽ 𝑇 ;

𝑎𝑖𝑗 ∈ Z, 1 ⩽ 𝑖 ⩽ 𝑇, 1 ⩽ 𝑗 ⩽ 𝛼𝑖, при этом в случае 𝑖 ̸= 𝑗 выполнено сравнение
𝑎𝑖𝑗 ̸≡ 𝑎𝑖𝑘 (mod 𝑞𝑖);

𝑓 : Z→ Z – целочисленная функция;

𝑁𝑡(𝑘) =
∑︀
𝑚

1, где суммирование берется по всем целым числам 𝑚 таким, что одновре-

менно выполнено:

1) 𝑚 удовлетворяет некоторому фиксированному условию, не зависящему от

𝑡, 𝑘, 𝑙, 𝑞𝑖, 𝑎𝑖𝑗 , 𝛼𝑖,

2) 𝑓(𝑚) ≡ 𝑙 (mod 𝑘),

3) 𝑓(𝑚) ̸≡ 𝑎𝑖𝑗 (mod 𝑞𝑖), 1 ⩽ 𝑖 ⩽ 𝑡, 1 ⩽ 𝑗 ⩽ 𝛼𝑖.

c) 𝑁𝑡(𝑘) ⩾ 0 при 0 ⩽ 𝑡 ⩽ 𝑇.

d) Существуют 𝑋,𝐶 > 0, независящие от 𝑘, такие, что |𝑁0(𝑘) − 𝐹0(𝑘)| < 𝐶 для всех
𝑘, 𝑙, где

𝐹𝑡(𝑘) =
𝑋

𝑘

𝑡∏︁
𝑖=1

(︃
1− 𝛼𝑖

𝑞𝑖

)︃
.

e) 𝑞1 < 𝑞2 < . . . < 𝑞𝑟.

f) 𝑌 ∈ R такое, что 𝑞𝑡 ⩽ 𝑌 для любого 𝑡 ⩽ 𝑇 .

g) Существует 𝜂, 0 < 𝜂 < 1, такое, что для некоторого 𝑥0 выполнены неравенства
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103 ≤ 𝑥0 ⩽ 𝑒(ln𝑌 )𝜂 ,

⃒⃒⃒⃒
⃒ ∑︁
𝑞𝑖⩽𝑥

𝛼𝑖 ln 𝑞𝑖
𝑞𝑖

−𝑄 ln𝑥

⃒⃒⃒⃒
⃒ < 𝐴 ln𝑥

(ln ln𝑥)2
для 𝑥 > 𝑥0.

h) Существует 𝑣 ∈ (0, 1) такое, что для всех 𝑖 0 <
𝛼𝑖

𝑞𝑖
⩽ 𝑣 < 1.

i) 0.003𝑒𝑄 ln ln𝑌 ⩾ 2.

j) Существует 𝜔 ∈ R такое, что 𝜔 > 1, 𝑒𝑄 ln𝜔 ⩽
3(1− 𝜂)

2
.

k) Обозначим

𝑍 =
𝑡∑︁

𝑖=1

𝛼𝑖

𝑞𝑖
; 𝑊 =

36𝐴(1− 𝑣) + 9𝐴𝑄+ 9𝐴2

(1− 𝑣) ln ln𝑌
; 𝑧 =

36𝐴

𝑄 ln𝜔 ln ln𝑌
.

l) 𝑍 ⩽ 4𝑄
ln ln𝑌

3
.

m) 𝑛 – нечетное натуральное число, большее 2.

Тогда:

𝑁𝑡(𝑘) ⩽ 𝐹𝑡(𝑘)

(︃
1− (−1)𝑛

𝑒𝑊+2𝑧+2

√
2𝜋𝑛𝑒𝑛

4− 𝜔𝑄(𝑒𝑄 ln𝜔)2

4

)︃
− (−1)𝑛

𝑋

𝑘

(︃
3𝑍

4𝑄 ln ln𝑌

)︃ 4𝑄𝑒 ln ln𝑌
3

−

− (−1)𝑛𝐶𝑌 𝑛−1+ 2
𝜔−1 𝑒𝑍 . (8)

При этом если в пункте 𝑚) 𝑛 – четное натуральное число, большее 2, то в (8) знак ”⩽”
меняется на ”⩾”.

Пусть Φ(𝑛) – положительная функция, которая стремится к 0 при 𝑛→∞ таким образом,
что

1

Φ(𝑛)
= 𝑜((ln ln𝑛)2)

и также
1

Φ(𝑛)
= 𝑜(𝐵𝑛).

Из первого соотношения следует, что
1

Φ(𝑛)(ln ln𝑛)2
→

𝑛→∞
0, откуда Φ(𝑛) >>

𝑛→∞

1

(ln ln𝑛)2
.

Пусть 𝑛Φ(𝑛) = 𝛼𝑛, 𝑛
(Φ(𝑛))1/2 = 𝛽𝑛; очевидно, что 𝛼𝑛 →∞, 𝛽𝑛 →∞ при 𝑛→∞.

Пусть 𝑎1(𝑛), 𝑎2(𝑛), . . . – целые числа, все простые делители которых меньше, чем 𝛼𝑛, а
𝜓(𝑚,𝑛) =
= max{𝑎𝑖(𝑛) : 𝑎𝑖(𝑛) | 𝑚}. Обозначим через 𝑞1, 𝑞2, . . . , 𝑞𝑇𝑛 простые числа, меньшие 𝛼𝑛.

Верна следующая лемма:

Лемма 2. Пусть 𝑞 = 𝑞(𝑛) – член некоторой последовательности, принимающей нату-
ральные значения, 𝜙 – функция Эйлера.

Обозначим 𝑁(𝑛, 𝑞) =

⃒⃒⃒⃒
⃒
{︃
𝑚 ∈ N :

𝑚 ⩽ 𝑛,
𝜓(𝑚𝑞 + 1, 𝑛) = 𝑎𝜅(𝑛),
𝜓((𝑚+ 1)𝑞 + 1, 𝑛) = 𝑎𝜆(𝑛),
где 𝑎𝜅, 𝑎𝜆 ⩽ 𝛽𝑛

}︃⃒⃒⃒⃒
⃒.
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Тогда 𝑁(𝑛, 𝑞) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, если (𝑎𝜅, 𝑎𝜆) > 1 или 2 ∤ 𝑎𝜅𝑎𝜆,
𝑛𝑞

4𝜙(𝑎𝜅𝑎𝜆)

𝑇𝑛∏︀
𝑖=2

(︃
1− 2

𝑞𝑖

)︃ ∏︀
2⩽𝑖⩽𝑇𝑛,𝑞𝑖|𝑎𝜅𝑎𝜆

(︃
1 +

1

𝑞𝑖(𝑞𝑖 − 2)

)︃
×

×
∏︀

2 ⩽ 𝑖 ⩽ 𝑇𝑛

𝑞𝑖 | 𝑞, 𝑞𝑖 ∤ 𝑎𝜅𝑎𝜆

(︃
1 +

1

𝑞𝑖 − 2

)︃
(1 + 𝑜(1)), иначе.

Доказательство. Пусть 𝑛 – фиксированное натуральное число. Рассмотрим сначала
случай, когда 𝑞 = 𝑞(𝑛) – нечетное натуральное число.

1) Пусть (𝑎𝜅, 𝑎𝜆) > 1 или 2 ∤ 𝑎𝜅𝑎𝜆.
Из условия 𝜓(𝑚𝑞 + 1, 𝑛) = 𝑎𝜅(𝑛) следует, что 𝑎𝜅 | 𝑚𝑞 + 1. Аналогично 𝑎𝜆 | (𝑚+ 1)𝑞 + 1.

Если (𝑎𝜅, 𝑎𝜆) = 𝑑 > 1, то 𝑑 | 𝑚𝑞 + 1, 𝑑 | (𝑚+ 1)𝑞 + 1. Тогда 𝑑 | 𝑞 и 𝑑 | 1. Противоречие.
Если 2 ∤ 𝑎𝜅𝑎𝜆, то 𝑎𝜅, 𝑎𝜆 – нечетные числа. Так как 𝑞 – нечетное по предположению,

то среди чисел 𝑚𝑞 + 1, (𝑚 + 1)𝑞 + 1 есть четное число. Без ограничения общности, пусть

𝑚𝑞 + 1 – четное. Тогда 𝑚𝑞 + 1 = 2𝑘13𝑘2 . . . 𝑞
𝑘𝑇𝑁
𝑇𝑛⏟  ⏞  

∈{𝑎𝑖(𝑛)}, т.к. все 𝑞𝑖<𝛼𝑛

· 𝑝𝑟11 . . . 𝑝𝑟𝑠𝑠 = 𝑎𝛾0(𝑛) · 𝑝𝑟11 . . . 𝑝𝑟𝑠𝑠 . 𝑎𝛾0(𝑛) де-

лит 𝑚𝑞 + 1, при этом это максимальное 𝑎𝑖(𝑛), обладающее этим свойством. Следовательно,

𝑎𝜅 = 𝑎𝛾0 = 2𝑘13𝑘2 . . . 𝑞
𝑘𝑇𝑁
𝑇𝑛

, при этом 𝑘1 > 0 по предположению. Получаем противоречие с
нечетностью 𝑎𝜅.

Следовательно, 𝑁(𝑛, 𝑞) = 0, если (𝑎𝜅, 𝑎𝜆) > 1 или 2 ∤ 𝑎𝜅𝑎𝜆.

Замечание 9. Заметим, что если 𝑞 – четное, то 𝑁(𝑛, 𝑞) ̸= 0, вообще говоря, если
(𝑎𝜅, 𝑎𝜆) > 1 или 2 ∤ 𝑎𝜅𝑎𝜆.

Действительно, если 𝑞 – четное, то и 𝑚𝑞 + 1, и (𝑚 + 1)𝑞 + 1 – оба нечетные, поэтому
прийти к противоречию тем же способом нельзя.

2) Пусть (𝑎𝜅, 𝑎𝜆) = 1, 2 | 𝑎𝜅𝑎𝜆.

Условие

{︃
𝑎𝜅 | 𝑚𝑞 + 1

𝑎𝜆 | (𝑚+ 1)𝑞 + 1
равносильно

{︃
𝑚𝑞 + 1 = 𝑅𝑎𝜅

(𝑚+ 1)𝑞 + 1 = 𝑆𝑎𝜆
, где у 𝑅 и 𝑆 все простые

делители ⩾ 𝛼𝑛 по определению функции 𝜓.

Отсюда следует, что 𝑅𝑎𝜅 + 𝑞 = (𝑚 + 1)𝑞 + 1 = 𝑆𝑎𝜆 ≡ 0 (mod 𝑎𝜆), то есть 𝑅𝑎𝜅 ≡ −𝑞
(mod 𝑎𝜆). Последнее сравнение разрешимо тогда и только тогда, когда (𝑅, 𝑎𝜆) = 1 | −𝑞, что
верно. Следовательно, существует единственное решение сравнения 0 < 𝑟0 < 𝑎𝜆 такое, что

𝑟0𝑎𝜅 ≡ −𝑞 (mod 𝑎𝜆). В частности, отсюда получаем, что
𝑟0𝑎𝜅 + 𝑞

𝑎𝜆
=: 𝑏0 ∈ Z.

Все решения сравнения 𝑅𝑎𝜅 ≡ −𝑞 (mod 𝑎𝜆) представимы в виде 𝑅 = 𝑟0 + 𝑔𝑎𝜆, 𝑔 ∈ Z. При

этом 𝑆 =
𝑅𝑎𝜅 + 𝑞

𝑎𝜆
=
𝑟0𝑎𝜅 + 𝑞

𝑎𝜆
+ 𝑔𝑎𝜅 = 𝑏0 + 𝑔𝑎𝜅.

Таким образом, нам достаточно найти количество возможных 𝑅 = 𝑟0 + 𝑔𝑎𝜆 ̸≡ 0 (mod 𝑞𝑖),
с условием, что 𝑆 = 𝑏0 + 𝑔𝑎𝜅 ̸≡ 0 (mod 𝑞𝑖), 1 ⩽ 𝑖 ⩽ 𝑇𝑛.

Рассмотрим подробнее систему сравнений:{︃
𝑟0 + 𝑔𝑎𝜆 ̸≡ 0 (mod 𝑞𝑖)

𝑏0 + 𝑔𝑎𝜅 ̸≡ 0 (mod 𝑞𝑖)
⇐⇒

{︃
𝑔𝑎𝜆 ̸≡ −𝑟0 (mod 𝑞𝑖)

𝑔𝑎𝜅 ̸≡ −𝑏0 (mod 𝑞𝑖)
.

а) Если 𝑞𝑖 | 𝑎𝜆, то 𝑔𝑎𝜆 ≡ 0 ̸≡ −𝑟0 (mod 𝑞𝑖), так как 𝑟0 = 𝑅⏟ ⏞ 
̸ ..

.

𝑞𝑖

− 𝑔𝑎𝜆⏟ ⏞ 

..
.

𝑞𝑖

̸≡ 0 (mod 𝑞𝑖). Первое

сравнение в системе выше выполнено.
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б) Если 𝑞𝑖 | 𝑎𝜅, то 𝑔𝑎𝜅 ≡ 0 ̸≡ −𝑏0 (mod 𝑞𝑖) аналогично. Второе сравнение в системе выше
выполнено.

в) Если 𝑞𝑖 ∤ 𝑎𝜆, 𝑞𝑖 ∤ 𝑎𝜅, то получаем

{︃
𝑔𝑎𝜆 ̸≡ −𝑟0 (mod 𝑞𝑖)

𝑔𝑎𝜅 ̸≡ −𝑏0 (mod 𝑞𝑖)
⇐⇒

{︃
𝑔 ̸≡ 𝑒𝑖 (mod 𝑞𝑖)

𝑔 ̸≡ 𝑓𝑖 (mod 𝑞𝑖)
, так

как 𝑎𝜆, 𝑎𝜅 – обратимые элементы по модулю 𝑞𝑖.

Рассмотрим, может ли 𝑒𝑖 быть сравнимо с 𝑓𝑖 по модулю 𝑞𝑖.

� Предположим, что 𝑞𝑖 ∤ 𝑞 и 𝑒𝑖 ≡ 𝑓𝑖 (mod 𝑞𝑖). Тогда 𝑒𝑖 = −𝑟0 · (𝑎𝜆)−1 ≡ −𝑏0(𝑎𝜅)−1 = 𝑓𝑖
(mod 𝑞𝑖). Обозначим 𝑔

′ = −𝑟0(𝑎𝜆)−1 ≡ −𝑏0(𝑎𝜅)−1. Тогда 𝑔′ является решением следующей

системы сравнений:

{︃
𝑔′𝑎𝜆 ≡ −𝑟0
𝑔′𝑎𝜅 ≡ −𝑏0

=⇒ 𝑔′𝑎𝜅 ≡ −
𝑟0𝑎𝜅 + 𝑞

𝑎𝜆⏟  ⏞  
=𝑏0

=⇒ 𝑔′𝑎𝜆⏟ ⏞ 
≡−𝑟0

𝑎𝜅 ≡ −𝑟𝑜𝑎𝜅 + 𝑞 =⇒

=⇒ 𝑞 ≡ 0 (mod 𝑞𝑖). Противоречие с предположением 𝑞𝑖 ∤ 𝑞.

� Пусть теперь 𝑞𝑖 | 𝑞. 𝑒𝑖 = −𝑟0(𝑎𝜆)−1, 𝑓𝑖 = −𝑏0(𝑎𝜅)−1. Так как 𝑞𝑖 ∤ 𝑎𝜅𝑎𝜆 имеем:

𝑒𝑖 ≡ 𝑓𝑖 ⇔ 𝑟0(𝑎𝜆)−1 ≡ 𝑏0(𝑎𝜅)−1 ⇔ (𝑟0(𝑎𝜆)−1 − 𝑏0(𝑎𝜅)−1)𝑎𝜆𝑎𝜅 ≡ 0⇔ 𝑟0𝑎𝜅 ≡ 𝑏0𝑎𝜆 =

=
𝑟0𝑎𝜅 + 𝑞

𝑎𝜆
𝑎𝜆 ⇔ 𝑞 ≡ 0 – верное сравнение. Значит, если 𝑞𝑖 | 𝑞, то 𝑒𝑖 ≡ 𝑓𝑖 (mod 𝑞𝑖).

Таким образом, нам необходимо и достаточно найти количество целых 𝑔 таких, что

а) 0 < 𝑔 <
𝑛𝑞 + 1− 𝑎𝜅𝑟0

𝑎𝜅𝑎𝜆
.

Действительно, 𝑚𝑞+ 1 = 𝑅𝑎𝜅 = (𝑟0 + 𝑔𝑎𝜆)𝑎𝜅 ⩽ 𝑛𝑞+ 1, следовательно, 0 < 𝑔 ⩽

𝑛𝑞 + 1

𝑎𝜅
− 𝑟0

𝑎𝜆
,

откуда вытекает требуемая оценка.

б) 𝑔 ∈ Z⇔ 𝑔 ≡ 0 (mod 1).

в)

� если 1 ⩽ 𝑖 ⩽ 𝑇𝑛, 𝑞𝑖 ∤ 𝑎𝜅, 𝑞𝑖 ∤ 𝑎𝜆, 𝑞𝑖 ∤ 𝑞, то

{︃
𝑔 ̸≡ 𝑒𝑖 (mod 𝑞𝑖)

𝑔 ̸≡ 𝑓𝑖 (mod 𝑞𝑖)
.

� если 1 ⩽ 𝑖 ⩽ 𝑇𝑛, 𝑞𝑖 ∤ 𝑎𝜅, 𝑞𝑖 ∤ 𝑎𝜆, 𝑞𝑖 | 𝑞, то 𝑔 ̸≡ 𝑒𝑖 (mod 𝑞𝑖).

� если 1 ⩽ 𝑖 ⩽ 𝑇𝑛, 𝑞𝑖 | 𝑎𝜅, 𝑞𝑖 ∤ 𝑎𝜆, то 𝑔 ̸≡ 𝑒𝑖 (mod 𝑞𝑖).

� если 1 ⩽ 𝑖 ⩽ 𝑇𝑛, 𝑞𝑖 ∤ 𝑎𝜅, 𝑞𝑖 | 𝑎𝜆, то 𝑔 ̸≡ 𝑓𝑖 (mod 𝑞𝑖).

Пусть 𝑁𝑡(𝑘), 0 ⩽ 𝑡 ⩽ 𝑇𝑛 – количество целых 𝑔 удовлетворяющих условиям а), в) (с 𝑇𝑛 за-
мененным на 𝑡) и б)’: 𝑔 ≡ 𝑙 (mod 𝑞𝑖), где 𝑙 пробегает целые значения на полуинтервале [0, 𝑘),
(𝑘, 𝑞𝑖) = 1 при 𝑖 = 1, . . . 𝑡.

Тогда 𝑁𝑇𝑛(1) = 𝑁(𝑛, 𝑞) из условия леммы.

Также обозначим 𝐹𝑡(𝑘) =
𝑛𝑞

𝑘𝑎𝜅𝑎𝜆

𝑡∏︀
𝑖=1

(︃
1 − 𝛼𝑖

𝑞𝑖

)︃
, где 𝛼𝑖 =

{︃
1, 𝑞𝑖 | 𝑎𝜅𝑎𝜆 или 𝑞𝑖 | 𝑞, 𝑞𝑖 ∤ 𝑎𝜅𝑎𝜆,
2, иначе.

(Почему 𝛼𝑖 определено таким образом будет сказано ниже, пункт b)).

Заметим, что 𝛼1 = 1, так как 𝑞1 = 2 | 𝑎𝜅𝑎𝜆.
Найдем значение 𝑁0(𝑘). 𝑁0(𝑘) – это количество целых 𝑔 удовлетворяющих условиям⎧⎪⎪⎨⎪⎪⎩

а) 0 < 𝑔 <
𝑛𝑞 + 1− 𝑎𝜅𝑟0

𝑎𝜅𝑎𝜆
б)’ 𝑔 ≡ 0 (mod 𝑘)

в) ∅(так как условие 1 ⩽ 𝑖 ⩽ 𝑡 = 0 не выполняется)
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Следовательно, 𝑁0(𝑘) =

[︃
𝑛𝑞 + 1− 𝑎𝜅𝑟0

𝑘𝑎𝜅𝑎𝜆

]︃
, 𝐹0(𝑘) =

𝑛𝑞

𝑘𝑎𝜅𝑎𝜆
. Имеем:

|𝑁0(𝑘)− 𝐹0(𝑘)| =

⃒⃒⃒⃒
⃒
[︃
𝑛𝑞 + 1− 𝑎𝜅𝑟0

𝑘𝑎𝜅𝑎𝜆

]︃
− 𝑛𝑞

𝑘𝑎𝜅𝑎𝜆

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
[︃

𝑛𝑞

𝑘𝑎𝜅𝑎𝜆
− 𝑎𝜅𝑟0 − 1

𝑘𝑎𝜅𝑎𝜆

]︃
− 𝑛𝑞

𝑘𝑎𝜅𝑎𝜆

⃒⃒⃒⃒
⃒ < 2, так как

⃒⃒⃒⃒
⃒

⩾1⏞ ⏟ 
𝑎𝜅𝑟0−1

𝑘𝑎𝜅𝑎𝜆

⃒⃒⃒⃒
⃒ =

𝑎𝜅𝑟0 − 1

𝑘𝑎𝜅𝑎𝜆
<

𝑟0
𝑘𝑎𝜆

< 1.

Применим теорему А. Проверим выполнение условий теоремы и подберем необходимые
константы:

a) Возьмем 𝐴 = 1, 𝑄 = 2.

b) 𝑇 =∞, 𝑓(𝑚) = 𝑚.

Фиксированное условие суммирования в 𝑁𝑡(𝑘) – условие 0 ⩽ 𝑔 ⩽
𝑛𝑞

𝑎𝜅𝑎𝜆
= 𝑋. Условия 2) и

3) – это условия б)’ и в).

𝛼𝑖1 = 𝑒𝑖, 𝛼𝑖2 = 𝑓𝑖. Следовательно, 𝛼𝑖 должно быть равно 1, когда на 𝑔 накладывается только
одно условие несравнимости, и 𝛼𝑖 должно быть равно 2, когда 𝑔 должно быть несравнимо и с

𝑒𝑖, и с 𝑓𝑖. Отсюда определяем 𝛼𝑖 =

{︃
1, 𝑞𝑖 | 𝑎𝜅𝑎𝜆 или 𝑞𝑖 | 𝑞, 𝑞𝑖 ∤ 𝑎𝜅𝑎𝜆,
2, иначе.

c) Очевидно, выполняется.

d) 𝑋 =
𝑛𝑞

𝑎𝜅𝑎𝜆
, 𝐶 = 2.

e) Выполнено.

f) 𝑡 = 𝜋(𝛼𝑛) = 𝑇𝑛, 𝑌 = 𝑞𝑇𝑛 ⇔ 𝑞𝑡 ⩽ 𝑌.

Заметим, что 𝑌 ∼ 𝑇𝑛 ln𝑇𝑛 ∼
𝛼𝑛

ln𝛼𝑛
·ln 𝛼𝑛

ln𝛼𝑛
∼ 𝛼𝑛

ln𝛼𝑛
·(ln𝛼𝑛−ln ln𝛼𝑛) = 𝛼𝑛

(︃
1− ln ln𝛼𝑛

ln𝛼𝑛

)︃
∼ 𝛼𝑛

при 𝑛→∞.

g) Рассмотрим 𝑆 =
∑︀
𝑞𝑖⩽𝑥

𝛼𝑖 ln 𝑞𝑖
𝑞𝑖
−2 ln𝑥 ⩽ 2

∑︀
𝑞𝑖⩽𝑥

ln 𝑞𝑖
𝑞𝑖
−2 ln𝑥

Утверждение 1
< 2

(︃
ln𝑥

𝑥
+

1

𝑥
+

3

2

)︃
< 5.

Оценим 𝑆 снизу. Для этого заметим, что

𝑆 =
∑︁
𝑞𝑖⩽𝑥

𝛼𝑖 ln 𝑞𝑖
𝑞𝑖

− 2 ln𝑥 = 2
∑︁
𝑞𝑖⩽𝑥

ln 𝑞𝑖
𝑞𝑖
−

∑︁
𝑞𝑖⩽𝑥, 𝛼𝑖=1

ln 𝑞𝑖
𝑞𝑖
− 2 ln𝑥.

Но количество 𝛼𝑖, равных 1, не больше количества 𝑞𝑖, делящих 𝑎𝜅𝑎𝜆 или 𝑞. Следовательно,
количество слагаемых во второй сумме не превосходит log2 𝑎𝜅𝑎𝜆+log2 𝑞 < ln𝑋 при достаточно
большом 𝑛. Следовательно,

𝑆 ⩾ 2
∑︁
𝑞𝑖⩽𝑥

ln 𝑞𝑖
𝑞𝑖
−

∑︁
𝑞𝑖⩽ln𝑋

ln 𝑞𝑖
𝑞𝑖
− 2 ln𝑥

Утверждение 1
>

ln𝑥

𝑥
− 3−

(︃
ln ln𝑋 +

ln ln𝑋

ln𝑋
+

1

ln𝑋
+

3

2

)︃
>

> − ln ln𝑋 − 6.

Отсюда получаем, что |𝑆| < 6 + ln ln𝑋.

Пусть 𝜂 =
2

3
, 𝑥0 = 𝑒(ln ln𝑋)2 . Тогда 𝑥0 < 𝑒(ln𝑌 )

2
3 для достаточно большого 𝑛. Действительно,

сравним (ln ln𝑋)2 и (ln𝑌 )
2
3 :

(ln𝑌 )
2
3 ∼ (ln𝛼𝑛)

2
3 = (ln𝑛Φ(𝑛))

2
3 =(Φ(𝑛) ln𝑛)

2
3 >

(︃
ln𝑛

(ln ln𝑛)2

)︃ 2
3

>2(ln ln𝑛)2>(ln ln(𝑛𝑞))2 >

> (ln ln𝑋)2 для достаточно больших 𝑛, что и требовалось.



Об одной задаче, связанной с законом повторного логарифма 235

Следовательно, найдется 𝑥0 такой, что |𝑆| < 6+ln ln𝑋 = 6+
√

ln𝑥0 <
ln𝑥

(ln ln𝑥)2
при 𝑥 > 𝑥0.

h) Возьмем 𝑣 = 2
3 . Тогда 0 <

𝛼𝑖

𝑞𝑖
⩽ 𝑣 < 1, так как 𝛼1 = 1, 𝑞1 = 2, а при 𝑖 ⩾ 2 имеем

𝛼𝑖 ⩽ 2, 𝑞𝑖 ⩾ 3.

Замечание 10. Заметим, что если 𝑞 – четное, то

� если 𝑞1 = 2 | 𝑎𝜅𝑎𝜆, то 𝛼1 = 1 по определению.

� если 𝑞1 = 2 ∤ 𝑎𝜅𝑎𝜆, то 𝑞1 = 2 | 𝑞, так как 𝑞 – четное, следовательно, 𝛼1 = 1 по
определению.

Следовательно, пункт h) выполнен и в случае четного 𝑞.

i) Верно для достаточно большого 𝑛.
j) Возьмем некоторое 𝜔 ∈ (1, 65). Тогда должно быть разрешимо неравенство 𝑒𝑄 ln𝜔 =

= 2𝑒 ln𝜔 ⩽ 3
2(1 − 𝜂) = 1

2 . Действительно, данное неравенство равносильно неравенству

ln𝜔 < 1
4𝑒 ⇔ 𝜔 < 𝑒

1
4𝑒 ≈ 1, 096.

k)

𝑍 =
𝑡∑︁

𝑖=1

𝛼𝑖

𝑞𝑖
; 𝑊 =

12 + 18 + 9
1
3 ln ln𝑌

=
117

ln ln𝑌
; 𝑧 =

18

ln𝜔 ln ln𝑌
.

l) Докажем, что 𝑍 ⩽ 8
ln ln𝑌

3
.

Так как 𝑞𝑖 > 𝑐𝑖 ln 𝑖 при 𝑖 ⩾ 2 по оценкам Чебышева, то имеем:

𝑍 ⩽ 2
𝑡∑︀

𝑖=1

1

𝑞𝑖
⩽ 1 +

2

3
+

2

3

𝑡∑︀
𝑖=3

1

𝑖 ln 𝑖
⩽

5

3
+

𝑡∫︀
2

𝑑𝑢

𝑢 ln𝑢
=

5

3
+ ln ln 𝑡− ln ln 2 ⩽ 2 ln ln𝑇𝑛 ⩽ 2 ln ln 𝑞𝑇𝑛 =

= 2 ln ln𝑌 , откуда следует требуемая оценка.
m) Переобозначим 𝑛 за 𝜈 – нечетное натуральное число, большее 2, которое мы выберем

позже. Тогда по теореме А имеем:

𝑁𝑡(𝑘) ⩽ 𝐹𝑡(𝑘)

(︃
1− (−1)𝜈

𝑒𝑊+ 4
3
+2

√
2𝜋𝜈𝑒𝜈

4− 𝜔2(2𝑒 ln𝜔)2

4

)︃
− (−1)𝜈

𝑋

𝑘

(︃
3𝑍

8 ln ln𝑌

)︃ 8𝑒 ln ln𝑌
3

−

− (−1)𝜈2𝑌 𝜈−1+ 2
𝜔−1 𝑒𝑍 . (9)

Докажем, что правая часть (9) равна 𝐹𝑡(𝑘)(1 + 𝑜(1)), 𝑛→∞.

а)
𝑒𝑊+2𝑧+2

√
2𝜋𝜈𝑒𝜈

4− 𝜔2(2𝑒 ln𝜔)2

4

=
𝑒

→0⏞  ⏟  
𝑊 + 2𝑧+2

√
2𝜋𝜈⏟  ⏞  
→∞

𝑒𝜈(1− 𝜔2𝑒2 ln2 𝜔)
→ 0 при 𝜈 →∞.

Значит, подберем 𝜈 так, чтобы оно стремилось к бесконечности с ростом 𝑛.

б) Известна оценка (см. [8], с. 36-37)
𝑡∏︀

𝑖=1

(︃
1− 2

𝑞𝑖

)︃
⩾

𝑐

(ln 𝑞𝑡)2
. Отсюда

𝐹𝑡(𝑘) =
𝑛𝑞

𝑘𝑎𝜅𝑎𝜆

𝑡∏︀
𝑖=1

(︃
1− 𝛼𝑖

𝑞𝑖

)︃
>
𝑋

𝑘

𝑡∏︀
𝑖=1

(︃
1− 2

𝑞𝑖

)︃
⩾
𝑋

𝑘

𝑐

(ln 𝑞𝑡)2
⩾
𝑋

𝑘

𝑐

(ln𝑌 )2
. При этом

ln𝑌 ∼ ln𝛼𝑛 = ln𝑛Φ(𝑛) = Φ(𝑛) ln𝑛.

Следовательно,

𝐹𝑡(𝑘) ⩾
𝑐𝑋

𝑘(Φ(𝑛) ln𝑛)2
.
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Докажем, что
𝑋

𝑘

(︃
3𝑍

8 ln ln𝑌

)︃ 8𝑒 ln ln𝑌
3

= 𝑜(𝐹𝑡(𝑘)), 𝑛→∞.

Заметим, что в силу неравенства Чебышева 𝑞𝑛 > 𝑐𝑛 ln𝑛 при 𝑛 ⩾ 2 имеем

𝑍 =
𝑡∑︁

𝑖=1

𝛼𝑖

𝑞𝑖
⩽ 2

𝑡∑︁
𝑖=1

1

𝑞𝑖
<

2

2
+

2

3
+

2

𝑐

𝑡∑︁
𝑖=3

1

𝑖 ln 𝑖
<

5

3
+

2

𝑐

𝑡∫︁
2

𝑑𝑢

𝑢 ln𝑢
<

<
5

3
+

2

𝑐
ln ln 𝑡− 2

𝑐
ln ln 2 < ln ln𝑌. (10)

Таким образом, имеем:

𝑋

𝑘

(︃
3𝑍

8 ln ln𝑌⏟  ⏞  
< 3

8

)︃ 8𝑒 ln ln𝑌
3

<
𝑋

𝑘

(︃
3

8

)︃ 8𝑒 ln ln𝑌
3

<
𝑋

𝑘
𝑒8 ln

3
8
ln ln𝑌 =

𝑋

𝑘

1

(ln𝑌 )8 ln
8
3

∼

∼ 𝑋

𝑘

1

(Φ(𝑛) ln𝑛)8 ln
8
3

=

⃒⃒⃒⃒
⃒8 ln

8

3
≈ 7, 85 > 2

⃒⃒⃒⃒
⃒ = 𝑜(𝐹𝑡(𝑘)), 𝑛→∞.

в) В силу (10) имеем

2𝑌 𝜈−1+ 2
𝜔−1 𝑒𝑍 < 2𝑌 𝜈−1+ 2

𝜔−1 𝑒ln ln𝑌 = 2𝑌 𝜈−1+ 2
𝜔−1 ln𝑌 < 2𝛼

𝜈−1+ 2
𝜔−1

𝑛 ln𝛼𝑛 <

Выберем 𝜈 и 𝜔 следующим образом:

𝜈 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[︃
1

Φ
1
2

]︃
, если

[︃
1

Φ
1
2

]︃
− нечетное,

1 +

[︃
1

Φ
1
2

]︃
, иначе.

𝜔 = 1 + Φ
1
2

< 2𝑛Φ·(Φ− 1
2−1)+2Φ

1
2 Φ ln𝑛 = 2𝑛3Φ

1
2−ΦΦ ln𝑛 = 𝑜(𝑛𝛿) для любого наперед заданного 𝛿 > 0.

В то же время по уже доказанному

𝐹𝑡(𝑘) ⩾
𝑐𝑋

𝑘(Φ(𝑛) ln𝑛)2
,

𝑋 =
𝑛𝑞

𝑎𝜅𝑎𝜆⏟ ⏞ 
⩽𝛽2

𝑛=𝛼𝑛

⩾
𝑛

𝑛Φ(𝑛)
⩾ 𝑛1−𝛿 для любого наперед заданного 𝛿 > 0,

следовательно, 𝐹𝑡(𝑘) ⩾ 𝑛1−2𝛿, откуда следует, что 2𝑌 𝜈−1+ 2
𝜔−1 𝑒𝑍 = 𝑜(𝐹𝑡(𝑘)).

Из а), б), в) следует, что
𝑁𝑡(𝑘) ⩽ 𝐹𝑡(𝑘)(1 + 𝑜(1))

Аналогично с помощью замены нечетного 𝜈 на четное доказывается

𝑁𝑡(𝑘) ⩾ 𝐹𝑡(𝑘)(1 + 𝑜(1)).

Следовательно, 𝑁𝑡(1) = 𝐹𝑡(1)(1 + 𝑜(1)). Найдем 𝐹𝑇𝑛(1):
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𝐹𝑇𝑛(1) =
𝑛𝑞

𝑎𝜅𝑎𝜆

𝑇𝑛∏︁
𝑖=1

(︃
1− 𝛼𝑖

𝑞𝑖

)︃
=

⃒⃒⃒⃒
⃒ 𝛼1 = 1,
𝑞1 = 2

⃒⃒⃒⃒
⃒ =

𝑛𝑞

2𝑎𝜅𝑎𝜆

𝑇𝑛∏︁
𝑖=2

(︃
1− 𝛼𝑖

𝑞𝑖

)︃
=

𝑛𝑞

2𝑎𝜅𝑎𝜆

𝑇𝑛∏︁
𝑖=2

(︃
1− 2

𝑞𝑖

)︃
×

×

∏︀
𝛼𝑖=1

(︃
1− 1

𝑞𝑖

)︃
∏︀

𝛼𝑖=1

(︃
1− 2

𝑞𝑖

)︃ =
𝑛𝑞

2𝑎𝜅𝑎𝜆

𝑇𝑛∏︁
𝑖=2

(︃
1− 2

𝑞𝑖

)︃
·

⎛⎜⎜⎜⎜⎜⎜⎝
∏︁

2 ⩽ 𝑖 ⩽ 𝑇𝑛, 𝑞𝑖 | 𝑎𝜅𝑎𝜆
или 𝑞𝑖 | 𝑞, 𝑞𝑖 ∤ 𝑎𝜅𝑎𝜆

1− 1

𝑞𝑖

1− 2

𝑞𝑖

⎞⎟⎟⎟⎟⎟⎟⎠×

×

∏︀
2 ⩽ 𝑖 ⩽ 𝑇𝑛,
𝑞𝑖 | 𝑎𝜅𝑎𝜆

(︃
1− 1

𝑞𝑖

)︃

2
∏︀

1 ⩽ 𝑖 ⩽ 𝑇𝑛,
𝑞𝑖 | 𝑎𝜅𝑎𝜆

(︃
1− 1

𝑞𝑖

)︃

⏟  ⏞  
=1

=

⃒⃒⃒⃒
⃒𝜙(𝑎𝜅𝑎𝜆) = 𝑎𝜅𝑎𝜆

∏︁
1 ⩽ 𝑖 ⩽ 𝑇𝑛,
𝑞𝑖 | 𝑎𝜅𝑎𝜆

(︃
1− 1

𝑞𝑖

)︃⃒⃒⃒⃒
⃒ =

=
𝑛𝑞

4𝜙(𝑎𝜅𝑎𝜆)

𝑇𝑛∏︁
𝑖=2

(︃
1− 2

𝑞𝑖

)︃
·

∏︁
2 ⩽ 𝑖 ⩽ 𝑇𝑛, 𝑞𝑖 | 𝑎𝜅𝑎𝜆

или 𝑞𝑖 | 𝑞, 𝑞𝑖 ∤ 𝑎𝜅𝑎𝜆

(︃
1 +

1

𝑞𝑖 − 2

)︃
·

∏︁
2 ⩽ 𝑖 ⩽ 𝑇𝑛,
𝑞𝑖 | 𝑎𝜅𝑎𝜆

(︃
1− 1

𝑞𝑖

)︃
=

=
𝑛𝑞

4𝜙(𝑎𝜅𝑎𝜆)

𝑇𝑛∏︁
𝑖=2

(︃
1− 2

𝑞𝑖

)︃
·

∏︁
2 ⩽ 𝑖 ⩽ 𝑇𝑛

𝑞𝑖 | 𝑎𝜅𝑎𝜆

(︃
1 +

1

𝑞𝑖 − 2

)︃
·

(︃
1− 1

𝑞𝑖

)︃
·

∏︁
2 ⩽ 𝑖 ⩽ 𝑇𝑛

𝑞𝑖 | 𝑞, 𝑞𝑖 ∤ 𝑎𝜅𝑎𝜆

(︃
1 +

1

𝑞𝑖 − 2

)︃
=

=
𝑛𝑞

4𝜙(𝑎𝜅𝑎𝜆)

𝑇𝑛∏︁
𝑖=2

(︃
1− 2

𝑞𝑖

)︃
·

∏︁
2 ⩽ 𝑖 ⩽ 𝑇𝑛

𝑞𝑖 | 𝑎𝜅𝑎𝜆

(︃
1 +

1

𝑞𝑖(𝑞𝑖 − 2)

)︃
·

∏︁
2 ⩽ 𝑖 ⩽ 𝑇𝑛

𝑞𝑖 | 𝑞, 𝑞𝑖 ∤ 𝑎𝜅𝑎𝜆

(︃
1 +

1

𝑞𝑖 − 2

)︃
,

откуда следует утверждение леммы для нечетного 𝑞. Для четного 𝑞 утверждение также верно
в силу замечания 2.

Лемма 3. Обозначим 𝑁(𝑀,𝑛) = |{𝑚 ∈ N|𝑚 ⩽𝑀, ∃𝑖 : 𝑎𝑖(𝑛) | 𝑚, 𝑎𝑖(𝑛) > 𝛽𝑛}|. Тогда

𝑁(𝑀,𝑛) < 𝑏𝑀(Φ(𝑛))
1
2 ,

где 𝑏 – положительная константа.

Доказательство. См. [3].

Лемма 4. Пусть

𝑙𝑛(𝜔1, 𝜔2) =
⃒⃒
{𝑚 ∈ N : 𝑚 ⩽ 𝑛, 𝑓 𝑞𝛼𝑛

(𝑚) < 𝐴𝛼𝑛 + 𝜔1𝐵𝛼𝑛 , 𝑓
𝑞
𝛼𝑛

(𝑚+ 1) < 𝐴𝛼𝑛 + 𝜔2𝐵𝛼𝑛}
⃒⃒
.

Тогда 𝑙𝑛(𝜔1, 𝜔2) = 𝑛𝐷(𝜔1)𝐷(𝜔2) + 𝑜(𝑛).
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Доказательство. Разделим все целые числа 𝑚 ⩽ 𝑛, удовлетворяющие неравенствам{︃
𝑓 𝑞𝛼𝑛(𝑚) < 𝐴𝛼𝑛 + 𝜔1𝐵𝛼𝑛 ,

𝑓 𝑞𝛼𝑛(𝑚+ 1) < 𝐴𝛼𝑛 + 𝜔2𝐵𝛼𝑛 ,
(11)

на классы 𝐸𝑗𝑘 таким образом, что 𝑚 ∈ 𝐸𝑗𝑘 ⇐⇒

{︃
𝜓(𝑚𝑞 + 1, 𝑛) = 𝑎𝑗(𝑛)

𝜓((𝑚+ 1)𝑞 + 1, 𝑛) = 𝑎𝑘(𝑛)
.

Имеем: 𝑙𝑛(𝜔1, 𝜔2) =
∑︀
𝑗,𝑘

|𝐸𝑗𝑘| =
∑︀

𝑗,𝑘: 𝑎𝑗 ,𝑎𝑘⩽𝛽𝑛

|𝐸𝑗𝑘|+
∑︀

𝑗,𝑘: 𝑎𝑗>𝛽𝑛 или 𝑎𝑘>𝛽𝑛

|𝐸𝑗𝑘|.

В силу леммы 3
∑︀

𝑗,𝑘: 𝑎𝑗>𝛽𝑛 или 𝑎𝑘>𝛽𝑛

|𝐸𝑗𝑘| < 𝑏𝑛(Φ(𝑛))
1
2 = 𝑜(𝑛), 𝑛 → ∞ и, следовательно,

достаточно доказать, что
∑︀

𝑗,𝑘: 𝑎𝑗 ,𝑎𝑘⩽𝛽𝑛

|𝐸𝑗𝑘| = 𝑛𝐷(𝜔1)𝐷(𝜔2) + 𝑜(𝑛), 𝑛→∞.

По лемме 2 имеем:

∑︁
𝑎𝑗 ,𝑎𝑘⩽𝛽𝑛

|𝐸𝑗𝑘| =
𝑛𝑞

4

𝑇𝑛∏︁
𝑖=2

(︃
1− 2

𝑞𝑖

)︃ ∑︁
𝑎𝑗 ,𝑎𝑘⩽𝛽𝑛

′𝑃 (𝑎𝑗 , 𝑎𝑘, 𝑛)

𝜙(𝑎𝑗𝑎𝑘)
(1 + 𝑜(1)),

где

𝑃 (𝑎𝑗 , 𝑎𝑘, 𝑛) =
∏︁

2⩽𝑖⩽𝑇𝑛,𝑞𝑖|𝑎𝑗𝑎𝑘

(︃
1 +

1

𝑞𝑖(𝑞𝑖 − 2)

)︃ ∏︁
2 ⩽ 𝑖 ⩽ 𝑇𝑛

𝑞𝑖 | 𝑞, 𝑞𝑖 ∤ 𝑎𝑗𝑎𝑘

(︃
1 +

1

𝑞𝑖 − 2

)︃
,

а штрих означает суммирование по 𝑎𝑗 , 𝑎𝑘, удовлетворяющим условиям

𝑓𝛼𝑛(𝑎𝑗) < 𝐴𝛼𝑛 + 𝜔1𝐵𝛼𝑛 , 𝑓𝛼𝑛(𝑎𝑘) < 𝐴𝛼𝑛 + 𝜔2𝐵𝛼𝑛 ,

(𝑎𝑗 , 𝑎𝑘) = 1; 2 | 𝑎𝑗𝑎𝑘,

𝑓𝛼(𝑚) =
∑︁
𝑝 | 𝑚,
𝑝 ⩽ 𝛼

𝑓(𝑝)

Действительно, если 𝑚 ∈ 𝐸𝑗𝑘, то в силу определения функции 𝜓 и аддитивности 𝑓𝛼𝑛 имеем
𝑓 𝑞𝛼𝑛(𝑚) =
= 𝑓𝛼𝑛(𝑚𝑞 + 1) = 𝑓𝛼𝑛(𝑟 · 𝑎𝑗) = 𝑓𝛼𝑛(𝑟) + 𝑓𝛼𝑛(𝑎𝑗) = 𝑓𝛼𝑛(𝑎𝑗), так как 𝑟 – делитель 𝑚𝑞 + 1, все
простые делители которого больше 𝛼𝑛. Аналогично 𝑓

𝑞
𝛼𝑛(𝑚+ 1) = 𝑓𝛼𝑛(𝑎𝑘).

Теперь разделим все целые числа, удовлетворяющие (11), на классы 𝐹𝑗𝑘 таким образом,
что

𝑚 ∈ 𝐹𝑗𝑘 ⇐⇒

{︃
𝜓(𝑚𝑞 + 1, 𝑛) = 𝑎𝑗(𝑛)

𝜓((𝑚+ 1)𝑞 + 1, 𝑛) = 𝑎𝑘(𝑛)
, и пусть {𝐹𝑗𝑘} обозначает плотность 𝐹𝑗𝑘. Рассмот-

рим сумму
∑︀′ 𝐹𝑗𝑘, где штрих обозначает то же, что и раньше. Взяв 𝑙 = 𝛼𝑛 и применив лемму

1, получим: {︂∑︁′
𝐹𝑗𝑘

}︂
= 𝐷(𝜔1)𝐷(𝜔2) + 𝑜(1), 𝑛→∞.

Аналогично разобьем сумму на две:∑︁′
𝐹𝑗𝑘 =

∑︁
𝑎𝑗 ,𝑎𝑘⩽𝛽𝑛

′
𝐹𝑗𝑘 +

∑︁
𝑎𝑗>𝛽𝑛 или 𝑎𝑘>𝛽𝑛

′
𝐹𝑗𝑘. (12)
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По лемме 3 {︂ ∑︁
𝑎𝑗>𝛽𝑛 или 𝑎𝑘>𝛽𝑛

′
𝐹𝑗𝑘

}︂
⩽ 𝑏(Φ(𝑛))

1
2 = 𝑜(1), 𝑛→∞. (13)

Кроме того, количество 𝑎𝑗 и 𝑎𝑘, меньших 𝛽𝑛, конечно, поэтому{︂ ∑︁
𝑎𝑗 ,𝑎𝑘⩽𝛽𝑛

′
𝐹𝑗𝑘

}︂
=

∑︁
𝑎𝑗 ,𝑎𝑘⩽𝛽𝑛

′
{𝐹𝑗𝑘} = 𝐷(𝜔1)𝐷(𝜔2) + 𝑜(1), 𝑛→∞.

Но {𝐹𝑗𝑘} = lim
𝑛→∞

|𝐸𝑗𝑘|
𝑛

, откуда следует∑︁
𝑎𝑗 ,𝑎𝑘⩽𝛽𝑛

|𝐸𝑗𝑘| = 𝑛
∑︁

𝑎𝑗 ,𝑎𝑘⩽𝛽𝑛

{𝐹𝑗𝑘}+ 𝑜(𝑛) = 𝑛𝐷(𝜔1)𝐷(𝜔2) + 𝑜(𝑛), 𝑛→∞,

что и требовалось доказать.

3. Доказательство теоремы 3

Из лемм 1–4 следует
Теорема 3. Пусть 𝑓 – сильно аддитивная функция такая, что |𝑓(𝑝)| ⩽ 1 для всех

простых 𝑝. Пусть 𝜔1, 𝜔2 ∈ R, 𝑞 = 𝑞(𝑛) – член некоторой последовательности, принимающей
натуральные значения с условием

∃𝐶 > 0 : 𝑞(𝑛) < 𝑛𝐶 ∀𝑛.

Обозначим

𝐴𝑛 =
∑︁
𝑝 ⩽ 𝑛,
𝑝 ∤ 𝑞

𝑓(𝑝)

𝑝
, 𝐵𝑛 =

⎯⎸⎸⎸⎸⎸⎷
∑︁
𝑝 ⩽ 𝑛,
𝑝 ∤ 𝑞

𝑓2(𝑝)

𝑝
,

причем 𝐵𝑛 →∞ при 𝑛→∞.
Пусть 𝑁(𝑛) – количество натуральных чисел 𝑚 ⩽ 𝑛 таких, что выполняются условия{︃

𝑓(𝑚𝑞 + 1) < 𝐴𝑛 + 𝜔1𝐵𝑛

𝑓((𝑚+ 1)𝑞 + 1) < 𝐴𝑛 + 𝜔2𝐵𝑛

. (14)

Тогда 𝑁(𝑛) = 𝑛𝐷(𝜔1)𝐷(𝜔2) + 𝑜(𝑛).
Доказательство. Имеем:

|𝑓(𝑚𝑞 + 1)− 𝑓 𝑞𝛼𝑛
(𝑚)| =

⃒⃒⃒⃒
⃒ ∑︁
𝑝 | 𝑚𝑞 + 1,
𝑝 > 𝛼𝑛

𝑓(𝑝)

⃒⃒⃒⃒
⃒ ⩽ ∑︁

𝑝 | 𝑚𝑞 + 1,
𝑝 > 𝛼𝑛

|𝑓(𝑝)| ⩽
∑︁

𝑝 | 𝑚𝑞 + 1,
𝑝 > 𝛼𝑛

1 < (15)

<
𝐶 + 1

Φ(𝑛)
= 𝑜(𝐵𝑛), 𝑛→∞. (16)

Действительно, пусть 𝑚𝑞 + 1 = 𝑃 · 𝑝1 . . . 𝑝𝑘⏟  ⏞  
>(𝛼𝑛)𝑘

, где 𝑝𝑖 – простые делители 𝑚𝑞 + 1, боль-

шие 𝛼𝑛, 𝑃 – произведение оставшихся простых делителей. Тогда если 𝑘 > 𝐶+1
Φ(𝑛) , то

𝑚𝑞(𝑛) + 1 > (𝛼𝑛)
𝐶+1
Φ(𝑛) = 𝑛𝐶+1 > 𝑛𝑞(𝑛) + 1, противоречие.



240 Э. В. Тищенко

Также верна следующая оценка:

|𝐴𝑛 −𝐴𝛼𝑛 | ⩽
∑︁

𝛼𝑛<𝑝⩽𝑛

1

𝑝
= ln ln𝑛− ln ln𝑛Φ +𝑂(1) = ln

1

Φ
+𝑂(1) = 𝑜(𝐵𝑛), 𝑛→∞, (17)

по выбору Φ.

|𝐵𝑛 −𝐵𝛼𝑛 | ⩽ |𝐵𝑛 −𝐵𝛼𝑛 ||𝐵𝑛 +𝐵𝛼𝑛 | = |𝐵2
𝑛 −𝐵2

𝛼𝑛
| ⩽

∑︁
𝛼𝑛<𝑝⩽𝑛

1

𝑝
= 𝑜(𝐵𝑛), 𝑛→∞, (18)

аналогично.
Таким образом, из (16)-(18) следует, что для достаточно большого 𝑛 из неравенства

𝑓(𝑚𝑞 + 1) < 𝐴𝑛 + 𝜔1𝐵𝑛 вытекает 𝑓 𝑞𝛼𝑛(𝑚) < 𝐴𝛼𝑛 + (𝜔1 + 𝜀)𝐵𝛼𝑛 . Действительно,

𝑓 𝑞𝛼𝑛
(𝑚) = 𝑓(𝑚) + 𝑜(𝐵𝑛) < 𝐴𝑛 + 𝜔1𝐵𝑛 + 𝑜(𝐵𝑛) < (𝐴𝛼𝑛 + 𝑜(𝐵𝑛)) + 𝜔1(𝐵𝛼𝑛 + 𝑜(𝐵𝑛)) + 𝑜(𝐵𝑛) <

< 𝐴𝛼𝑛 + (𝜔1 + 𝜀)𝐵𝛼𝑛 .

Аналогично из неравенства 𝑓 𝑞𝛼𝑛(𝑚) < 𝐴𝛼𝑛 + (𝜔1 − 𝜀)𝐵𝛼𝑛 вытекает 𝑓(𝑚𝑞 + 1) < 𝐴𝑛 + 𝜔1𝐵𝑛.
Следовательно, в силу леммы 4 имеем:

𝐷(𝜔1 − 𝜀)𝐷(𝜔2 − 𝜀) ⩽ lim
𝑛→∞

𝑁(𝑛)

𝑛
⩽ lim

𝑛→∞

𝑁(𝑛)

𝑛
⩽ 𝐷(𝜔1 + 𝜀)𝐷(𝜔2 + 𝜀),

откуда вытекает утверждение теоремы, поскольку 𝜀 > 0 – произвольное.

4. Доказательство основных теорем

Утверждение 2. Если 𝑞 = 𝑞(𝑛) – член некоторой последовательности, принимающей
натуральные значения, с условием

ln ln ln 𝑞(𝑛) = 𝑜(
√

ln ln𝑛), 𝑛→∞,

то ∑︁
𝑝 ⩽ 𝑛,
𝑝 ∤ 𝑞

1

𝑝
= ln ln𝑛+ 𝑜(

√
ln ln𝑛), 𝑛→∞.

Доказательство. Оценим
∑︀

𝑝 ⩽ 𝑛,
𝑝 | 𝑞(𝑛)

1

𝑝
=
∑︀
𝑝⩽𝑛

1

𝑝
−

∑︀
𝑝 ⩽ 𝑛,
𝑝 ∤ 𝑞(𝑛)

1

𝑝
.

Пусть ̃︀𝑞(𝑛) = 𝑝1 · 𝑝2 · . . . · 𝑝𝑘, где 𝑘 = 𝑘(𝑛) = max{𝑙 ∈ N : 𝑝1 . . . 𝑝𝑙 ⩽ 𝑞(𝑛)}. Тогда 𝑘 ⩾ 𝜈(𝑞(𝑛)).

Действительно, если 𝑘 < 𝜈(𝑞(𝑛)), то 𝑞(𝑛) = 𝑝
𝛼𝑖1
𝑖1

. . . 𝑝
𝛼𝑖𝜈(𝑞(𝑛))

𝑖𝜈(𝑞(𝑛))
⩾ 𝑝1 . . . 𝑝𝜈(𝑞(𝑛)) ⩾ 𝑝1 . . . 𝑝𝑘 · 𝑝𝑘+1,

что противоречит определению 𝑘.
Тогда имеем:

∑︁
𝑝 ⩽ 𝑛,
𝑝 | 𝑞(𝑛)

1

𝑝
⩽

𝜈(𝑞(𝑛))∑︁
𝑖=1

1

𝑝𝑖
⩽

∑︁
𝑝 ⩽ 𝑛,
𝑝 | ̃︀𝑞(𝑛)

1

𝑝
=

𝑘(𝑛)∑︁
𝑖=1

1

𝑝𝑖
⩽

∑︁
𝑝⩽𝑐𝑘 ln 𝑘

1

𝑝
= ln ln(𝑐𝑘 ln 𝑘) +𝑂(1) =

= ln ln 𝑘 + 𝑜(ln ln 𝑘).
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Следовательно, если ln ln 𝑘 = 𝑜(
√

ln ln𝑛), 𝑛→∞, то будет выполнено требуемое утвержде-
ние.

При этом в силу определения 𝑘(𝑛) верны следующие оценки: 𝑝1 . . . 𝑝𝑘(𝑛) ⩽ 𝑞(𝑛) ⩽
⩽ 𝑝1 . . . 𝑝𝑘(𝑛)+1.

Прологарифмировав неравенство выше, получим:
𝑘(𝑛)∑︀
𝑖=1

ln 𝑝𝑖 ⩽ ln 𝑞(𝑛) ⩽
𝑘(𝑛)+1∑︀
𝑖=1

ln 𝑝𝑖 =

= 𝜃(𝑝𝑘(𝑛)+1), где 𝜃(𝑥) – тета-функция Чебышева, для которой известны оценки

𝑐3𝑥 ⩽ 𝜃(𝑥) ⩽ 𝑐4𝑥, ∀𝑥 ⩾ 2.

Отсюда следует, что ln 𝑞(𝑛) ⩽ 𝑐4𝑝𝑘(𝑛)+1 ⩽ 𝑐5(𝑘(𝑛) + 1) ln(𝑘(𝑛) + 1) и ln 𝑞(𝑛) ⩾ 𝑐3𝑝𝑘(𝑛) ⩾
⩾ 𝑐6𝑘(𝑛) ln(𝑘(𝑛)). Дважды логарифмируя последние неравенства, получаем:

ln ln ln 𝑞(𝑛) = ln ln 𝑘(𝑛) + 𝑜(ln ln 𝑘(𝑛))

Таким образом, если ln ln ln 𝑞(𝑛) = 𝑜(
√

ln ln𝑛), 𝑛→∞, то
∑︀

𝑝 ⩽ 𝑛,
𝑝 | 𝑞(𝑛)

1

𝑝
= 𝑜(
√

ln ln𝑛), откуда

∑︀
𝑝 ⩽ 𝑛,
𝑝 ∤ 𝑞(𝑛)

1

𝑝
= ln ln𝑛+ 𝑜(

√
ln ln𝑛), 𝑛→∞, что и требовалось.

Замечание 11. Пусть 𝑞 = 𝑞(𝑛) – некоторая последовательность с условием ln ln ln 𝑞 =
= 𝑜(
√

ln ln𝑛), 𝑛→∞. Тогда имеем:

ln ln ln 𝑞 ≪
√

ln ln𝑛⇐⇒ ln ln 𝑞 ≪ 𝑒
√
ln ln𝑛 ⇒ ln ln 𝑞 ≪ (ln𝑛)𝛼, ∀𝛼 > 0⇐⇒ ln 𝑞 ≪ 𝑒(ln𝑛)𝛼 ,∀𝛼 > 0.

В частности, если для некоторого 𝐶 > 0 𝑞 ⩽ 𝑛𝐶 , то условие ln ln ln 𝑞=𝑜(
√

ln ln𝑛), 𝑛→∞,
выполнено.

Замечание 12. Из условия ln ln ln 𝑞(𝑛) = 𝑜(
√

ln ln𝑛) не следует, что ∃𝐶 > 0 :
𝑞(𝑛) < 𝑛𝐶 , ∀𝑛.

Действительно, если 𝑞(𝑛) = 𝑒
√

(ln𝑛)3 , то ln ln ln 𝑞(𝑛) = ln ln
√︀

(ln𝑛)3 = 𝑜(
√

ln ln𝑛), но

∀𝐶 𝑒(
√
ln𝑛)3 > 𝑛𝐶 =

= 𝑒𝐶 ln𝑛, начиная с некоторого номера.

Теперь докажем теорему 1.
Теорема 1. Пусть 𝑞 = 𝑞(𝑛) – некоторая последовательность с условием

∃𝐶 > 0 : 𝑞(𝑛) < 𝑛𝐶 , ∀𝑛.

Тогда количество 𝑚 ⩽ 𝑛 таких, что выполняются условия{︃
𝜈(𝑚𝑞 + 1) < ln ln𝑛+ 𝜔1

√
ln ln𝑛

𝜈((𝑚+ 1)𝑞 + 1) < ln ln𝑛+ 𝜔2

√
ln ln𝑛

равно 𝑛𝐷(𝜔1)𝐷(𝜔2) + 𝑜(𝑛).
Доказательство. Для функции 𝜈(𝑛) в силу утверждения 2 имеем:

𝐴𝑛 =
∑︁
𝑝 ⩽ 𝑛,
𝑝 ∤ 𝑞

1

𝑝
= ln ln𝑛+ 𝑜(

√
ln ln𝑛), 𝑛→∞.
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Тогда

𝐵𝑛 =

(︃ ∑︁
𝑝 ⩽ 𝑛,
𝑝 ∤ 𝑞

1

𝑝

)︃ 1
2

=
√︀
𝐴𝑛 =

√
ln ln𝑛+ 𝑜(

√
ln ln𝑛), 𝑛→∞.

Таким образом, утверждение теоремы вытекает из теоремы 3.

Приведем примеры, когда количество 𝑚 ⩽ 𝑛 таких, что выполняются условия{︃
𝜈(𝑚𝑞 + 1) < 𝑓1(𝑛, 𝜔1)

𝜈((𝑚+ 1)𝑞 + 1) < 𝑓2(𝑛, 𝜔2)
для некоторых функций 𝑓𝑖(𝑛, 𝜔𝑖), не равно 𝐶𝑛+ 𝑜(𝑛), 𝑛→∞.

Пример 7. Пусть 𝑞 = 2. Рассмотрим следующую систему неравенств:{︃
𝜈(2𝑚+ 1) < 2

𝜈(2(𝑚+ 𝑞) + 1) < 2
(19)

Данная система эквивалентна системе равенств{︃
𝜈(2𝑚+ 1) = 1

𝜈(2(𝑚+ 1) + 1) = 1
,

которая равносильна тому, что числа 2𝑚+ 1 и 2(𝑚+ 1) + 1 являются простыми.
Таким образом, количество 𝑚 ⩽ 𝑛, удовлетворяющих системе (19), равно количеству

пар простых близнецов, не превосходящих 2𝑛+ 3. Обозначим это количество как 𝜋2(2𝑛+ 3).
Известна оценка (см. [7])

𝜋2(𝑛) ⩽ 𝐶
𝑛

(ln𝑛)2
,

для некоторого 𝐶 > 0.

Пример 8. Пусть 𝑞 = 𝑞(𝑛) =
𝑘(𝑛)∏︀
𝑖=1

𝑝𝑖, где 𝑘(𝑛) = [
√

ln𝑛]. Рассмотрим систему

{︃
𝜈(𝑚𝑞 + 1) < ln𝑛

𝜈((𝑚+ 1)𝑞 + 1) < ln𝑛
(20)

Докажем, что количество 𝑚 ⩽ 𝑛, удовлетворяющих системе (20), равно 𝑛 для достаточно
больших 𝑛.

Действительно, пусть 𝑚𝑞 + 1 =
∏︀

𝑝|𝑚𝑞+1

𝑝𝛼𝑝 . Так как 𝑞 =
𝑘(𝑛)∏︀
𝑖=1

𝑝𝑖, то 𝑚𝑞 + 1 не делится на

𝑝𝑖, 𝑖 ⩽ 𝑘(𝑛). Тогда имеем 𝑛𝑞 + 1 ⩾ 𝑚𝑞 + 1 ⩾ 𝑝
𝜈(𝑚𝑞+1)
𝑘(𝑛) , откуда

𝜈(𝑚𝑞 + 1) ⩽
ln(𝑛𝑞 + 1)

ln 𝑝𝑘(𝑛)
⩽ 𝑐

ln(𝑛𝑞)

ln(𝑘 ln 𝑘)
⩽ 𝑐

ln𝑛+ ln 𝑞

ln 𝑘
⩽ 𝑐

(︃
ln𝑛

ln ln𝑛
+
𝜃(𝑝𝑘)

ln 𝑘

)︃
⩽

⩽ 𝑐

(︃
ln𝑛

ln ln𝑛
+
𝑘 ln 𝑘

ln 𝑘

)︃
⩽ 𝑐

(︃
ln𝑛

ln ln𝑛
+
√

ln𝑛

)︃
< ln𝑛,

для любого 𝑚 ⩽ 𝑛 при достаточно больших 𝑛.
Аналогично 𝜈((𝑚+ 1)𝑞 + 1) < ln𝑛 для любого 𝑚 ⩽ 𝑛 при достаточно больших 𝑛.
Значит, неравенства системы (20) выполнены для любого 𝑚 ⩽ 𝑛, что и требовалось

доказать.
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Наконец, из теоремы 1 вытекает
Теорема 2. Пусть 𝑞 = 𝑞(𝑛) – некоторая последовательность с условием

∃𝐶 > 0 : 𝑞(𝑛) < 𝑛𝐶 , ∀𝑛.

Пусть 𝑡𝑛(𝜔) = |{𝑚 ⩽ 𝑛 : 𝜈(𝑚𝑞 + 1) < 𝜈((𝑚+ 1)𝑞 + 1) + 𝜔
√

2 ln ln𝑛}|. Тогда

𝑡𝑛(𝜔) = 𝑛𝐷(𝜔) + 𝑜(𝑛) при 𝑛→∞,

откуда следует, что

𝑃

(︂
𝜈(𝑚𝑞 + 1)− 𝜈((𝑚+ 1)𝑞 + 1)√

2 ln ln𝑛
< 𝑥

)︂
→ 1√

2𝜋

𝑥∫︁
−∞

𝑒−
𝑡2

2 𝑑𝑡 = 𝐷(𝑥), 𝑛→∞,

где 𝑃 (𝑓(𝑚) < 𝑥) =
|{𝑚 ⩽ 𝑛 : 𝑓(𝑚) < 𝑥}|

𝑛
.

Доказательство. Рассмотрим функции 𝑋𝑛(𝑚) =
𝜈(𝑚𝑞 + 1)− ln ln𝑛

(ln ln𝑛)
1
2

, 1 ⩽ 𝑚 ⩽ 𝑛.

В силу следствия 1 имеем:

lim
𝑛→∞

𝑃 (𝑋𝑛(𝑚) < 𝜔1, 𝑋𝑛(𝑚+ 1) < 𝜔2) = 𝐷(𝜔1)𝐷(𝜔2).

Значит, характеристическая функция (𝑋𝑛(𝑚), 𝑋𝑛(𝑚+1)) стремится к характеристической
функции нормального распределения:

lim
𝑛→∞

1

𝑛

𝑛∑︁
𝑚=1

exp

{︃
𝑖

(︃
𝜉
𝜈(𝑚𝑞 + 1)− ln ln𝑛

(ln ln𝑛)
1
2

+ 𝜂
𝜈((𝑚+ 1)𝑞 + 1)− ln ln𝑛

(ln ln𝑛)
1
2

)︃}︃
=

=
1

2𝜋

+∞∫︁
−∞

+∞∫︁
−∞

𝑒𝑖(𝜉𝑥+𝜂𝑦) exp

{︃
− 𝑥2 + 𝑦2

2

}︃
𝑑𝑥𝑑𝑦.

При 𝜂 = −𝜉 имеем:

lim
𝑛→∞

1

𝑛

𝑛∑︁
𝑚=1

exp

{︃
𝑖𝜉
𝜈(𝑚𝑞 + 1)− 𝜈((𝑚+ 1)𝑞 + 1)

(ln ln𝑛)
1
2

}︃
=

1

2𝜋

+∞∫︁
−∞

+∞∫︁
−∞

𝑒𝑖𝜉(𝑥−𝑦) exp

{︃
− 𝑥2 + 𝑦2

2

}︃
𝑑𝑥𝑑𝑦 =

=
1

2𝜋

+∞∫︁
−∞

𝑒𝑖𝜉𝑥−
𝑥2

2 𝑑𝑥 ·
+∞∫︁

−∞

𝑒−𝑖𝜉𝑦− 𝑦2

2 𝑑𝑦 =

(︃
1√
2𝜋

+∞∫︁
−∞

𝑒𝑖𝜉𝑥−
𝑥2

2 𝑑𝑥

)︃2

=

=

(︃
1√
2𝜋

+∞∫︁
−∞

exp

{︃
− 1

2
(𝑥2 − 2𝑖𝜉𝑥− 𝜉2)− 𝜉2

2

}︃
𝑑𝑥

)︃2

=

=

(︃
exp{−𝜉2/2}√

2𝜋

+∞∫︁
−∞

exp

{︃
− 𝑢2

2

}︃
𝑑𝑢

)︃2

= 𝑒−𝜉2 .

Найдем функцию плотности для данной характеристической функции, т.е. найдем функ-
цию 𝜌(𝑥) такую, что

𝑒−𝜉2 =

+∞∫︁
−∞

𝑒𝑖𝜉𝑥𝜌(𝑥)𝑑𝑥.



244 Э. В. Тищенко

Так как

1√
2𝜋

+∞∫︁
−∞

𝑒𝑖𝜉𝑥𝑒−𝑥2/2𝑑𝑥 = 𝑒−𝜉2/2,

то при 𝜉 =
√

2𝜂, 𝑥 = 𝑦/
√

2 имеем:

1√
2𝜋

+∞∫︁
−∞

𝑒𝑖𝜂𝑦
𝑒−𝑦2/4

√
2
𝑑𝑦 = 𝑒−𝜂2 ,

откуда 𝜌(𝑥) =
1

2
√
𝜋
𝑒−𝑥2/4.

Таким образом,

𝑃

(︃
𝜈(𝑚𝑞 + 1)− 𝜈((𝑚+ 1)𝑞 + 1)√

ln ln𝑛
< 𝑥

)︃
→ 1

2
√
𝜋

𝑥∫︁
−∞

𝑒−
𝑡2

4 𝑑𝑡 =

⃒⃒⃒⃒
⃒𝑡 = 𝑢

√
2, 𝑑𝑡 =

√
2𝑑𝑢

⃒⃒⃒⃒
⃒ = 𝐹

(︃
𝑥√
2

)︃
,

где 𝐹 (𝑥) – функция распределения нормального закона. При замене 𝑦 = 𝑥/
√

2 получим, что

𝑃

(︃
𝜈(𝑚𝑞 + 1)− 𝜈((𝑚+ 1)𝑞 + 1)√

2 ln ln𝑛
< 𝑦

)︃
→ 1√

2𝜋

𝑦∫︁
−∞

𝑒−
𝑡2

2 𝑑𝑡 = 𝐹 (𝑦).

Также имеем
𝑡𝑛(𝜔/

√
2)

𝑛
→

𝜔∫︀
−∞

𝜌(𝑥)𝑑𝑥. Сделав замену переменной 𝜔′ = 𝜔/
√

2, получим:

𝑡𝑛(𝜔′)

𝑛
→

𝜔′√2∫︁
−∞

𝜌(𝑥)𝑑𝑥 = |𝑢 = 𝑥/
√

2| =
𝜔′∫︁

−∞

√
2𝜌(𝑢
√

2)𝑑𝑢 =

𝜔′∫︁
−∞

1√
2𝜋
𝑒−𝑢2/2𝑑𝑢 = 𝐷(𝜔′),

откуда следует, что 𝑡𝑛(𝜔) = 𝑛𝐷(𝜔) + 𝑜(𝑛), 𝑛→∞.
Теорема 2 доказана.

5. Заключение

В данной статье исследована задача о распределении значений функции 𝜈 в соседних точ-
ках арифметической прогрессии𝑚𝑞+1, где параметр 𝑞 может зависеть от 𝑛 и расти не быстрее,
чем степень 𝑛. Работа расширяет результат Левека, перенося его на случай прогрессий.

Автор выражает благодарность научному руководителю профессору В.Н. Чубарикову за
постановку задачи и внимание к работе.
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Abstract

The work is concerned with studying the integration of the Harry Dym equation with the
self-consistent source. The source consists of the combination of the eigenfunctions and linear
independent solution with the same eigenfunctions of the corresponding spectral problem for
the string equation which has not spectral singularities. While considering the source, the points
of the discrete spectrum of the string equation have been as the functions of time. Deduced the
time performance of the scattering data of the string equation which allows to integrate the
Cauchy problem for the Harry Dym equation with the special self-consistent source in the class
of the rapidly decreasing functions via the inverse scattering method.
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1. Introduction

The Harry Dym equation is an integrable nonlinear evolution equation which has the
applications in the hydrodynamics [1] and has strong relation with the solution of the Korteweg-
de Vries equation [2], [3], [4]. This equation firstly was appeared in the works [5]-[7], which was
represented as

𝑢𝑡 = −1

2
𝑢3𝑢𝑥𝑥𝑥

for real-valued function 𝑢(𝑥, 𝑡) and related to the classical string problem [8].
In the work [9] shown that Harry Dym equation can be transformed to the modified Korteweg-

de Vries equation. The significantly important results for the Harry Dym equation on construction
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finite-gap solutions was studied in [10]. In the paper [11] worked out the reciprocal transformations
generated by the adjoint eigenfunctions, which are useful to construct the new type solutions of the
Harry Dym hierarchy.

The present work is based on integrating of the Harry Dym equation with a special self-consistent
source using the techniques in [12]-[14]. There are also another interesting works on the integration
of the Harry Dym equation with the source in the various class of functions [15], [16] as well as
Harry Dym hierarchy with self-consistent sources [17], [18].

We consider the following system of equations:

𝑞𝑡(𝑥, 𝑡) = 2

(︃
1√︀

1 + 𝑞(𝑥, 𝑡)

)︃
𝑥𝑥𝑥

−2
𝑁∑︁

𝑛=1

(1 + 𝑞(𝑥, 𝑡))
𝜕

𝜕𝑥
(𝑓𝑛(𝑥, 𝑡))𝑔𝑛(𝑥, 𝑡))−

− 𝑞𝑥(𝑥, 𝑡)
𝑁∑︁

𝑛=1

𝑓𝑛(𝑥, 𝑡)𝑔𝑛(𝑥, 𝑡)

(1)

𝑓
′′
𝑛 (𝑥, 𝑡)− 𝜒2

𝑛𝑓𝑛(𝑥, 𝑡)𝑞(𝑥, 𝑡) = 𝜒2
𝑛𝑓𝑛(𝑥, 𝑡) (2)

𝑔
′′
𝑛(𝑥, 𝑡)− 𝜒2

𝑛𝑔𝑛(𝑥, 𝑡)𝑞(𝑥, 𝑡) = 𝜒2
𝑛𝑔𝑛(𝑥, 𝑡) (3)

with initial data

𝑞(𝑥, 0) = 𝑞0(𝑥) (4)

which has following properties

� ∫︁ ∞

−∞
(1 + 𝑥2)

(︂
|𝑞0(𝑥)|+

⃒⃒⃒⃒
1− 1

1 + 𝑞0(𝑥)

⃒⃒⃒⃒)︂
𝑑𝑥 <∞, (5)

� The operator 𝐿(0) := 𝑑2

𝑑𝑥2 + 𝜆2𝑞0(𝑥) possesses exactly 𝑁 simple eigenvalues −𝜒2
1(0) >

> −𝜒2
2(0) > ... > −𝜒2

𝑁 (0) without spectral singularities.

Here, the prime means the derivative with respect to variable 𝑥, while dot means the derivate by
variable 𝑡, 𝑓𝑛(𝑥, 𝑡) is eigenfunction corresponding to the eigenvalue −𝜒2

𝑛, while 𝑔𝑛(𝑥, 𝑡) is linear
independent solution with 𝑓𝑛(𝑥, 𝑡)

𝑊 (𝑓𝑛(𝑥, 𝑡), 𝑔𝑛(𝑥, 𝑡)) = 𝑓𝑛(𝑥, 𝑡)𝑔′𝑛(𝑥, 𝑡)− 𝑓𝑛
′
(𝑥, 𝑡)𝑔𝑛(𝑥, 𝑡) = 𝜔𝑛(𝑡), (6)

where 𝜔𝑛(𝑡) is ahead given continuous function satisfying the condition

𝜔1(𝑡) < 𝜔2(𝑡) < ... < 𝜔𝑁 (𝑡) (7)

for any 𝑡 ≥ 0 and 𝑞(𝑥, 𝑡) is assumed to be sufficiently smooth and sufficiently rapidly tends to zero
as |𝑥| → ∞: ∫︁ ∞

−∞
(1 + 𝑥2)

(︂
|𝑞(𝑥, 𝑡)|+

⃒⃒⃒⃒
1− 1

1 + 𝑞(𝑥, 𝑡)

⃒⃒⃒⃒)︂
𝑑𝑥 <∞. (8)

Let us put

𝐿 =
𝑑2

𝑑𝑥2
+ 𝜆2𝑞(𝑥, 𝑡)

𝐵 = 2𝜆2

[︃
2√︀

1 + 𝑞(𝑥, 𝑡)

𝜕

𝜕𝑥
−

(︃
1√︀

1 + 𝑞(𝑥, 𝑡)

)︃
𝑥

]︃
, (9)
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then the equation (1) can be represented with the Lax form

𝐿𝑡 = [𝐵,𝐿] +𝐺, (10)

𝐺 = −2𝜆2
𝑁∑︁

𝑛=1

(1 + 𝑞(𝑥, 𝑡))
𝜕

𝜕𝑥
(𝑓𝑛(𝑥, 𝑡))𝑔𝑛(𝑥, 𝑡))− 𝜆2𝑞𝑥(𝑥, 𝑡)

𝑁∑︁
𝑛=1

𝑓𝑛(𝑥, 𝑡)𝑔𝑛(𝑥, 𝑡) (11)

We have concerned on determining the time evolution equations of the scattering data with
approach of the inverse scattering method for the operator 𝐿(𝑡) in order to find the solution
{𝑞(𝑥, 𝑡), 𝑓𝑛(𝑥, 𝑡), 𝑔𝑛(𝑥, 𝑡)} of the problem (1)-(6) under the assumption of existence in the class
of decreasing functions (8).

2. Facts from the scattering theory

In this section, we will present the necessary information concerning the direct and inverse
scattering problem for the equation [8]

𝐿𝑦 ≡ 𝑦′′ + 𝜆2𝑞(𝑥)𝑦 = −𝜆2𝑦. (12)

Lemma 1. If 𝑋(𝑥, 𝜆) and 𝑌 (𝑥, 𝜇) are solutions of 𝐿𝑋 = −𝜆2𝑋 and 𝐿𝑌 = −𝜇2 𝑌 respectively,
then the following identity holds

𝑑𝑊 (𝑋(𝑥, 𝜆), 𝑌 (𝑥, 𝜇))

𝑑𝑥
= (1 + 𝑞(𝑥))(𝜆2 − 𝜇2)𝑋(𝑥, 𝜆), 𝑌 (𝑥, 𝜇), (13)

where 𝑊 (𝑋(𝑥, 𝜆), 𝑌 (𝑥, 𝜇)) = 𝑋(𝑥, 𝜆)𝑌 ′(𝑥, 𝜇)−𝑋 ′(𝑥, 𝜆)𝑌 (𝑥, 𝜇).

The equation (12) has the Jost solutions 𝜓(𝑥, 𝜆) and 𝜙(𝑥, 𝜆) with the following asymptotics

𝜓(𝑥, 𝜆)→ 𝑒−𝑖𝜆𝑥 as 𝑥→ −∞, (14)

𝜙(𝑥, 𝜆)→ 𝑒𝑖𝜆𝑥 as 𝑥→∞, (15)

and for real 𝜆 ̸= 0 parameters the pairs {𝜙(𝑥, 𝜆), 𝜙(𝑥,−𝜆)} and {𝜓(𝑥, 𝜆), 𝜓(𝑥,−𝜆)} form the
fundamental solutions of the equation (12) and therefore, at any 𝜆 ̸= 0 we have representations

𝜓(𝑥, 𝜆) = 𝑎(𝜆)𝜙(𝑥,−𝜆) + 𝑏(𝜆)𝜙(𝑥, 𝜆), (16)

where,

𝑎(𝜆) =
𝑊 (𝜓(𝑥, 𝜆), 𝜙(𝑥, 𝜆))

2𝑖𝜆
, (17)

𝑏(𝜆) =
𝑊 (𝜓(𝑥,−𝜆), 𝜙(𝑥, 𝜆))

2𝑖𝜆
. (18)

Here, 𝑎(𝜆) admits an analytic continuation in the upper half plane 𝐼𝑚𝜆 > 0 and 𝜙(𝑥, 𝜆)𝑒−𝑖𝜆𝑥 and
𝜓(𝑥, 𝜆)𝑒𝑖𝜆𝑥 can be analytic for 𝐼𝑚𝜆 ⩾ 0. From this yields that in the upper half plane 𝐼𝑚𝜆 > 0

𝜓(𝑥, 𝜆)𝑒𝑖𝜆𝑥 → 𝑎(𝜆), as 𝑥→∞,
𝜙(𝑥, 𝜆)𝑒−𝑖𝜆𝑥 → 𝑎(𝜆), as 𝑥→ −∞.

(19)

We assume that 𝑎(𝜆) has a finite number of simple zeros in the upper half plane 𝐼𝑚𝜆 > 0 such
𝜆𝑛 = 𝑖𝜒𝑛, 𝑛 = 1, 2, . . . ,
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𝑁 , which corresponds to the eigenvalues −𝜒2
𝑛, (𝜒𝑛 > 0) 𝑛 = 1, 𝑁 of 𝐿 and the follwoing relation

holds for the Jost solutions

𝜓(𝑥, 𝜆𝑛) = 𝑐𝑛𝜙(𝑥, 𝜆𝑛), 𝑛 = 1, 2, ..., 𝑁. (20)

We define reflection coefficient by the formula

𝑅(𝜆) =
𝑏(𝜆)

𝑎(𝜆)
. (21)

The following integral representation is valid for the Jost function 𝑓(𝑥, 𝜆)

𝜙(𝑥, 𝜆) = 𝑒𝑖𝜆(𝑥+𝜀+) + 𝑒𝑖𝜆𝜀+
∫︁ ∞

𝑥
𝐾(𝑥, 𝑠)𝑒𝑖𝜆𝑠𝑑𝑠, (22)

where

𝜀+ =

∫︁ ∞

𝑥
𝜎−1 𝑑𝑥, 𝜎−1 = 1−

√︀
1 + 𝑞

and the kernel 𝐾 is assumed to satisfy

lim
𝑠→∞

𝐾(𝑥, 𝑠) = 0 (23)

and have relation with 𝑞(𝑥) in this form

1 + 𝑞(𝑥) = [1−𝐾(𝑥, 𝑥)]−4. (24)

For 𝑥 ⩽ 𝑦, 𝐾(𝑥, 𝑦) kernel satisfies the following Gelfand-Levitan-Marchenko equation

𝐾(𝑥, 𝑦)− Ω(𝑥+ 𝑦)−
∫︁ ∞

𝑥
𝐾(𝑥, 𝑠)Ω′(𝑠+ 𝑦)𝑑𝑠 = 0.

Here

Ω(𝑧) = −
𝑁∑︁

𝑛=1

𝑐𝑛
𝑒−𝜒𝑛(𝑧+2𝜀+(𝑥))

𝜒𝑛
+

1

2𝜋

∫︁ ∞

−∞
𝑅(𝜆)

𝑒𝑖𝜆(𝑧+2𝜀+(𝑥))

𝑖𝜆
𝑑𝜆,

Ω′(𝑧) =
𝑁∑︁

𝑛=1

𝑐𝑛𝑒
−𝜒𝑛(𝑧+2𝜀+(𝑥)) +

1

2𝜋

∫︁ ∞

−∞
𝑅(𝜆)𝑒𝑖𝜆(𝑧+2𝜀+(𝑥))𝑑𝜆.

(25)

Definition 1. The set of quantities {𝑅(𝜆), 𝑐𝑛, −𝜒2
𝑛, 𝑛 = 1, 𝑁} is called the scattering data

associated to the equation (12).

3. Evolution equations

3.1. Evolution equations for 𝑎(𝜆) and 𝑏(𝜆)

Let 𝑦(𝑥, 𝑡) be a solution of the equation

𝐿𝑦 = 𝑦′′(𝑥, 𝑡) + 𝜆2𝑦(𝑥, 𝑡)𝑞(𝑥, 𝑡) = −𝜆2𝑦(𝑥, 𝑡) (26)

and let for 𝐹 (𝑥, 𝜆) it is valid the equation

𝜕𝐹 (𝑥, 𝜆)

𝜕𝑥
= (1 + 𝑞(𝑥, 𝑡))𝑓𝑛(𝑥, 𝑡)𝑦(𝑥, 𝑡). (27)
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Introduce the function

𝐻 = 𝑦̇ −𝐵𝑦 − 𝜆2
𝑁∑︁

𝑛=1

𝑔𝑛(𝑥, 𝑡)𝐹 (𝑥, 𝜆). (28)

For 𝜆 ∈ R function (28) will be a solution of the equation

𝐿𝐻 + 𝜆2𝐻 = −𝜆2
𝑁∑︁

𝑛=1

(1 + 𝑞(𝑥, 𝑡))𝑔𝑛(𝑥, 𝑡)𝐻̂,

where

𝐻̂ =
(︀
𝜒2
𝑛 + 𝜆2

)︀
𝐹 (𝑥, 𝜆) +𝑊 (𝑓𝑛(𝑥, 𝑡), 𝑦(𝑥, 𝑡))).

The following functions

𝐹−(𝑥, 𝜆) = −
∫︁ 𝑥

−∞
(1 + 𝑞(𝜏, 𝑡))𝑓𝑛(𝜏, 𝑡)𝜓(𝜏, 𝜆)𝑑𝜏,

𝐹+(𝑥, 𝜆) =

∫︁ ∞

𝑥
(1 + 𝑞(𝜏, 𝑡))𝑓𝑛(𝜏, 𝑡)𝜙(𝜏, 𝜆)𝑑𝜏,

(29)

which are defined by the Jost solutions, satisfy the equation (27), consequently, it is easy to show
that the following functions

𝐻−
0 (𝜆) = 𝜓̇(𝑥, 𝜆)−𝐵𝜓(𝑥, 𝜆)− 𝜆2

𝑁∑︁
𝑛=1

𝑔𝑛(𝑥, 𝑡)𝐹−(𝑥, 𝜆),

𝐻+
0 (𝜆) = 𝜙̇(𝑥, 𝜆)−𝐵𝜙(𝑥, 𝜆)− 𝜆2

𝑁∑︁
𝑛=1

𝑔𝑛(𝑥, 𝑡)𝐹+(𝑥, 𝜆)

(30)

satisfy the equation (26). In fact, taking into account the identity (13), it yields that
𝜕𝐻̂

𝜕𝑥
= 0.

With the help of the asymptotes of the Jost solutions and taking account of (29), for 𝐼𝑚𝜆 ⩾ 0, we
have 𝐻̂± → 0 as 𝑥→ ±∞, then it yields that for 𝐼𝑚𝜆 ⩾ 0 and at any for 𝑥 ∈ (−∞,∞) it is valid
𝐻̂± ≡ 0. Hence, 𝐿𝐻+ = −𝜆2𝐻+ and 𝐿𝐻− = −𝜆2𝐻−.

At 𝜆 = 𝑖𝜒𝑗 it holds that

𝑓𝑗(𝑥, 𝑡) = 𝑐+𝑗 𝜙(𝑥, 𝜆𝑗) = 𝑐−𝑗 𝜓(𝑥, 𝜆𝑗), (31)

and the following asymptotics for the solutions 𝑔±𝑗 (𝑥, 𝑡)

𝑔+𝑗 =
𝜔𝑗

2𝜒𝑗𝑐
+
𝑗

𝑒𝜒𝑗𝑥, 𝑥→ +∞,

𝑔−𝑗 = − 𝜔𝑗

2𝜒𝑗𝑐
−
𝑗

𝑒−𝜒𝑗𝑥, 𝑥→ −∞
(32)

are valid.

Lemma 2. 𝑎(𝜆) and 𝑏(𝜆) coefficients satisfy the following differential equations

𝑏̇ (𝜆) = 8𝑖𝜆3𝑏 (𝜆) ,

𝑎̇ (𝜆) = −𝜆3
𝑁∑︁

𝑛=1

𝑖𝜔𝑛

(𝜆2 + 𝜒2
𝑛)𝜒𝑛

𝑎 (𝜆) .
(33)
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Proof. Using the result for 𝐻±(𝜆) we introduce the following auxiliary function for 𝜆 ̸= 0

𝑆 = 𝐻−
0 (𝜆)− 𝑎 (𝜆)𝐻+

0 (−𝜆)− 𝑏 (𝜆)𝐻+
0 (𝜆) . (34)

With the help of the relation (16) and representations (29) for 𝐹− (𝑥, 𝜆), 𝐹+ (𝑥, 𝜆) in equalities
(30) and substituting them into (34), we obtain

𝑆 = 𝑎̇ (𝜆)𝜙 (𝑥,−𝜆) + 𝑏̇ (𝜆)𝜙 (𝑥, 𝜆) . (35)

In the other hand, taking account the uniqueness of the Jost solutions and the representation (9)
and asymptotics (32), we obtain the following representations

𝐻−
0 (𝜆) = 4𝑖𝜆3𝜓(𝑥, 𝜆)− 𝜆2

𝑁∑︁
𝑛=1

𝑖𝜔𝑛

2𝜒𝑛 (𝜆+ 𝑖𝜒𝑛)
𝜓(𝑥, 𝜆), (36)

𝐻+
0 (𝜆) = −4𝜆3𝑖𝜙 (𝑥, 𝜆)− 𝜆2

𝑁∑︁
𝑛=1

𝑖𝜔𝑛

2𝜒𝑛 (𝜆+ 𝑖𝜒𝑛)
𝜙 (𝑥, 𝜆) . (37)

Substituting expressions (36), (37) into (34) and using the relation (16), we have

𝑆 = 8𝑖𝜆3𝑏 (𝜆)𝜙 (𝑥, 𝜆)− 𝜆3
𝑁∑︁

𝑛=1

𝑖𝜔𝑛

(𝜆2 + 𝜒2
𝑛)𝜒𝑛

𝑎 (𝜆)𝜙 (𝑥,−𝜆) . (38)

Comparing (35) and (38) we have relations (33) for 𝜆 ̸= 0. Lemma is proved.

From the relations (33) and according to (21), we have the equality

𝑅̇(𝜆, 𝑡) = 𝑖𝜆3

(︃
8 +

𝑁∑︁
𝑛=1

𝜔𝑛

(𝜆2 + 𝜒2
𝑛)𝜒𝑛

)︃
𝑅(𝜆, 𝑡). (39)

3.2. Evolution equations of the discrete spectrum and normalization constants

Lemma 3. The discret spectrum and normalization constants satisfy the following differential
eqautions

𝑑𝜒𝑗(𝑡)

𝑑𝑡
=
𝜒𝑗(𝑡)𝜔𝑗(𝑡)

2
, 𝑗 = 1, 𝑁. (40)

𝑐̇𝑗(𝑡) = 𝑐𝑗(𝑡)

(︂
8𝜒3

𝑗 (𝑡) + 𝑖𝛽𝑗
𝜔𝑗(𝑡)𝜒𝑗(𝑡)

2

)︂
, 𝑗 = 1, 𝑁. (41)

Proof. Now, we determine the function

ℎ(𝑖𝜒𝑗) = ℎ−(𝑖𝜒𝑗)− 𝑐𝑗(𝑡)ℎ+(𝑖𝜒𝑗). (42)

Here, functions ℎ−(𝑖𝜒𝑗) and ℎ
+(𝑖𝜒𝑗) are defined as

ℎ−(𝑖𝜒𝑗(𝑡)) = 𝜓̇(𝑥, 𝑖𝜒𝑗(𝑡))−𝐵𝜓(𝑥, 𝑖𝜒𝑗(𝑡)) + 𝜒2
𝑗 (𝑡)

𝑁∑︁
𝑛=1

𝑔−𝑛 (𝑥, 𝑡)𝐹−(𝑥, 𝑖𝜒𝑗(𝑡)),

ℎ+(𝑖𝜒𝑗(𝑡)) = 𝜙̇(𝑥, 𝑖𝜒𝑗(𝑡))−𝐵𝜙(𝑥, 𝑖𝜒𝑗) + 𝜒2
𝑗 (𝑡)

𝑁∑︁
𝑛=1

𝑔+𝑛 (𝑥, 𝑡)𝐹+(𝑥, 𝑖𝜒𝑗(𝑡)).
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Using the asymptotics (14) and (15) of the Jost soluitons 𝜙(𝑥, 𝑖𝜒𝑗) and 𝜓(𝑥, 𝑖𝜒𝑗) we have

ℎ−(𝑖𝜒𝑗(𝑡)) = 4𝜒3
𝑗 (𝑡)𝜓(𝑥, 𝑖𝜒𝑗(𝑡)),

ℎ+(𝑖𝜒𝑗(𝑡)) = −4𝜒3
𝑗 (𝑡)𝜙(𝑥, 𝑖𝜒𝑗(𝑡)).

Due to the relation (20) we show that

ℎ(𝑖𝜒𝑗(𝑡)) = 8𝜒3
𝑗 (𝑡)𝑐𝑗(𝑡)𝜙(𝑥, 𝑖𝜒𝑗(𝑡)). (43)

In the other hand, differentiating the equality (20) by 𝑡 we have

𝜓̇(𝑥, 𝑖𝜒𝑗(𝑡)) = 𝑐̇𝑗(𝑡)𝜙 (𝑥, 𝑖𝜒𝑗(𝑡)) + 𝑐𝑗(𝑡)𝜙̇(𝑥, 𝑖𝜒𝑗(𝑡))− 𝑖𝜙(𝑥, 𝑖𝜒𝑗(𝑡))
𝑑𝜒𝑗(𝑡)

𝑑𝑡
, (44)

where

𝜙(𝑥, 𝑖𝜒𝑗(𝑡)) =
𝑑

𝑑𝜆
(𝜓(𝑡, 𝜆)− 𝑐𝑗(𝑡)𝜙(𝑡, 𝜆))

⃒⃒⃒⃒
𝜆=𝑖𝜒𝑗(𝑡)

.

Using (44) in the expression (42) we receive

ℎ(𝑖𝜒𝑗(𝑡)) = 𝑐̇𝑗(𝑡)𝜙 (𝑥, 𝑖𝜒𝑗(𝑡))− 𝑖𝜙(𝑥, 𝑖𝜒𝑗(𝑡))
𝑑𝜒𝑗(𝑡)

𝑑𝑡

+ 𝜒2
𝑗 (𝑡)

𝑁∑︁
𝑛=1

𝑔𝑛(𝑥, 𝑡)(𝐹−(𝑥, 𝑖𝜒𝑗(𝑡))− 𝑐𝑗(𝑡)𝐹+(𝑥, 𝑖𝜒𝑗(𝑡))),

where

𝐹−(𝑥, 𝑖𝜒𝑗(𝑡))− 𝑐𝑗(𝑡)𝐹+(𝑥, 𝑖𝜒𝑗(𝑡)) =

∫︁ ∞

−∞
(1 + 𝑞(𝑥, 𝑡)) 𝑓𝑛(𝑥, 𝑡)𝑐𝑗(𝑡)𝜙(𝑥, 𝑖𝜒𝑗(𝑡))𝑑𝜏. (45)

Using the orthogonality of the eigenfunctions corresponding to the different eigenvalues for 𝑛 ̸= 𝑗,
we can show that the integral in the right-hand side of equality (45) equals to zero, therefore,

ℎ(𝑖𝜒𝑗(𝑡)) = 𝑐̇𝑗(𝑡)𝜙 (𝑥, 𝑖𝜒𝑗(𝑡))− 𝑖𝜙(𝑥, 𝑖𝜒𝑗(𝑡))
𝑑𝜒𝑗(𝑡)

𝑑𝑡
−

+ 𝜒2
𝑗 (𝑡)𝑔

+
𝑗 (𝑥, 𝑡)

∫︁ ∞

−∞
(1 + 𝑞(𝑥, 𝑡)) 𝑓𝑗(𝑥, 𝑡)𝑐𝑗(𝑡)𝜙(𝑥, 𝑖𝜒𝑗(𝑡))𝑑𝜏.

(46)

As the 𝜙(𝑥, 𝑖𝜒𝑗) being the solution of the equation (2) i.e. (𝐿− 𝜒2
𝑗 )𝜙 (𝑥, 𝑖𝜒𝑗) = 0, this solution can

be represented by
𝜙(𝑥, 𝑖𝜒𝑗) = 𝛼𝑗𝑔𝑗(𝑥, 𝑡) + 𝛽𝑗𝜓(𝑥, 𝑖𝜒𝑗). (47)

By virtue of (14), (15) and (19), we find the following asymptotics for the function 𝜙(𝑥, 𝑖𝜒𝑗(𝑡))

𝜙(𝑥, 𝑖𝜒𝑗(𝑡)) ∼
(︂
𝑑𝑎(𝜆)

𝑑𝜆

)︂⃒⃒⃒⃒
𝜆=𝑖𝜒𝑗(𝑡)

𝑒𝜒𝑗𝑥, 𝑥→ +∞.

𝜙(𝑥, 𝑖𝜒𝑗(𝑡)) ∼ −𝑐𝑗
(︂
𝑑𝑎(𝜆)

𝑑𝜆

)︂⃒⃒⃒⃒
𝜆=𝑖𝜒𝑗(𝑡)

𝑒−𝜒𝑗𝑥, 𝑥→ −∞.

Taking into account (19), (32), (47) and the last asymptotics, we can write the following
representation

𝜙(𝑥, 𝑖𝜒𝑗(𝑡)) =
2𝜒𝑗(𝑡)𝑐

+
𝑗 (𝑡)

𝜔𝑗

(︂
𝑑𝑎(𝜆)

𝑑𝜆

)︂⃒⃒⃒⃒
𝜆=𝑖𝜒𝑗(𝑡)

𝑔+𝑗 (𝑥, 𝑡) + 𝛽𝑗𝑐𝑗(𝑡)𝜙(𝑥, 𝑖𝜒𝑗(𝑡)) (48)
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is valid. It is easy to show that the following equality holds(︂
𝑑𝑎(𝜆)

𝑑𝜆

)︂⃒⃒⃒⃒
𝜆=𝑖𝜒𝑗

= −𝑖
∫︁ +∞

−∞
(1 + 𝑞(𝑡, 𝜏))𝜓(𝜏, 𝑖𝜒𝑗)𝜙(𝜏, 𝑖𝜒𝑗)𝑑𝜏. (49)

Using the equalities (48) and (49) in (46) we have

ℎ(𝑖𝜒𝑗(𝑡)) = 𝑐̇𝑗(𝑡)𝜙(𝑥, 𝑖𝜒𝑗(𝑡))− 𝑖
𝑑𝜒𝑗(𝑡)

𝑑𝑡

2𝜒𝑗(𝑡)𝑐
+
𝑗 (𝑡)

𝜔𝑗(𝑡)
𝑎̇(𝑖𝜒𝑗)𝑔

+
𝑗 (𝑥, 𝑡)−

− 𝑖𝑑𝜒𝑗(𝑡)

𝑑𝑡
𝛽𝑗𝑐𝑗(𝑡)𝜙(𝑥, 𝑖𝜒𝑗(𝑡)) + 𝑖𝜒2

𝑗 (𝑡)𝑔
+
𝑗 (𝑥, 𝑡)𝑐+𝑗 (𝑡)𝑎̇(𝑖𝜒𝑗(𝑡)).

(50)

Comparing (43) and (50) we get

𝑐̇𝑗(𝑡)− 𝑖
𝑑𝜒𝑗(𝑡)

𝑑𝑡
𝛽𝑗𝑐𝑗(𝑡) = 8𝜒3

𝑗 (𝑡)𝑐𝑗(𝑡),

2𝜒𝑗(𝑡)

𝜔𝑗(𝑡)

𝑑𝜒𝑗(𝑡)

𝑑𝑡
= 𝜒2

𝑗 (𝑡), 𝑗 = 1, 𝑁.
(51)

Hence, we obtain the time evolution (40) for 𝜒𝑗(𝑡) and subtituting it to the differential equation
for 𝑐𝑗(𝑡) in (51) we have (41). Here, 𝛽𝑗 can be defined by (47). Lemma is proved.

4. Multi-soliton solution

We use the (𝐴,𝐵,𝐶) triplet matrix technique [20] for providing the explicit form of the multi-
soliton solution. As we are focusing on the the reflectionless case 𝑅(𝜆, 𝑡) = 0 and that 𝐿(𝑡) operator
has simple eigenvalues, we take (𝐴,𝐵,𝐶) triplet matrix in the following form

𝐴 =

⎛⎜⎝ 𝜒1(𝑡) 0 0

0
. . . 0

0 0 𝜒𝑁 (𝑡)

⎞⎟⎠ , 𝐵 =

⎛⎜⎝ 1
...
1

⎞⎟⎠ , 𝐶 =
(︀
𝑐1(𝑡) . . . 𝑐𝑁 (𝑡)

)︀
,

where 𝜒𝑗(𝑡) and 𝑐𝑗(𝑡), 𝑗 = 1, 𝑁 satisfy the equations (40) and (41). Hence, the kernel of Gelfand-
Levitan-Marchenko equation can be written as

Ω(𝑥+ 𝑦, 𝑡) = −𝐶𝑒−𝐴(𝑥+𝑦+2𝜀+)𝐴−1𝐵.

Inserting this into the Gelfand-Levitan equation and solving it we obtain

𝐾(𝑥, 𝑥, 𝑡) = −𝐶𝑒−𝐴(𝑥+2𝜀+)𝐴−1Γ−1(𝑥, 𝑡)𝑒−𝐴𝑥𝐵,

and, by the formula (24) we obtain

𝑞(𝑥, 𝑡) = [1 + 𝐶𝑒−𝐴(𝑥+2𝜀+)𝐴−1Γ−1(𝑥, 𝑡)𝑒−𝐴𝑥𝐵]−4 − 1,

where
Γ(𝑥, 𝑡) = 𝐼 − 𝑒−2𝐴𝜀+𝑄(𝑥)

𝑄(𝑥) =

∫︁ ∞

𝑥
𝑒−𝐴𝑠𝐵𝐶𝑒−𝐴𝑠𝑑𝑠.

For one soliton case, we have

𝑞(𝑥, 𝑡) = 𝑡𝑎𝑛ℎ4
[︂
𝜒1(𝑡)(𝑥+ 𝜀+(𝑥))− 1

2
ln

𝑐1(𝑡)

2𝜒1(𝑡)

]︂
− 1, (52)
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where

𝜀+ =
1

𝜒1(𝑡)

{︂
1− 𝑡𝑎𝑛ℎ

[︂
𝜒1(𝑡)(𝑥+ 𝜀+(𝑥))− 1

2
ln

𝑐1(𝑡)

2𝜒1(𝑡)

]︂}︂
.

Using the integral expression for the Jost solution 𝜙(𝑥, 𝜆) and taking 𝑐+𝑗 = 1 in (31), we can find
the eigenfunction

𝑓(𝑥, 𝑖𝜒1) =

√︃
2𝜒1(𝑡)

𝑐1(𝑡)

1

2 sinℎ
(︁
𝜒1(𝑡)(𝑥+ 𝜀+(𝑥))− 1

2 ln 𝑐1(𝑡)
2𝜒1(𝑡)

)︁ . (53)

By solving the differential equation (6) with (53), we get the representation for the solution 𝑔(𝑥, 𝑖𝜒1):

𝑔(𝑥, 𝑖𝜒1) =

√︃
2𝑐1(𝑡)

𝜒1(𝑡)

1

2 sinℎ
(︁
𝜒1(𝑡)(𝑥+ 𝜀+(𝑥))− 1

2 ln 𝑐1(𝑡)
2𝜒1(𝑡)

)︁
×
(︂
𝜔1(𝑡)

∫︁
sinℎ2

(︂
𝜒1(𝑡)(𝑥+ 𝜀+(𝑥))− 1

2
ln

𝑐1(𝑡)

2𝜒1(𝑡)

)︂
𝑑𝑥

)︂
.

(54)

5. Conclusions

The equations (39), (40) and (41) allow completely determine the time evolution of all scattering
data for the eigenvalue problem of the form of (2). Then, we can integrate the problem (1)-(8) by
reducing it into solving the integral Gelfand-Levitan equation with the obtained results (39)–(41).
Due to the condition (7) for the considering problem (1)-(8), there is no effect of the creation and
anhilation of the solitons differing from the KdV equation [12].
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Аннотация

В статье показано, что между действиями симметрической группы 𝑆𝑛 подстановок
на множестве линейных диофантовых уравнений и на множестве их решений существует
прямая связь.

Так, удалось установить, что при перестановке коэффициентов линейного диофантова
уравнения координаты его вектора общего решения переставляются в том же порядке, а
при перестановке переменных — в обратном порядке.

Аналогичная связь имеется и между действиями группы автоморфизмов целых чисел
на множестве линейных диофантовых уравнений и их решений: если какие-либо коэффи-
циенты в уравнении заменить на им противоположные, то соответствующие по порядку
следования координаты его вектора общего решения также заменятся на им противопо-
ложные.

Были также получены результаты, которые касаются связи разных действий группы
подстановок на множестве линейных диофантовых уравнений. Например, перестановка
коэффициентов уравнения означает перестановку его неизвестных в обратном порядке.

Установленные связи между действиями позволяют на практике быстрее находить ре-
шения целого класса линейных диофантовых уравнений, зная решение всего одного его
представителя. В свою очередь, изучение действий других групп на данном множестве и
связей, порожденных ими, позволит расширить этот класс.

Ключевые слова: действие группы, симметрическая группа, подстановка, группа авто-
морфизмов целых чисел, линейное диофантово уравнение.
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Abstract

This article shows that there is a direct connection between the actions of the symmetric
group 𝑆𝑛 on the set of linear Diophantine equations and on the set of their solutions.

Thus, it was found that for coefficients rearrangement in a linear Diophantine equation the
coordinates of its general solution vector are rearranged in the same order, and for variables
rearrangement we get the reverse order of the vector coordinates.

There is a similar connection between the actions of the group of the automorphisms of the
integers on the set of linear Diophantine equations and their solutions: if on changes the signs of
some coefficients in the equation, then the signs of the corresponding coordinates of the general
solution vector are changed too.

We also obtained results on the connection of different actions of the symmetric group on
the set of linear Diophantine equations. For example, rearrangement of the equation coefficients
is equivalent to rearrangement of its variables in the reverse order.

Established connections between the actions make it possible to quickly find solutions of an
entire class of linear diophantine equations from a solution of only one of its elements. In turn,
studying the actions of other groups on the given set and the connections generated by them
would expand this class.
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the integers, a linear Diophantine equation.

Bibliography: 15 titles.

For citation:

Chistov, I. S., Tsybulya, L. M. 2025, “The connection between the linear Diophantine equations
solutions under the actions of the symmetric group and the automoprhism group of the integers” ,
Chebyshevskii sbornik, vol. 26, no. 5, pp. 259–279.

1. Введение

Непосредственным изучением действий групп на различные множества занимается аб-
страктная теория групп ([1], [2]). Многие алгебраические задачи лучше всего решать с по-
мощью групповых действий, ведь при рассмотрении последних на конкретных множествах
выявляются определенные закономерности, позволяющие найти более простой способ реше-
ния той или иной задачи.
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Цель работы — ввести действия группы подстановок 𝑆𝑛 и группы автоморфизмов целых
чисел 𝐴𝑢𝑡(Z) на множестве линейных диофантовых уравнений и на множестве их решений Z𝑛,
а также выявить взаимосвязи как между различными действиями группы 𝑆𝑛 на множестве
на множестве линейных диофантовых уравнений, так и между действиями каждой из групп
на двух данных множествах.

Задачи — задать действия на множестве линейных диофантовых уравнений и на множестве
решений этих уравнений, исследовать и описать свойства этих действий и, наконец, связать
исследуемые на разных множествах действия между собой.

В первом параграфе рассматривается понятие линейного диофантова уравнения с 𝑛 неиз-
вестными, приводится условие совместности такого уравнения, демонстрируется общий подход
к решению. Задается обозначение для множества таких уравнений.

В следующем параграфе введены действия группы подстановок на множестве линейных
диофантовых уравнений и на множестве их решений. Далее изучены взаимосвязи между дей-
ствиями данной группы на одном из указанных множеств, а после — между её действиями на
двух данных множествах.

Последний параграф посвящен действиям другой группы на множестве линейных дио-
фантовых уравнений и на множестве их решений — группы автоморфизмов группы целых
чисел. Продемонстрирована связь между действиями на двух данных множествах, полезная
в применении на практике.

Научная новизна исследования состоит в применении теории групповых действий на
нестандартном объекте — множестве, состоящем из линейных диофантовых уравнений с 𝑛
переменными.

Научная значимость результатов исследования заключается в возможности использования
и дальнейшего расширения механизма отыскания решений линейных и нелинейных диофан-
товых уравнений с помощью метода групповых действий.

2. Множество линейных диофантовых уравнений

Определение 1. Линейным диофантовым уравнением (ЛДУ) с 𝑛 неизвестными будем
называть уравнение вида

𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏, (1)

где 𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑏 — целые числа, причём хотя бы одно 𝑎𝑖 ̸= 0, и при этом для него постав-
лена задача, чтобы неизвестные 𝑥1, 𝑥2, . . . , 𝑥𝑛 принимали только целые значения.

Числа 𝑎1, 𝑎2, . . . , 𝑎𝑛 называют коэффициентами ЛДУ, [3], [4].

Предложение 1. ЛДУ (1) совместно тогда и только тогда, когда наибольший общий
делитель всех коэффициентов НОД(𝑎1, 𝑎2, . . . , 𝑎𝑛) делит 𝑏, [3], [4].

Пусть ЛДУ (1) совместно. Рассмотрим процедуру нахождения решений данного уравне-
ния при помощи составления матрицы 𝑀𝑛+1×𝑛, первая вектор-строка которой представляет
собой выписанные по порядку коэффициенты ЛДУ, а остальные элементы в совокупности
составляют единичную квадратную подматрицу порядка 𝑛:

𝑀𝑛+1×𝑛 =

⎛⎜⎜⎜⎜⎝
𝑎1 𝑎2 · · · 𝑎𝑛
1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

⎞⎟⎟⎟⎟⎠ .

Данную матрицу с помощью трёх элементарных преобразований, а именно умножения
любого столбца на −1, перемены местами любых двух столбцов или прибавлением к любому
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столбцу любого другого столбца, умноженного на произвольное целое число (прибавляемый
столбец остается на месте), всегда можно привести к виду:⎛⎜⎜⎜⎜⎝

𝑑 0 · · · 0
𝑧11 𝑧12 · · · 𝑧1𝑛
𝑧21 𝑧22 · · · 𝑧2𝑛
· · · · · · · · · · · ·
𝑧𝑛1 𝑧𝑛2 · · · 𝑧𝑛𝑛

⎞⎟⎟⎟⎟⎠ ,

где 𝑑 =НОД(𝑎1, 𝑎2, . . . , 𝑎𝑛).
Тогда вектор общего решения 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) из множества векторов-строк Z𝑛 для

совместного ЛДУ (1) легко увидеть из строк получившейся матрицы. Он будет иметь вид

𝑥 = (
𝑏

𝑑
𝑧11 + 𝑧12𝑡2 + . . .+ 𝑧1𝑛𝑡𝑛,

𝑏

𝑑
𝑧21 + 𝑧22𝑡2 + . . .+ 𝑧2𝑛𝑡𝑛, . . . ,

𝑏

𝑑
𝑧𝑛1 + 𝑧𝑛2𝑡2 + . . .+ 𝑧𝑛𝑛𝑡𝑛),

где 𝑡2, . . . , 𝑡𝑛 ∈ Z, [5].
Множество всевозможных диофантовых уравнений с 𝑛 неизвестными будем обозначать

так:
𝐿𝐷𝐸 = {𝐷 : 𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏 | 𝑎𝑖, 𝑏 ∈ Z, 𝑖 = 1, 2, . . . , 𝑛}.

Для удобства элементы 𝐿𝐷𝐸 иногда будут обозначаться 𝐷 = (𝑎1𝑥1+𝑎2𝑥2+ . . .+𝑎𝑛𝑥𝑛 = 𝑏).
Равными элементами в 𝐿𝐷𝐸 будем считать такие уравнения, у которых совпадают правые

части и все коэффициенты при соответствующих переменных в их левых частях.

3. Действия группы подстановок на множестве линейных дио-

фантовых уравнений

3.1. Основные действия-перестановки

В данном параграфе будут рассмотрены различные действия группы подстановок 𝑆𝑛 с
операцией ∘ правой композиции подстановок ([6], [7], [8]) на множестве 𝐿𝐷𝐸, а также будут
выявлены взаимосвязи между этими действиями.

Для начала определим отображение

𝑎𝜎 : 𝑆𝑛 × 𝐿𝐷𝐸 → 𝐿𝐷𝐸

по следующему правилу: каждой паре (𝜎, 𝑎1𝑥1+𝑎2𝑥2+ . . .+𝑎𝑛𝑥𝑛 = 𝑏) поставим в соответствие
элемент

𝜎 · (𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏) = (𝑎𝜎(1)𝑥1 + 𝑎𝜎(2)𝑥2 + . . .+ 𝑎𝜎(𝑛)𝑥𝑛 = 𝑏).

Предложение 2. Отображение 𝑎𝜎 является действием группы 𝑆𝑛 на множестве 𝐿𝐷𝐸.

Доказательство. Действительно, результат этого отображения лежит в 𝐿𝐷𝐸, так как
перемена мест коэффициентов, очевидно, не изменит их целостности.

Первая аксиома действия выполняется:

𝑖𝑑 · (𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏) = (𝑎𝑖𝑑(1)𝑥1 + 𝑎𝑖𝑑(2)𝑥2 + . . .+ 𝑎𝑖𝑑(𝑛)𝑥𝑛 = 𝑏) =

= (𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏).

Аналогично со второй аксиомой:

𝜏 · (𝜎 · (𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏)) = 𝜏 · (𝑎𝜎(1)𝑥1 + 𝑎𝜎(2)𝑥2 + . . .+ 𝑎𝜎(𝑛)𝑥𝑛 = 𝑏) =
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= (𝑎𝜏(𝜎(1))𝑥1 + 𝑎𝜏(𝜎(2))𝑥2 + . . .+ 𝑎𝜏(𝜎(𝑛))𝑥𝑛 = 𝑏) =

= (𝑎(𝜏∘𝜎)(1)𝑥1 + 𝑎(𝜏∘𝜎)(2)𝑥2 + . . .+ 𝑎(𝜏∘𝜎)(𝑛)𝑥𝑛 = 𝑏) =

= (𝜏 ∘ 𝜎) · (𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏).

■

Определение 2. Действие 𝑎𝜎 будем называть перестановкой коэффициентов ЛДУ.

Рассмотрим ещё отображение

𝑥𝜎 : 𝑆𝑛 × 𝐿𝐷𝐸 → 𝐿𝐷𝐸,

по правилу: каждой паре (𝜎, 𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏) поставим в соответствие элемент

𝜎 · (𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏) = (𝑎1𝑥𝜎(1) + 𝑎2𝑥𝜎(2) + . . .+ 𝑎𝑛𝑥𝜎(𝑛) = 𝑏).

Данное отображение является действием: доказательство аналогично проведенному выше
для действия 𝑎𝜎.

Определение 3. Будем называть действие 𝑥𝜎 перестановкой неизвестных ЛДУ.

Введём в рассмотрение, наконец, отображение

𝑎𝜎𝑥𝜎 : 𝑆𝑛 × 𝐿𝐷𝐸 → 𝐿𝐷𝐸,

определённое правилом: каждой паре (𝜎, 𝑎1𝑥1 +𝑎2𝑥2 + . . .+𝑎𝑛𝑥𝑛 = 𝑏) ставится в соответствие
элемент

𝜎 · (𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏) = (𝑎𝜎(1)𝑥𝜎(1) + 𝑎𝜎(2)𝑥𝜎(2) + . . .+ 𝑎𝜎(𝑛)𝑥𝜎(𝑛) = 𝑏).

Как и выше, легко проверяется, что 𝑎𝜎𝑥𝜎 — действие.

Замечание 13. Легко видеть, что действие 𝑎𝜎𝑥𝜎 есть не что иное, как комбинация
действий 𝑎𝜎 и 𝑥𝜎. Видим, что 𝑎𝜎𝑥𝜎 = 𝑥𝜎𝑎𝜎, то есть совсем не важно, в каком порядке
эти действия сочетать. В действительности, отображение 𝑎𝜎𝑥𝜎 — это скорее операция
умножения на множестве введённых нами действий на множестве 𝐿𝐷𝐸, а в данном случае
эта операция оказалась коммутативной для конкретных действий.

Определение 4. Будем говорить, что действие 𝑎𝜎𝑥𝜎 — это перестановка коэффици-
ентов и неизвестных ЛДУ в одноименном порядке.

Определение 5. При применении действий 𝑎𝜎, 𝑥𝜎, 𝑎𝜎𝑥𝜎 для конкретной подстановки 𝜎
будем говорить, что коэффициенты и/или неизвестные ЛДУ переставились в порядке 𝜎.

Рассмотрим множество 𝐷𝑎𝜎 всех ЛДУ, полученных перестановкой коэффициентов сов-
местного ЛДУ (1) в порядке 𝜎𝑘, 𝑘 ∈ N0. Другими словами,

𝐷𝑎𝜎 = {(𝑎𝜎𝑘(1)𝑥1 + 𝑎𝜎𝑘(2)𝑥2 + . . .+ 𝑎𝜎𝑘(𝑛)𝑥𝑛 = 𝑏) | 𝑘 ∈ N0}.

Ясно, что само ЛДУ (1) тоже принадлежит этому множеству, так как для этого случая 𝑘 = 0,
то есть коэффициенты переставляются в порядке 𝜎0 = 𝑖𝑑. Заметим, что 𝐷𝑎𝜎 ⊂ 𝐿𝐷𝐸, поэтому
мы в праве говорить о действии 𝑆𝑛 на 𝐷𝑎𝜎 и называть такое действие аналогичным образом,
как в определении 2.

Удобно воспринимать множество 𝐷𝑎𝜎 как орбиту фиксированного уравнения (1) при дей-
ствии подгруппы ⟨𝜎⟩ группы 𝑆𝑛 на множестве 𝐿𝐷𝐸.

Справедливо следующее утверждение.
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Лемма 1. Если в уравнении множества 𝐷𝑎𝜎 переставить коэффициенты и неизвестные
в одноимённом порядке, то полученное новое уравнение будет совпадать с исходным, то есть

∀𝑇 ∈ 𝐷𝑎𝜎

(︀
𝑎𝜎𝑥𝜎(𝑇 ) = 𝑇

)︀
.

Доказательство. Формально, требуется показать, что для любого 𝑘 ∈ N0

(𝑎𝜎𝑘+1(1)𝑥𝜎(1) + 𝑎𝜎𝑘+1(2)𝑥𝜎(2) + . . .+ 𝑎𝜎𝑘+1(𝑛)𝑥𝜎(𝑛) = 𝑏) =

= (𝑎𝜎𝑘(1)𝑥1 + 𝑎𝜎𝑘(2)𝑥2 + . . .+ 𝑎𝜎𝑘(𝑛)𝑥𝑛 = 𝑏).

Докажем данное утверждение индукцией по 𝑘.
Возьмём 𝐷 = (𝑎1𝑥1 + 𝑎2𝑥2 + . . . + 𝑎𝑛𝑥𝑛 = 𝑏) ∈ 𝐿𝐷𝐸. Множеству 𝐷𝑎𝜎 тогда будет принад-

лежать элемент вида 𝑇 = 𝑎𝜎𝑘(𝐷).
1. База индукции: пусть 𝑘 = 0, тогда если применить действие 𝑎𝜎𝑥𝜎 к уравнению

𝑇 = 𝑎𝜎0(𝐷) = 𝜎0 ·𝐷 = 𝑖𝑑 · (𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏) =

= (𝑎𝑖𝑑(1)𝑥1 + 𝑎𝑖𝑑(2)𝑥2 + . . .+ 𝑎𝑖𝑑(𝑛)𝑥𝑛 = 𝑏) = (𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏),

то результатом будет служить уравнение

𝑎𝜎𝑥𝜎(𝑇 ) = 𝑎𝜎𝑥𝜎(𝑎𝜎0(𝐷)) = (𝑎𝜎(1)𝑥𝜎(1) + 𝑎𝜎(2)𝑥𝜎(2) + . . .+ 𝑎𝜎(𝑛)𝑥𝜎(𝑛) = 𝑏),

которое, очевидно, совпадает с исходным 𝑎𝜎0(𝐷) = 𝑇 , так как подстановка переведёт равные
индексы в равные.

2. Шаг индукции: предположим, что формула, справедливость которой требуется показать,
верна для 𝑘 = 𝑚, то есть

(𝑎𝜎𝑚+1(1)𝑥𝜎(1) + 𝑎𝜎𝑚+1(2)𝑥𝜎(2) + . . .+ 𝑎𝜎𝑚+1(𝑛)𝑥𝜎(𝑛) = 𝑏) =

= (𝑎𝜎𝑚(1)𝑥1 + 𝑎𝜎𝑚(2)𝑥2 + . . .+ 𝑎𝜎𝑚(𝑛)𝑥𝑛 = 𝑏).

Покажем тогда справедливость для 𝑘 = 𝑚+ 1, то есть

(𝑎𝜎𝑚+2(1)𝑥𝜎(1) + 𝑎𝜎𝑚+2(2)𝑥𝜎(2) + . . .+ 𝑎𝜎𝑚+2(𝑛)𝑥𝜎(𝑛) = 𝑏) =

= (𝑎𝜎𝑚+1(1)𝑥1 + 𝑎𝜎𝑚+1(2)𝑥2 + . . .+ 𝑎𝜎𝑚+1(𝑛)𝑥𝑛 = 𝑏).
(2)

Чтобы прообраз был равен образу, все пары индексов в новом и старом уравнениях должны
быть инвариантны (то есть индексы коэффициентов в новом уравнении будут находиться
именно с теми индексами неизвестных, что и в старом, просто, ясно, что в других местах).

Предположим противное, то есть что уравнения не равны, значит, нашлась такая пара 𝑖, 𝑗,
что 𝑖 = 𝜎(𝑗), но 𝜎𝑚+1(𝑖) ̸= 𝜎𝑚+2(𝑗). Последнее неравенство можно в силу второй аксиомы
действия переписать в виде 𝜎𝑚+1(𝑖) ̸= 𝜎𝑚+1(𝜎(𝑗)). После подстановки в него правой части
равенства 𝑖 = 𝜎(𝑗), получим 𝜎𝑚+1(𝑖) ̸= 𝜎𝑚+1(𝑖). Это будет противоречить тому, что 𝜎 —
подстановка.

Стало быть, все пары индексов коэффициентов и примыкающих к ним неизвестных оста-
лись инвариантны, хоть и в разных местах, значит, верно (2), следовательно, верно и требуе-
мое. ■

Переформулировать лемму 1 можно так: перестановка коэффициентов и неизвестных ЛДУ
в одноимённом порядке 𝜎 тривиальна (как действие) на всей орбите, образованной при дей-
ствии на множестве 𝐿𝐷𝐸 циклической подгруппы, порожденной 𝜎.

Важно при этом понимать, чем элементы (уравнения) орбиты 𝐷𝑎𝜎 отличаются от других
ЛДУ. На самом деле, это отличие не так очевидно на первый взгляд. Так как орбита 𝐷𝑎𝜎
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образована при действии 𝑎𝜎, то к её элементам мы будем относиться с особым вниманием,
потому что они имеют вид (𝑎𝜎𝑘(1)𝑥1 +𝑎𝜎𝑘(2)𝑥2 + . . .+𝑎𝜎𝑘(𝑛)𝑥𝑛 = 𝑏), 𝑘 ∈ N0. Иными словами, все
элементы этой орбиты стоит воспринимать как результаты действия 𝑎𝜎, и соответствующим
образом относиться к коэффициентам (их индексы уже зависят от 𝜎.)

Вообще говоря, можно было и не рассматривать настолько сильное утверждение, так как
даже если переобозначить в элементах этой орбиты коэффициенты 𝑎𝜎(𝑖) через 𝑎

′
𝑖 и относиться

к таким уравнениям, будто никаким действиям они подвергнуты не были, то лемма 1 всё
равно будет справедлива, при этом смысл её был бы таковым: действие 𝑎𝜎𝑥𝜎 тривиально на
𝐿𝐷𝐸.

Необходимость рассмотрения данного утверждения обоснуем тем, что этот результат будет
нам важен в доказательстве следующих утверждений, например, важной теоремы 1.

Пример 9. Пусть имеется ЛДУ

𝐷 : (𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 + 5𝑥5 = 6)

и подстановка
𝜎 = (12345).

Чтобы воспользоваться леммой, нам нужно рассмотреть ЛДУ из орбиты при действии
подгруппы ⟨(12345)⟩. На такую роль может подойти и само ЛДУ 𝐷, но мы рассмотрим
нетривиальный представитель орбиты (это будет ЛДУ 𝑇 ниже):

𝑇 = 𝑎(12345)(𝐷) = (2𝑥1 + 3𝑥2 + 4𝑥3 + 5𝑥4 + 𝑥5 = 6) ∈ 𝐷𝑎(12345) .

Теперь воспользуемся условием леммы, то есть переставим у ЛДУ 𝑇 коэффициенты и
переменные в одноимённом порядке (том же) 𝜎 = (12345):

𝑎(12345)𝑥(12345)(𝑇 ) = (3𝑥2 + 4𝑥3 + 5𝑥4 + 𝑥5 + 2𝑥1 = 6) = 𝑇.

Замечание 14. Лемма 1 верна и для одноименной перестановки коэффициентов и/или
неизвестных в порядке 𝜎𝑠, 𝑠 ∈ N0. Формально это означает следующее:

∀𝑇 ∈ 𝐷𝑎𝜎

(︀
𝑎𝜎𝑠𝑥𝜎𝑠(𝑇 ) = 𝑇

)︀
.

Или
(𝑎𝜎𝑘+𝑠(1)𝑥𝜎𝑠(1) + 𝑎𝜎𝑘+𝑠(2)𝑥𝜎𝑠(2) + . . .+ 𝑎𝜎𝑘+𝑠(𝑛)𝑥𝜎𝑠(𝑛) = 𝑏) =

= (𝑎𝜎𝑘(1)𝑥1 + 𝑎𝜎𝑘(2)𝑥2 + . . .+ 𝑎𝜎𝑘(𝑛)𝑥𝑛 = 𝑏).

Теорема 1. Переставить неизвестные в любом совместном ЛДУ в определённом по-
рядке означает переставить его коэффициенты в обратном порядке, т.е.

∀𝐷 ∈ 𝐿𝐷𝐸
(︀
𝑥𝜎(𝐷) = 𝑎𝜎−1(𝐷)

)︀
.

Доказательство. Осуществим перестановку коэффициентов в порядке 𝜎−1:

𝜎−1 · (𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏) =

= (𝑎𝜎−1(1)𝑥1 + 𝑎𝜎−1(2)𝑥2 + . . .+ 𝑎𝜎−1(𝑛)𝑥𝑛 = 𝑏).

Далее переставим коэффициенты и неизвестные уже в одноимённом порядке 𝜎, получив
при этом равносильное, даже идентичное (равное), по лемме 1 уравнение:

𝜎 · (𝑎𝜎−1(1)𝑥1 + 𝑎𝜎−1(2)𝑥2 + . . .+ 𝑎𝜎−1(𝑛)𝑥𝑛 = 𝑏) =
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= (𝑎𝜎(𝜎−1(1))𝑥𝜎(1) + 𝑎𝜎(𝜎−1(2))𝑥𝜎(2) + . . .+ 𝑎𝜎(𝜎−1(𝑛))𝑥𝜎(𝑛) = 𝑏).

После преобразования правой части последнего равенства получим

(𝑎1𝑥𝜎(1) + 𝑎2𝑥𝜎(2) + . . .+ 𝑎𝑛𝑥𝜎(𝑛) = 𝑏).

Обращаясь к началу доказательства, видим, что коэффициенты переставились в обратном
порядке. ■

Замечание 15. Схожим образом мы могли создать множество 𝐷𝑥𝜎 всех ЛДУ, полу-
ченных перестановкой неизвестных совместного ЛДУ (1) в порядке 𝜎𝑘, 𝑘 ∈ N0, и множе-
ство 𝐷𝑎𝜎𝑥𝜎 всех ЛДУ, полученных перестановкой коэффициентов и неизвестных совмест-
ного ЛДУ (1) в порядке 𝜎𝑘, 𝑘 ∈ N0. Для всех элементов таких множеств также будет
справедлива лемма 1, сформулированная аналогичным образом.

По данному замечанию доказывается, что верно и

∀𝐷 ∈ 𝐿𝐷𝐸
(︀
𝑎𝜎(𝐷) = 𝑥𝜎−1(𝐷)

)︀
.

Вывод: для изучения действия 𝑥𝜎 достаточно изучения 𝑎𝜎 или наоборот, так как имеется
непосредственная связь.

3.2. Действия на связанных с ЛДУ множествах

Дополнительно рассмотрим также действия на связанные с ЛДУ множества, такие как
множество Z𝑛 арифметических векторов-строк 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) и множество матриц ([9])
вида

𝑀𝑛+1×𝑛(Z) =

{︃
𝑀 =

⎛⎜⎜⎜⎜⎝
𝑎01 𝑎02 · · · 𝑎0𝑛
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
· · · · · · · · · · · ·
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎟⎟⎠
⃒⃒⃒⃒
𝑎𝑖𝑗 ∈ Z

}︃
.

Итак, сконструируем сначала отображение

𝑧𝜎 : 𝑆𝑛 × Z𝑛 → Z𝑛,

определённое правилом: каждой паре (𝜎, 𝑧) поставим в соответствие элемент

𝜎 · (𝑧1, 𝑧2, . . . , 𝑧𝑛) = (𝑧𝜎(1), 𝑧𝜎(2), . . . , 𝑧𝜎(𝑛)).

Далее посмотрим ещё на три отображения:

𝑐𝜎 : 𝑆𝑛 ×𝑀𝑛+1×𝑛(Z)→𝑀𝑛+1×𝑛(Z)

с правилом: каждой паре (𝜎,𝑀) поставим в соответствие элемент

𝜎 ·

⎛⎜⎜⎜⎜⎝
𝑎01 𝑎02 · · · 𝑎0𝑛
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
· · · · · · · · · · · ·
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝑎0𝜎(1) 𝑎0𝜎(2) · · · 𝑎0𝜎(𝑛)
𝑎1𝜎(1) 𝑎1𝜎(2) · · · 𝑎1𝜎(𝑛)
𝑎2𝜎(1) 𝑎2𝜎(2) · · · 𝑎2𝜎(𝑛)
· · · · · · · · · · · ·

𝑎𝑛𝜎(1) 𝑎𝑛𝜎(2) · · · 𝑎𝑛𝜎(𝑛)

⎞⎟⎟⎟⎟⎠ ;

𝑙𝜎 : 𝑆𝑛 ×𝑀𝑛+1×𝑛(Z)→𝑀𝑛+1×𝑛(Z)
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с правилом: каждой паре (𝜎,𝑀) поставим в соответствие элемент

𝜎 ·

⎛⎜⎜⎜⎜⎝
𝑎01 𝑎02 · · · 𝑎0𝑛
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
· · · · · · · · · · · ·
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝑎01 𝑎02 · · · 𝑎0𝑛
𝑎𝜎(1)1 𝑎𝜎(1)2 · · · 𝑎𝜎(1)𝑛
𝑎𝜎(2)1 𝑎𝜎(2)2 · · · 𝑎𝜎(2)𝑛
· · · · · · · · · · · ·

𝑎𝜎(𝑛)1 𝑎𝜎(𝑛)2 · · · 𝑎𝜎(𝑛)𝑛

⎞⎟⎟⎟⎟⎠ ;

𝑐𝜎𝑙𝜎 : 𝑆𝑛 ×𝑀𝑛+1×𝑛(Z)→𝑀𝑛+1×𝑛(Z)

с правилом: каждой паре (𝜎,𝑀) поставим в соответствие элемент

𝜎 ·

⎛⎜⎜⎜⎜⎝
𝑎01 𝑎02 · · · 𝑎0𝑛
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
· · · · · · · · · · · ·
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝑎0𝜎(1) 𝑎0𝜎(2) · · · 𝑎0𝜎(𝑛)
𝑎𝜎(1)𝜎(1) 𝑎𝜎(1)𝜎(2) · · · 𝑎𝜎(1)𝜎(𝑛)
𝑎𝜎(2)𝜎(1) 𝑎𝜎(2)𝜎(2) · · · 𝑎𝜎(2)𝜎(𝑛)
· · · · · · · · · · · ·

𝑎𝜎(𝑛)𝜎(1) 𝑎𝜎(𝑛)𝜎(2) · · · 𝑎𝜎(𝑛)𝜎(𝑛)

⎞⎟⎟⎟⎟⎠ .

Нам предстоит также убедиться, что все отображения выше являются действиями. На
самом деле, так как мы всё время работали с индексами, то очевидна аналогия с действиями
𝑎𝜎, 𝑥𝜎, 𝑎𝜎𝑥𝜎.

Определение 6. Действие 𝑧𝜎 будем называть перестановкой координат 𝑧1, 𝑧2, . . . , 𝑧𝑛
вектора 𝑧 ∈ Z𝑛.

Определение 7. Действие 𝑐𝜎 назовём перестановкой столбцов матрицы множества
𝑀𝑛+1×𝑛(Z).

Действие 𝑙𝜎 назовём перестановкой строк матрицы множества 𝑀𝑛+1×𝑛(Z).
Действие 𝑐𝜎𝑙𝜎 назовём перестановкой столбцов и строк матрицы множества

𝑀𝑛+1×𝑛(Z).

Определение 8. Матрицей подстановки 𝛼 ∈ 𝑆𝑛 называется квадратная матрица 𝑃𝛼

порядка 𝑛, у которой в каждом столбце и строке находится ровно один единичный элемент,
то есть матрица вида

𝑃𝛼 =

⎛⎜⎝𝑒𝛼(1)...
𝑒𝛼(𝑛)

⎞⎟⎠ ,

где 𝑒𝑖 = (0, . . . , 1⏟ ⏞ 
𝑖

, . . . , 0) ∈ Z𝑛, [10], [11].

Множество всех матриц подстановок обозначим

𝑃𝑛×𝑛 = {𝑃𝛼 | 𝛼 ∈ 𝑆𝑛}.

Рассмотрим единичную матрицу 𝐸 порядка 𝑛:

𝐸 =

⎛⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

⎞⎟⎟⎠ .

Заметим, что 𝐸 = 𝑃𝑖𝑑, а все матрицы подстановки получаются из матрицы 𝐸 перестановкой
строк или перестановкой столбцов единичной матрицы (здесь «или» как дизъюнкция). Видно,
что в 𝐸 элементы 𝑎𝑖𝑗 = 1, если 𝑖 = 𝑗, и 𝑎𝑖𝑗 = 0 в противном случае.
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Замечание 16. Важно понимать, что в определении 8 уже скрыто действие груп-
пы подстановок, результатом которого мы будем пользоваться в дальнейших доказатель-

ствах. Например, в матрице подстановки

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠ элемент 𝑎11 не равен нулю, а явно

является единицей, ибо нужно учесть результат предыдущего действия, скрытого в опре-
делении 8. Позже важность этого будет показана в доказательстве леммы 2. Название
матрицы подстановки не случайно формулируется таким образом. Такая матрица завяза-
на на определённой подстановке.

Далее мы фактически будем говорить о действиях группы подстановок 𝑆𝑛 на множестве
𝑃𝑛×𝑛 и тоже условимся называть их по аналогии с определением 7. Также для удобства и
простоты восприятия будем полноправно считать

𝑃𝑛×𝑛 = {𝐸𝛼 | 𝛼 ∈ 𝑆𝑛}.

Это обусловлено тем, что если 𝐸 = 𝑃𝑖𝑑, то 𝐸𝛼 = 𝑃𝛼(𝑖𝑑) = 𝑃𝛼.

Определение 9. Пусть 𝑖, 𝑗 ∈ N и Z𝑛 — множество арифметических 𝑛-мерных
векторов-столбцов с целочисленными координатами.

Действие ̃︀𝑐𝜎, определенное по правилу
(𝜎,𝐸𝛼) ↦→ 𝜎 · 𝐸𝛼 =

(︀
𝑒𝜎(𝛼(1)) · · · 𝑒𝜎(𝛼(𝑛))

)︀
,

где 𝑒𝜎(𝛼(𝑖)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
1⏟ ⏞ 

𝜎(𝛼(𝑖))

...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Z𝑛, назовём перестановкой столбцов матрицы множества 𝑃𝑛×𝑛.

Действие ̃︀𝑙𝜎, определенное по правилу
(𝜎,𝐸𝛼) ↦→ 𝜎 · 𝐸𝛼 =

⎛⎜⎝𝑒𝜎(𝛼(1))...
𝑒𝜎(𝛼(𝑛))

⎞⎟⎠ ,

где 𝑒𝜎(𝛼(𝑖)) = (0, . . . , 1⏟ ⏞ 
𝜎(𝛼(𝑖))

, . . . , 0) ∈ Z𝑛, назовём перестановкой строк матрицы множе-

ства 𝑃𝑛×𝑛.
Действие ̃︀𝑐𝜎̃︀𝑙𝜎, определенное по правилу

(𝜎,𝐸𝛼) ↦→ 𝜎 · 𝐸𝛼 =
(︀
𝑒𝜎(𝛼(𝑖)) 𝜎(𝛼(𝑗))

)︀
,

назовём перестановкой столбцов и строк матрицы множества 𝑃𝑛×𝑛.

Лемма 2. Одноименная перестановка и столбцов, и строк не меняет матрицы мно-
жества 𝑃𝑛×𝑛. То есть

∀𝑀 ∈ 𝑃𝑛×𝑛

(︀̃︀𝑐𝜎̃︀𝑙𝜎(𝑀) = 𝑀).

Доказательство. Рассмотрим произвольную матрицу𝑀 = 𝐸𝛼, 𝛼 ∈ 𝑆𝑛. Из определения 9
видно, что 𝑀 = 𝐸𝛼 = 𝑐𝛼(𝐸) (К слову, можно использовать 𝑀 = 𝐸𝛼 = 𝑙𝛼(𝐸)). При этом
допускаем, что 𝛼 = 𝑖𝑑. Результат такого действия, имеющий вид 𝑐𝛼(𝐸) (или же 𝑙𝛼(𝐸)), в
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дальнейшем будет нами учитываться. Состоит он в том, что при перестановке столбцов (или
строк) матрицы 𝐸 все единицы переходят опять в элементы 𝑎𝑖𝑗 , 𝑖 = 𝑗 с равными индексами
в паре, ведь индексы закреплены за конкретным элементом, а смена индексов индуцирует
смену элементов. Единицы могут оказаться только там, где при действии образовались равные
индексы в паре.

Теперь рассмотрим матрицу 𝑐𝜎𝑙𝜎(𝑀) = 𝑐𝜎𝑙𝜎(𝐸𝛼). Уже при одноимённой перестановке и
столбцов, и строк индексы единиц тем более перейдут в равные, что и будет говорить о том,
что матрица 𝑀 = 𝐸𝛼 не поменялась. ■

Замечание 17. Данная лемма в нескольких аспектах схожа с леммой 1. Во-первых,
лемму 2 можно сформулировать, используя понятие орбиты. И, во-вторых, лемма 2 необ-
ходима для обоснования следующего утверждения.

Теорема 2. Переставить строки в определённом порядке в любой из матриц множе-
ства 𝑃𝑛×𝑛 означает переставить её столбцы в обратном порядке. То есть

∀𝑀 ∈ 𝑃𝑛×𝑛

(︀̃︀𝑙𝜎(𝑀) = ̃︀𝑐𝜎−1(𝑀)
)︀
.

Доказательство. Данное доказательство проведём из соображений, аналогичным тем,
что применяли в теореме 1.

Сначала осуществим действие ̃︀𝑐𝜎−1 на произвольную матрицу из множества 𝑃𝑛×𝑛:

𝜎−1 ·

⎛⎜⎜⎝
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
· · · · · · · · · · · ·
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑎1𝜎−1(1) 𝑎1𝜎−1(2) · · · 𝑎1𝜎−1(𝑛)

𝑎2𝜎−1(1) 𝑎2𝜎−1(2) · · · 𝑎2𝜎−1(𝑛)

· · · · · · · · · · · ·
𝑎𝑛𝜎−1(1) 𝑎𝑛𝜎−1(2) · · · 𝑎𝑛𝜎−1(𝑛)

⎞⎟⎟⎠ .

Далее переставим столбцы и строки уже в порядке 𝜎. Это не должно изменить матрицу
по лемме 2:

𝜎 ·

⎛⎜⎜⎝
𝑎1𝜎−1(1) 𝑎1𝜎−1(2) · · · 𝑎1𝜎−1(𝑛)

𝑎2𝜎−1(1) 𝑎2𝜎−1(2) · · · 𝑎2𝜎−1(𝑛)

· · · · · · · · · · · ·
𝑎𝑛𝜎−1(1) 𝑎𝑛𝜎−1(2) · · · 𝑎𝑛𝜎−1(𝑛)

⎞⎟⎟⎠ =

=

⎛⎜⎜⎝
𝑎𝜎(1)𝜎(𝜎−1(1)) 𝑎𝜎(1)𝜎(𝜎−1(2)) · · · 𝑎𝜎(1)𝜎(𝜎−1(𝑛))

𝑎𝜎(2)𝜎(𝜎−1(1)) 𝑎𝜎(2)𝜎(𝜎−1(2)) · · · 𝑎𝜎(2)𝜎(𝜎−1(𝑛))

· · · · · · · · · · · ·
𝑎𝜎(𝑛)𝜎(𝜎−1(1)) 𝑎𝜎(𝑛)𝜎(𝜎−1(2)) · · · 𝑎𝜎(𝑛)𝜎(𝜎−1(𝑛))

⎞⎟⎟⎠ .

Упростим правую часть последнего равенства и, сравнивая матрицу в начале доказатель-
ства с той, что получим ниже, убедимся в справедливости данного утверждения:⎛⎜⎜⎝

𝑎𝜎(1)1 𝑎𝜎(1)2 · · · 𝑎𝜎(1)𝑛
𝑎𝜎(2)1 𝑎𝜎(2)2 · · · 𝑎𝜎(2)𝑛
· · · · · · · · · · · ·

𝑎𝜎(𝑛)1 𝑎𝜎(𝑛)2 · · · 𝑎𝜎(𝑛)𝑛

⎞⎟⎟⎠ .

■

Замечание 18. Верно также, что

∀𝑀 ∈ 𝑃𝑛×𝑛

(︀̃︀𝑐𝜎(𝑀) = ̃︀𝑙𝜎−1(𝑀)
)︀
.
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3.3. Связь действий

В следующей теореме будет продемонстрирована связь между перестановкой коэффици-
ентов совместного ЛДУ и перестановкой координат вектора общего решения этого ЛДУ. В
доказательстве увидим, что чрезвычайно важно и полезно было отдельно дополнительно рас-
сматривать действия на множествах 𝑀𝑛+1×𝑛(Z) и 𝑃𝑛×𝑛.

При действии 𝑎𝜎 совместность уравнений является инвариантом, так как НОД коэффици-
ентов снова будет делить свободный член образа.

Теорема 3. Пусть 𝑧1, 𝑧2 ∈ Z𝑛 — векторы общего решения совместных ЛДУ 𝐷1, 𝐷2 ∈
∈ 𝐿𝐷𝐸 соответственно. Тогда если переставить коэффициенты ЛДУ в порядке 𝜎, то ко-
ординаты вектора общего решения переставятся в том же порядке. То есть

∀𝐷1, 𝐷2 ∈ 𝐿𝐷𝐸
(︀
𝐷2 = 𝑎𝜎(𝐷1) =⇒ 𝑧2 = 𝑧𝜎(𝑧1)

)︀
.

Доказательство. Итак, в качестве исходного ЛДУ возьмём

𝐷1 : 𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏.

Составим для уравнения 𝐷1 матрицу, чтобы найти его вектор общего решения:

𝑀𝐷1 =

⎛⎜⎜⎜⎜⎝
𝑎01 𝑎02 · · · 𝑎0𝑛
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
· · · · · · · · · · · ·
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎟⎟⎠ ,

где 𝑎0𝑖 = 𝑎𝑖, и 𝑎𝑖𝑗 = 1, если 𝑖 = 𝑗, и 𝑎𝑖𝑗 = 0, если 𝑖 ̸= 𝑗, для 𝑖, 𝑗 = 1, . . . , 𝑛.

Пока не будем применять элементарные преобразования. Зато переставим в этой матрице
строки в таком же порядке, в котором переставляли коэффициенты уравнения 𝐷1:

𝑙𝜎(𝑀𝐷1) = 𝑀 ′
𝐷1 =

⎛⎜⎜⎜⎜⎝
𝑎1 𝑎2 · · · 𝑎𝑛

𝑎𝜎(1)1 𝑎𝜎(1)2 · · · 𝑎𝜎(1)𝑛
𝑎𝜎(2)1 𝑎𝜎(2)2 · · · 𝑎𝜎(2)𝑛
· · · · · · · · · · · ·

𝑎𝜎(𝑛)1 𝑎𝜎(𝑛)2 · · · 𝑎𝜎(𝑛)𝑛

⎞⎟⎟⎟⎟⎠ .

Матрица 𝑀 ′
𝐷1 уже не будет отождествляться с уравнением 𝐷1, так как перестановка строк

не является элементарным преобразованием для матрицы ЛДУ.

Переставим в 𝐷1 коэффициенты и получим

𝑎𝜎(𝐷1) = 𝐷2 : 𝑎𝜎(1)𝑥1 + 𝑎𝜎(2)𝑥2 + . . .+ 𝑎𝜎(𝑛)𝑥𝑛 = 𝑏.

Составим теперь для уравнения 𝐷2 матрицу, чтобы найти уже его вектор общего решения:

𝑀𝐷2 =

⎛⎜⎜⎜⎜⎝
𝑎′01 𝑎′02 · · · 𝑎′0𝑛
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
· · · · · · · · · · · ·
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎟⎟⎠ ,

где 𝑎′0𝑖 = 𝑎0𝜎(𝑖) = 𝑎𝜎(𝑖), и 𝑎𝑖𝑗 = 1, если 𝑖 = 𝑗, и 𝑎𝑖𝑗 = 0, если 𝑖 ̸= 𝑗, для 𝑖, 𝑗 = 1, . . . , 𝑛.
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Иными словами,

𝑀𝐷2 =

⎛⎜⎜⎜⎜⎝
𝑎𝜎(1) 𝑎𝜎(2) · · · 𝑎𝜎(𝑛)
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
· · · · · · · · · · · ·
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎟⎟⎠ .

В этой матрице переставим в обратном порядке столбцы:

𝑐𝜎−1(𝑀𝐷2) = 𝑀 ′
𝐷2 =

⎛⎜⎜⎜⎜⎝
𝑎𝜎−1(𝜎(1)) 𝑎𝜎−1(𝜎(2)) · · · 𝑎𝜎−1(𝜎(𝑛))

𝑎1𝜎−1(1) 𝑎1𝜎−1(2) · · · 𝑎1𝜎−1(𝑛)

𝑎2𝜎−1(1) 𝑎2𝜎−1(2) · · · 𝑎2𝜎−1(𝑛)

· · · · · · · · · · · ·
𝑎𝑛𝜎−1(1) 𝑎𝑛𝜎−1(2) · · · 𝑎𝑛𝜎−1(𝑛)

⎞⎟⎟⎟⎟⎠ =

=

⎛⎜⎜⎜⎜⎝
𝑎1 𝑎2 · · · 𝑎𝑛

𝑎1𝜎−1(1) 𝑎1𝜎−1(2) · · · 𝑎1𝜎−1(𝑛)

𝑎2𝜎−1(1) 𝑎2𝜎−1(2) · · · 𝑎2𝜎−1(𝑛)

· · · · · · · · · · · ·
𝑎𝑛𝜎−1(1) 𝑎𝑛𝜎−1(2) · · · 𝑎𝑛𝜎−1(𝑛)

⎞⎟⎟⎟⎟⎠ .

Матрица 𝑀 ′
𝐷2 по отношению к 𝑀𝐷2, в отличие от 𝑀 ′

𝐷1 по отношению к 𝑀𝐷1, уже бу-
дет отождествляться с уравнением 𝐷2, то есть её ещё можно использовать для нахождения
вектора общего решения ЛДУ 𝐷2, так как перестановка столбцов относится к элементарным
преобразованиям для матрицы ЛДУ.

Согласно теореме 2, матрицы 𝑀 ′
𝐷2 и 𝑀

′
𝐷1 равны. Теорема применима к этим матрицам

корректно, так как в итоге действие коснулось их нижних подматриц размера 𝑛×𝑛, а верхние
вектор-строки у них и так покоординатно равны в силу обратной перестановки столбцов в
матрице 𝑀𝐷2.

Равенство данных матриц является ключевым моментом в этом доказательстве. Дело в
том, что в силу равенства этих матриц мы однозначно можем отождествить матрицу 𝑀 ′

𝐷1
уже с уравнением 𝐷2. Нам осталось только прийти к векторам общего решения уравнений 𝐷1

и 𝐷2.

Вектор общего решения уравнения 𝐷2 получится после цепочки элементарных преобразо-
ваний матрицы 𝑀 ′

𝐷2 (а значит и матрицы 𝑀 ′
𝐷1). Сейчас нам не важно их количество и то,

какими именно они будут. Сейчас нам важна их очерёдность. В силу равенства матриц их
очерёдность совпадает, а значит, нам не принципиально вообще их совершать. Значит, из дан-
ных матриц в итоге будут выделены одинаковые векторы общего решения для уравнения 𝐷2.
Более того, в силу равенств первых векторов-строк в матрицах𝑀𝐷1 ,𝑀

′
𝐷1

и𝑀 ′
𝐷2
, ровно такие

же элементарные преобразования (со столбцами) будут производиться и с матрицей 𝑀𝐷1 для
получения вектора общего решения 𝑧1 уравнения 𝐷1.

Так как, опять же, вектор общего решения получается из матрицы, то перестановка строк
в матрице уравнения 𝐷1 очевидным образом означает то же, что и перестановка координат
вектора 𝑧1 в том же порядке, а значит, 𝑧𝜎(𝑧1) = 𝑧2. ■

Данную теорему можно доказать быстрее.

Доказательство. Пусть ЛДУ

𝐷1 : 𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏

имеет решение

𝑧𝐷1 = (𝑧1, 𝑧2, . . . , 𝑧𝑛).
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Теперь переставим все коэффициенты 𝐷1 в порядке 𝜎:

𝐷2 = 𝑎𝜎(𝐷1) : 𝑎𝜎(1)𝑥1 + 𝑎𝜎(2)𝑥2 + . . .+ 𝑎𝜎(𝑛)𝑥𝑛 = 𝑏.

Рассмотрим

𝑧𝐷2 = 𝑧𝜎(𝑧𝐷1) = (𝑧𝜎(1), 𝑧𝜎(2), . . . , 𝑧𝜎(𝑛)).

Осталось убедиться, что набор 𝑧𝐷2 удовлетворяет ЛДУ 𝐷2. Действительно, при подстановке
этого набора в уравнение 𝐷2 в итоге получается

𝑎𝜎(1) · 𝑧𝜎(1) + 𝑎𝜎(2) · 𝑧𝜎(2) + . . .+ 𝑎𝜎(𝑛) · 𝑧𝜎(𝑛) = 𝑏,

что является верным равенством, ведь по лемме 1 означает то же самое, что

𝑎1𝑧1 + 𝑎2𝑧2 + . . .+ 𝑎𝑛𝑧𝑛 = 𝑏,

что в свою очередь является верным равенством, так как иллюстрирует подстановку
𝑧𝐷1 — решения ЛДУ 𝐷1 в ЛДУ 𝐷1. ■

Данное доказательство, на первый взгляд, не так строго, как основное, что было приведено
раньше, ведь мы лишь предъявили вектор, который удовлетворит уравнению, но не показали,
что вектор общего решения, полученный таким способом (действием) является идентичным
(не по внешнему виду, а по наборам частных решений) вектору общего решения, который по-
лучился бы, если бы мы находили решение стандартным способом (через матрицу), а не через
действие. В предыдущем доказательстве это показано, так как решали с помощью матрицы
и перекладывали результат на язык действий.

Чтобы убедиться в строгости именно этого доказательства, нужно показать, что этот век-
тор действительно охватит все частные решения. Однако это правда так, ибо все частные
решения векторов 𝑧𝐷2 и 𝑧𝐷1 состоят из тех же координат, только в разном порядке, а общее
решение 𝑧𝐷1 ЛДУ 𝐷1 дано нам по условию.

Данная теорема буквально позволяет нам не искать методично векторы общего решения
всех ЛДУ с помощью матрицы или другими способами, что было бы весьма трудозатратно
и времязатратно. Достаточно будет решить всего одно уравнение, которое как представитель
породит уже всю свою орбиту. Тогда для любого другого представителя орбиты решение будет
находиться лишь перестановкой координат. Так, теорема представляет большую полезность
при решении ЛДУ со значительным количеством неизвестных.

При решении ЛДУ, полученных действием из другого ЛДУ, составленные матрицы можно
преобразовывать по-разному. Однако в доказательстве теоремы 3 был найден и продемонстри-
рован универсальный метод такого решения.

Важную роль сыграет также и следствие 1.

Следствие 1. При перестановке неизвестных совместного ЛДУ координаты его векто-
ра общего решения переставляются в обратном порядке. То есть

∀𝐷1, 𝐷2 ∈ 𝐿𝐷𝐸
(︀
𝐷2 = 𝑥𝜎(𝐷1) =⇒ 𝑧2 = 𝑧𝜎−1(𝑧1)

)︀
.

Доказательство. Сошлёмся лишь на теорему 1 и теорему 3. ■
Проиллюстрируем теорему конкретной задачей.

Пример 10. Можно ли, решив в целых числах только уравнение

𝐷1 : 2𝑥1 + 3𝑥2 + 5𝑥3 − 7𝑥4 = 2,

найти вектор общего решения уравнения



Связь между решениями линейных диофантовых уравнений . . . 273

𝐷2 : 2𝑥1 + 5𝑥2 − 7𝑥3 + 3𝑥4 = 2?

Если да, то объяснить почему.
Решение. Чтобы ответить положительно на вопрос данной задачи, нужно убедиться в

том, что данные уравнения удовлетворяют условию теоремы 3. Действительно, во-первых,
𝐷1, 𝐷2 совместны, так как НОД их коэффициентов делит 𝑏 в каждом из них. Во-вторых,

𝐷2 = 𝑎(234)(𝐷1).

Покажем, как прийти к этому выводу ниже (тем самым мы решим задачу о нахождении
действия, если оно существует, которым связаны два данных уравнения. Собственно, вы-
движение такого предположения обосновывается тем, что коэффициенты у 𝐷1 и 𝐷2 иден-
тичны, только записаны в разном порядке. Наша цель состоит в том, чтобы отыскать
этот порядок). Алгоритм следующий.

1. Мы по условию найдём решение именно ЛДУ 𝐷1. При этом 𝐷2 = 𝑎𝜎(𝐷1). Напишем 𝐷2

строго под 𝐷1, подчеркнув, что 𝐷2 является образом 𝐷1 при действии 𝑎𝜎:

𝐷1 : 2𝑥1 + 3𝑥2 + 5𝑥3 − 7𝑥4 = 2,

𝐷2 : 2𝑥1 + 5𝑥2 − 7𝑥3 + 3𝑥4 = 2.

2. Перепишем уравнения друг под другом, положив 𝑎1 = 2, 𝑎2 = 3, 𝑎3 = 5, 𝑎4 = −7:

𝐷1 : 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 = 2,

𝐷2 : 𝑎1𝑥1 + 𝑎3𝑥2 + 𝑎4𝑥3 + 𝑎2𝑥4 = 2.

3. Запишем индексы коэффициентов уравнений 𝐷1 и 𝐷2 соответственно в первую и вто-
рую строчки подстановки 𝜎:

𝜎 =

(︂
1 2 3 4
1 3 4 2

)︂
= (234).

4. Полученная подстановка 𝜎 и есть искомая. Убедимся в этом (тем самым решим за-
дачу нахождения образа уравнения при действии 𝑎𝜎):

𝑎𝜎(𝐷1) = 𝑎(234)(2𝑥1 + 3𝑥2 + 5𝑥3 − 7𝑥4 = 2) = 𝑎(234)(𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 = 2) =

= (𝑎(234)(1)𝑥1 + 𝑎(234)(2)𝑥2 + 𝑎(234)(3)𝑥3 + 𝑎(234)(4)𝑥4 = 2) =

= (𝑎1𝑥1 + 𝑎3𝑥2 + 𝑎4𝑥3 + 𝑎2𝑥4 = 2) = (2𝑥1 + 5𝑥2 − 7𝑥3 + 3𝑥4 = 2) = 𝐷2.

Можно обратить внимание на то, что порядок расположения индексов коэффициентов
в новом уравнении (образе) совпадает со второй строчкой подстановки (234), записанной в
матричном виде.

Отметим, что можно было идти и через действие 𝑥𝜎, при этом пришлось бы для век-
тора общего решения дополнительно вычислять обратную подстановку найденной, но не
пришлось бы переименовывать переменные, так как их индексы видны у уравнений сразу;
мы просто записали бы их друг под другом так, чтобы друг под другом стояли одинаковые
коэффициенты, ибо таково определение действия 𝑥𝜎.

Возвращаемся к решению поставленной задачи:
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Тогда, на самом деле, решив лишь 𝐷1, мы мгновенно найдём и решение 𝐷2. Итак, вектор
общего решения 𝐷1 есть

𝑧1 = (4− 3𝑡2 + 5𝑡3 − 7𝑡4,−2 + 2𝑡2 − 5𝑡3 + 7𝑡4, 𝑡3, 𝑡4).

Стало быть,

𝑧2 = 𝑧(234)(𝑧1) = (4− 3𝑡2 + 5𝑡3 − 7𝑡4, 𝑡3, 𝑡4,−2 + 2𝑡2 − 5𝑡3 + 7𝑡4).

Ответ: да, можно, так как 𝐷1 и 𝐷2 удовлетворяют условию теоремы 3.

4. Действия группы автоморфизмов группы целых чисел 𝐴𝑢𝑡(Z)
на множестве линейных диофантовых уравнений

4.1. Основные действия

В данном параграфе будет рассмотрен класс действий на множестве ЛДУ, индуцирован-
ный группой

⟨𝐴𝑢𝑡(Z) = {𝑓 | 𝑓(𝑧) = 𝑚𝑧,𝑚 = ±1, 𝑧 ∈ Z}, ∘ ⟩, [12], [13],

причём целые числа выбраны неспроста, ведь образом при действии должно служить ЛДУ,
то есть целочисленность коэффициентов должна быть инвариантом.

В дальнейшем нам будет интересен только случай, когда 𝑚 = −1.
Следующее отображение и будет являться таким действием, и это доказывается ровно так

же, как делалось ранее для действий группы подстановок.

𝑎(−) : 𝐴𝑢𝑡(Z)× 𝐿𝐷𝐸 → 𝐿𝐷𝐸,

где каждой паре
(𝑓, 𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏)

поставим в соответствие элемент

𝑓 · (𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏) = (𝑓(𝑎1)𝑥1 + 𝑓(𝑎2)𝑥2 + . . .+ 𝑓(𝑎𝑛)𝑥𝑛 = 𝑏).

Отметим, что группа 𝐴𝑢𝑡(Z) может действовать иначе (задействуя не все коэффициенты):

(𝑓, 𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏) ↦→

↦→ (𝑎1𝑥1 + . . .+ 𝑓(𝑎𝑖1)𝑥𝑖1 + . . .+ 𝑓(𝑎𝑖2)𝑥𝑖2 + . . .+ 𝑓(𝑎𝑖𝑘)𝑥𝑖𝑘 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏),

где 𝑘 есть любое число от 1 до 𝑛. При 𝑘 = 𝑛 получим действие, которое будет задействовать
все коэффициенты ЛДУ. Оно было определено нами ранее.

Легко проверить, что организованное таким же образом действие 𝐴𝑢𝑡(Z) на неизвестные
ЛДУ совпадет с 𝑎(−), ведь минус всегда можно в силу ассоциативности умножения вынести
перед коэффициентом и отнести непосредственно к нему. По этой причине отдельно рассмат-
ривать такое действие 𝑥(−) не станем.

Определение 10. Действия определённых групп на конкретных множествах, где за-
действованы не все коэффициенты и/или переменные ЛДУ (или же координаты вектора,
элементы матрицы и тому подобное), будем называть частичными.

Определение 11. Действие 𝑎(−) будем называть заменой коэффициентов ЛДУ на им
противоположные.
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Замена коэффициентов на им противоположные может быть и частичной, однако отдель-
ного обозначения для таких действий вводить не будем. В случае частичного действия мы
просто будем говорить, перед какими именно коэффициентами изменился знак. Однако, ес-
ли ЛДУ имеет небольшое количество неизвестных, можно для удобства у именно частичного
действия 𝑎(−) в обозначении отображать факт замены знаков. Например, для действия на
ЛДУ с двумя неизвестными можно использовать обозначение 𝑎(+−), что будет означать, что
первый коэффициент остался неизменным, а у второго знак изменился на противоположный.

Далее, по аналогии с предыдущими параграфами, скажем, что 𝐴𝑢𝑡(Z) может действовать,
опять же, на Z𝑛 (так же, как и 𝑆𝑛), в том числе частично.

Так, отображение

𝑧(−) : 𝐴𝑢𝑡(Z)× Z𝑛 → Z𝑛,

определённое правилом: каждой паре (𝑓, 𝑧) ставится в соответствие элемент

𝑓 · (𝑧1, 𝑧2, . . . , 𝑧𝑛) = (𝑧1, . . . , 𝑓(𝑧𝑖1), . . . , 𝑓(𝑧𝑖2), . . . , 𝑓(𝑧𝑖𝑘), . . . , 𝑧𝑛),

где 𝑘 ≤ 𝑛, является действием группы 𝐴𝑢𝑡(Z) на множестве Z𝑛.
При 𝑘 = 𝑛 данное действие не частично, то есть будут задействованы все координаты.

Определение 12. Действие 𝑧(−) будем называть заменой координат вектора на ему
противоположные.

4.2. Связь действий

При действии 𝑎(−) совместность уравнений является инвариантом, так как НОД коэффи-
циентов снова будет делить свободный член образа.

Теорема 4. Пусть 𝑧1, 𝑧2 ∈ Z𝑛 − векторы общего решения совместных ЛДУ
𝐷1, 𝐷2 ∈ 𝐿𝐷𝐸 соответственно. Тогда если заменить определенные коэффициенты ЛДУ на
им противоположные, то соответствующие по порядку следования координаты вектора
общего решения также заменятся на им противоположные. То есть

∀𝐷1, 𝐷2 ∈ 𝐿𝐷𝐸
(︀
𝐷2 = 𝑎(−)(𝐷1) =⇒ 𝑧2 = 𝑧(−)(𝑧1)

)︀
.

Доказательство. Данное утверждение докажем полноправным вторым способом, кото-
рый был использован при доказательстве теоремы 3, но отметим, что способ доказательства
через составление матрицы также имеет место.

Пусть ЛДУ

𝐷1 : 𝑎1𝑥1 + 𝑎2𝑥2 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏

имеет решение

𝑧1 = (𝑧11, 𝑧12, . . . , 𝑧1𝑛).

Теперь заменим некоторые или, быть может, все коэффициенты 𝐷1 на им противоположные:

𝐷2 = 𝑎(−)(𝐷1) :

𝑎1𝑥1 + . . .+ 𝑓(𝑎𝑖1)𝑥𝑖1 + . . .+ 𝑓(𝑎𝑖2)𝑥𝑖2 + . . .+ 𝑓(𝑎𝑖𝑘)𝑥𝑖𝑘 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑏,

где 𝑘 есть любое число от 1 до 𝑛.
Рассмотрим

𝑧2 = 𝑧(−)(𝑧1) = (𝑧11, . . . , 𝑓(𝑧1𝑖1), . . . , 𝑓(𝑧1𝑖2), . . . , 𝑓(𝑧1𝑖𝑘), . . . , 𝑧1𝑛).
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Осталось убедиться, что набор 𝑧2 удовлетворяет ЛДУ 𝐷2. Действительно, на соответству-
ющих изменённым знакам у коэффициентов уравнения 𝐷1 местах у вектора 𝑧2 стоят про-
тивоположные координаты. Это означает, что при их подстановке в уравнение 𝐷2 в итоге
получается

𝑎1 · 𝑧11 + 𝑎2 · 𝑧12 + . . .+ 𝑎𝑛 · 𝑧1𝑛 = 𝑏,

что является верным равенством, ведь означает то же самое, что подстановка координат 𝑧1
в ЛДУ 𝐷1. ■

Таким образом, действия 𝑎(−) и 𝑧(−) связаны прямым образом, ровно так же, как и 𝑎𝜎
и 𝑧𝜎.

Теорема 4 дополняет теорему 3. И теперь множество ЛДУ, к которым применимы эти
теоремы, становится больше. То есть данная теория решения уравнений с помощью действий
уже охватывает все больше уравнений.

Можно немного уточнить формулировки теорем 3 и 4. Сделаем это на примере теоремы 4.
Так, если заменить определённые коэффициенты ЛДУ на им противоположные, то вектор,
у которого соответствующие по порядку следования координаты заменены на им противопо-
ложные, может служить вектором общего решения для нового ЛДУ.

Пример 11. Благодаря теоремам 3 и 4 стало возможным быстро решать целый класс
ЛДУ, зная решение всего одного его представителя (назовём такое ЛДУ и его решение ба-
зовыми при решении других ЛДУ). Так, рассмотрим ЛДУ

𝐵 : (2𝑥1 + 3𝑥2 + 5𝑥3 − 7𝑥4 = 2),

вектором общего решения базового ЛДУ 𝐵 служит

𝑏 = (4− 3𝑡2 + 5𝑡3 − 7𝑡4,−2 + 2𝑡2 − 5𝑡3 + 7𝑡4, 𝑡3, 𝑡4).

Проследим за тем, как быстро найти решение, например, для ЛДУ

𝐷 : (−3𝑥1 + 5𝑥2 + 7𝑥3 − 2𝑥4 = 2).

Для того чтобы применить теоремы 3 и 4, нужно сначала понять, как именно 𝐷 получено
из базового 𝐵.

Собственно, замечаем, что

𝐷 = 𝑎(−+−−)(𝐷′), где 𝐷′ = 𝑎(1234)(𝐵) = (3𝑥1 + 5𝑥2 − 7𝑥3 + 2𝑥4 = 2).

Тогда по теоремам 3 и 4 решение ЛДУ 𝐷 есть

𝑧 = 𝑧(−+−−)(𝑧′), где 𝑧′ = 𝑧(1234)(𝑏).

Так, применяя теорему 3 к 𝐷′, а затем теорему 4 к 𝐷, получим, что решением 𝐷′ будет

𝑧′ = 𝑧(1234)(𝑏) = (−2 + 2𝑡2 − 5𝑡3 + 7𝑡4, 𝑡3, 𝑡4, 4− 3𝑡2 + 5𝑡3 − 7𝑡4),

и, наконец, решением 𝐷 будет

𝑧 = 𝑧(−+−−)(𝑧′) = (2− 2𝑡2 + 5𝑡3 − 7𝑡4, 𝑡3,−𝑡4,−4 + 3𝑡2 − 5𝑡3 + 7𝑡4).

В примере выше важно отметить, что сначала в уравнении переставляли коэффициенты, а
потом меняли их на им противоположные. Данный пример можно решить и другим способом:
сначала заменить коэффициенты на им противоположные, а затем изменить их порядок.

Посмотрим на второй способ.
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Так, рассмотрим базовое ЛДУ

𝐵 : (2𝑥1 + 3𝑥2 + 5𝑥3 − 7𝑥4 = 2),

вектором общего решения базового ЛДУ 𝐵 служит

𝑏 = (4− 3𝑡2 + 5𝑡3 − 7𝑡4,−2 + 2𝑡2 − 5𝑡3 + 7𝑡4, 𝑡3, 𝑡4).

Проследим за тем, как быстро найти решение, например, для ЛДУ

𝐷 : (−3𝑥1 + 5𝑥2 + 7𝑥3 − 2𝑥4 = 2).

Для того чтобы применить теоремы 4 и 3, нужно сначала понять, как именно 𝐷 получено из
базового 𝐵.

Снова замечаем, что
𝐷 = 𝑎(1234)(𝐷

′), где 𝐷′ = 𝑎(−)(𝐵),

причём надо уточнить 𝑎(−). Для этого перепишем 𝐷 в виде

𝐷 : (−2𝑥4 − 3𝑥1 + 5𝑥2 + 7𝑥3 = 2) = (−2𝑥′1 − 3𝑥′2 + 5𝑥′3 + 7𝑥′4 = 2).

Значит,
𝐷′ = 𝑎(−−+−)(𝐵).

Тогда по теоремам решение ЛДУ 𝐷 есть

𝑧 = 𝑧(1234)(𝑧
′), где 𝑧′ = 𝑧(−−+−)(𝑏).

Так, применяя теорему 4 к 𝐷′, а затем теорему 3 к 𝐷, получим, что решением 𝐷′ будет

𝑧′ = 𝑧(−−+−)(𝑏) = (−4 + 3𝑡2 − 5𝑡3 + 7𝑡4, 2− 2𝑡2 + 5𝑡3 − 7𝑡4, 𝑡3,−𝑡4),

и, наконец, решением 𝐷 будет

𝑧 = 𝑧(1234)(𝑧
′) = (2− 2𝑡2 + 5𝑡3 − 7𝑡4, 𝑡3,−𝑡4,−4 + 3𝑡2 − 5𝑡3 + 7𝑡4).

5. Заключение

По ходу работы были получены следующие важные результаты и выводы, [15], а именно:
1) перестановка коэффициентов и неизвестных ЛДУ в одноимённом порядке не меняет

уравнения;
2) переставить неизвестные ЛДУ в определённом порядке означает переставить его коэф-

фициенты в обратном порядке (или наоборот — переставить коэффициенты ЛДУ в опреде-
лённом порядке означает переставить его неизвестные в обратном порядке);

3) если переставить коэффициенты ЛДУ в определённом порядке, то координаты его век-
тора общего решения переставятся в том же порядке.

4) если переставить переменные ЛДУ в определённом порядке, то координаты его вектора
общего решения переставятся в обратном порядке.

5) при замене определённых коэффициентов ЛДУ на им противоположные соответствую-
щие по порядку следования координаты его вектора общего решения тоже заменяются на им
противоположные.

Таким образом, все задачи работы решены, а цель достигнута.
Исследование предполагается расширить в следующих направлениях:
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- более детально исследовать введённые действия-перестановки и другие с точки зрения их
характеристик (орбит, стабилизаторов) и применения данных характеристик для дальнейшего
изучения ЛДУ и связей между их решениями;

- можно поставить вопрос об изучении других действий и их связей с решениями линейных
и нелинейных диофантовых уравнений с помощью метода групповых действий;

- рассмотреть множества действий конкретной группы или нескольких групп на множе-
стве линейных диофантовых уравнений на предмет наличия определённой структуры и/или
дополнительных свойств;

- постановка вопроса об исследовании решений ЛДУ с точки зрения понятия линейного
многообразия ([14]) и его свойств в рамках целочисленной решётки.
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Abstract

In this paper in the model situation the generalized solution of the Cauchy problem of
linearalized the Corteveg – de Vriz equation are investigated. The solution are represented as
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1. Введение

Настоящая работа посвящается восьмидесятилетию со дня рождения Геннадия Ивановича
Архипова (12.12.1945 – 14.03.2013). Теорема, о которой идет речь здесь, была сформулирована
им в 2010 г. Доказательство ее дано в настоящей работе.

Г.И.Архипов и К.И.Осколков исследовали специальные тригонометрические ряды с мно-
гочленом в аргументе, — ряды И.М.Виноградова. Сформулируем их результат.

Пусть 𝑘 — натуральное число, 𝐸 — единичный 𝑘 — мерный куб точек 𝛼 = (𝛼1, . . . , 𝛼𝑛) с дей-
ствительными координатами 0 ≤ 𝛼𝑠 < 1, 𝑠 = 1, . . . , 𝑘, и пусть 𝑓(𝑥) = 𝑓𝑘(𝑥) = 𝛼𝑘𝑥

𝑘 + · · ·+𝛼1𝑥 —
многочлен степени 𝑘. Пусть далее

ℎ(𝑓) =
∑︁
𝑛̸=0

𝑒2𝜋𝑖𝑓(𝑛)

𝑛

ряд Виноградова, в котором суммирование распространяется по всем целым 𝑛 ̸= 0, и его
симметричные частичные суммы ℎ𝑁 (𝑓) имеют вид

ℎ𝑁 (𝑓) =
∑︁

1≤|𝑛|≤𝑁

𝑒2𝜋𝑖𝑓(𝑛)

𝑛
, 𝑁 ≥ 1.

Используя метод Виноградова оценок тригонометрических сумм [1], Г.И.Архипов и
К.И.Осколков [2] доказали следующее утверждение о равномерной ограниченности последо-
вательности симметричных частичных сумм ℎ𝑁 (𝑓).

Теорема А. Пусть 𝑘 ≥ 2 — фиксированное натуральное число. Тогда для ненулевого

многочлена 𝑓𝑘 ̸= 0 имеем

sup
𝑁≥1

sup
𝑓𝑘

|ℎ𝑁 (𝑓𝑘)| = 𝑔𝑘 <∞.

Более того, для каждого многочлена 𝑓 ̸= 0 последовательность ℎ𝑁 (𝑓) при 𝑁 → ∞ сходит-

ся, и сумма ряда ℎ(𝑓), рассматриваемая как предел симметричных частичных сумм ℎ𝑁 (𝑓),
ограничена всюду на множестве многочленов степени 𝑘.

В настоящей стаьее используются идеи и методы работ [1]-[13].

§1. Теорема Г.И.Архипова

Нам понадобятся следующие вспомогательные утверждения.
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Лемма 1. Пусть функция 𝑓(𝑥) имеет непрерывную производную на отрезке [𝑎, 𝑏] и пусть

𝐴(𝑥)=
∑︀

𝑎<𝑛≤𝑥 𝛼𝑛. Тогда при любом 𝑥 ∈ [𝑎, 𝑏] имеем

∑︁
𝑎<𝑛≤𝑥

𝛼𝑛𝑓(𝑛) = 𝐴(𝑥)𝑓(𝑥)−
𝑥∫︁

𝑎

𝐴(𝑠)𝑓 ′(𝑠) 𝑑𝑠.

Лемма 2. Последовательность дробных частей {𝑥𝑛} равномерно распределена по модулю
единица тогда и только тогда, когда при любом целом числе 𝑚 ̸= 0 имеем

lim
𝑁→∞

𝑁−1
𝑁∑︁

𝑛=1

𝑒2𝜋𝑖𝑚𝑥𝑛 = 0.

Лемма 3. Пусть 𝑓(𝑥) в промежутке 𝑀 < 𝑥 ≤ 𝑀 ′ — вещественная дифференцируемая

функция, причем внутри промежутка ее прvоизводная 𝑓 ′(𝑥) монотонна и знакопостоянна и

при постоянном 𝛿 с условием 0 < 𝛿 < 1 удовлетворяет неравенству |𝑓 ′′(𝑥)| ≤ 𝛿. Тогда имеем

∑︁
𝑀<𝑥≤𝑀 ′

𝑒2𝜋𝑖𝑓(𝑥) =

𝑀 ′∫︁
𝑀

𝑒2𝜋𝑖𝑓(𝑥) 𝑑𝑥+ 𝜃

(︂
3 +

2𝛿

1− 𝛿

)︂
, |𝜃| ≤ 1.

Лемма 1 — формула Абеля суммирования значений гладкой функции по целым точкам
[14], лемма 2 — критерий Г.Вейля равномерного распределения последовательности веществен-
ных чисел по модулю единица [14], лемма 3 принадлежит ван дер Корпуту [1].

Пусть {𝑥} — дробная часть числа 𝑥. Тогда имеем {𝑥+ 1} = {𝑥}, 0 ≤ {𝑥} < 1.

Теорема. Пусть 𝑢 = 𝑢(𝑥, 𝑡) — обобщенное решение задачи Коши линеаризованного урав-

нения Кортевега – де Фриза вида

𝜕𝑢

𝜕𝑡
=
𝜕3𝑢

𝜕𝑥3
, 𝑢|𝑡=0 = {𝑥}. (1)

Тогда существует ограниченная и для всех иррациональных 𝑥 непрерывная по 𝑥 функция
𝑢(𝑥, 𝑡). Если же 𝑥 = 𝑝

𝑞 , (𝑝, 𝑞) = 1, то функция 𝑢(𝑥, 𝑡) имеет точки разрыва первого рода со

скачком 𝑏(𝑞) в количестве 𝑞 на периоде.

Доказательство. Данное уравнение является уравнением с разделенными переменными.
Представим его решение в виде 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). Получим

𝑇 ′

𝑇
=
𝑋 ′′′

𝑋
= 𝜆,

где 𝜆 — постоянная разделения.

Отсюда находим 𝑢(𝑥, 𝑡) = 𝑒𝜆
3𝑡+𝜆𝑥. Из начального условия имеем

{𝑥} =
∑︁
𝑛

𝑒𝜆𝑛𝑥 =
∑︁
𝑛 ̸=0

1

2𝜋𝑖𝑛
𝑒2𝜋𝑖𝑛𝑥.

Следовательно, 𝑐𝑛 = 1
2𝜋𝑖𝑛 . Тогда решение в задаче Коши имеет вид

𝑢(𝑥, 𝑡) =
∑︁
𝑛̸=0

1

2𝜋𝑖𝑛
𝑒2𝜋𝑖(𝑛𝑥−𝑛3𝑡). (2)
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Докажем, что ряд (2) равномерно сходится в окрестности иррациональной точки 𝑥 при любом
фиксированном значении 𝑡. Воспользуемся критерием Коши. Для этого при 1 ≤ 𝑁 оценим
сумму

𝑇𝑁 (𝑥, 𝑡) =
∑︁

0<|𝑛|≤𝑁

𝑒2𝜋𝑖(𝑛𝑥−𝑛3𝑡)

исходя из критерия Г.Вейля (лемма 2) равномерного распределения по модулю 1 последова-
тельности значений дробных частей {𝑛𝑥− 𝑡𝑛3} при иррациональном значении 𝑥. При 𝑁 →∞
находим

𝑇𝑁 (𝑥, 𝑡) = 𝑜(𝑁).

Следовательно, при полуцелых 𝑀 и 𝑁 по формуле Абеля суммирования значений гладкой
функции по целым точкам имеем

|𝑢𝑀,𝑁 (𝑥, 𝑡)| =

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑀<|𝑛|≤𝑁

1

2𝜋𝑖𝑛
𝑒2𝜋𝑖(𝑛𝑥−𝑛3𝑡)

⃒⃒⃒⃒
⃒⃒ ≤

≤ 1

2𝜋

⃒⃒⃒⃒
⃒⃒𝑇𝑁 (𝑥, 𝑡)

𝑁
−

𝑁∫︁
𝑀

𝑇𝑠(𝑥, 𝑡)

𝑠2
𝑑𝑠

⃒⃒⃒⃒
⃒⃒ = 𝑜(1).

Отсюда по критерию Коши следует сходимость ряда 𝑢(𝑥, 𝑡) при иррациональном 𝑥.
Пусть далее 𝑥 = 𝑝

𝑞 , (𝑝, 𝑞) = 1, — рациональное число. Рассмотрим решение 𝑢(𝑥, 𝑡) в окрест-

ности точки (𝑥, 𝑡) = (𝑝𝑞 ,
𝑝1
𝑞1

), (𝑝1, 𝑞1) = 1. Покажем, что в этой точке функция 𝑢(𝑥, 𝑡) имеет

разрыв первого рода. Для этого найдем предел при Δ𝑥 → 0 справа и слева к точке 𝑥 = 𝑝
𝑞 .

Получим

𝑢(𝑥+ Δ𝑥, 𝑡) = lim
𝑁→∞

∑︁
1≤|𝑛|≤𝑁

1

2𝜋𝑖𝑛
𝑒2𝜋𝑖(𝑛(𝑥+Δ𝑥)−𝑛3𝑡) =

= lim
𝑁→∞

∑︁
1≤𝑛≤𝑁

1

2𝜋𝑖𝑛

(︁
𝑒2𝜋𝑖(𝑛(𝑥+Δ𝑥)−𝑛3𝑡) − 𝑒−2𝜋𝑖(𝑛(𝑥+Δ𝑥)−𝑛3𝑡)

)︁
=

= lim
𝑁→∞

1

𝜋

⎛⎝𝑇𝑁 (𝑥+ Δ𝑥, 𝑡)

𝑁
−

𝑁∫︁
𝑀

𝑇𝑠(𝑥+ Δ𝑥, 𝑡)

𝑠2
𝑑𝑠

⎞⎠ ,

где

𝑇𝑠(𝑣, 𝑡) =
∑︁

0<𝑛≤𝑠

sin 2𝜋(𝑛𝑣 − 𝑛3𝑡).

Преобразуем сумму 𝑇𝑠(𝑥+Δ𝑥, 𝑡) в точке (𝑝𝑞 ,
𝑝1
𝑞 ), представляя 𝑛 ≤ 𝑠 в виде 𝑛 = 𝑞𝑚+𝑙, 1 ≤ 𝑙 ≤ 𝑞,

(1− 𝑙)𝑞−1 ≤ 𝑚 ≤ (𝑠− 𝑙)𝑞−1. Находим

𝑇𝑠(𝑥+ Δ𝑥, 𝑡) =

𝑞∑︁
𝑙=1

∑︁
(−𝑙)𝑞−1≤𝑚≤(𝑠−𝑙)𝑞−1

sin 2𝜋

(︂
𝑝𝑙 − 𝑝1𝑙3

𝑞
+ (𝑞𝑚+ 𝑙)Δ𝑥

)︂
=

=

𝑞∑︁
𝑙=1

sin

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂ ∑︁
(−𝑙)𝑞−1≤𝑚≤(𝑠−𝑙)𝑞−1

cos (2𝜋Δ𝑥(𝑞𝑚+ 𝑙)) +

+

𝑞∑︁
𝑙=1

cos

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂ ∑︁
(−𝑙)𝑞−1≤𝑚≤(𝑠−𝑙)𝑞−1

sin (2𝜋Δ𝑥(𝑞𝑚+ 𝑙)) +𝑂(𝑞).
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Отсюда по лемме 3 имеем

𝑇𝑠(𝑥+ Δ𝑥, 𝑡) =
𝑠

𝑞

𝑞∑︁
𝑙=1

sin

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂ 1∫︁
0

cos (2𝜋𝑦Δ𝑥) 𝑑𝑦+

+
𝑠

𝑞

𝑞∑︁
𝑙=1

cos

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂ 1∫︁
0

sin (2𝜋𝑦Δ𝑥) 𝑑𝑦 +𝑂(𝑞) =

= −𝑠
𝑞

sin(2𝜋Δ𝑥)

2𝜋Δ𝑥

𝑞∑︁
𝑙=1

sin

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂
−

−𝑠
𝑞

1− cos(2𝜋Δ𝑥)

2𝜋Δ𝑥

𝑞∑︁
𝑙=1

cos

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂
+𝑂(𝑞).

Поскольку
𝑞∑︁

𝑙=1

sin

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂
= 0,

получим

𝑇𝑠(𝑥+ Δ𝑥, 𝑡) = −𝑠
𝑞

sin2(𝜋Δ𝑥)

𝜋Δ𝑥

𝑞∑︁
𝑙=1

cos

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂
+𝑂(𝑞).

Далее
𝑞∑︁

𝑙=1

cos

(︂
2𝜋
𝑝𝑙 − 𝑝1𝑙3

𝑞

)︂
̸= 0,

следовательно,

lim
Δ𝑥→0−

𝑇𝑠

(︂
𝑝

𝑞
+ Δ𝑥,

𝑝1
𝑞

)︂
= − lim

Δ𝑥→0+
𝑇𝑠

(︂
𝑝

𝑞
+ Δ𝑥,

𝑝1
𝑞

)︂
т.е. левосторонний предел не равен правостороннему пределу и функция

𝑓(Δ𝑥) = 𝑇𝑠

(︂
𝑝

𝑞
+ Δ𝑥,

𝑝1
𝑞

)︂
имеет в рассматриваемой точке разрыв первого рода.

Теорема доказана.2

2. Заключение

После завершения доказательства утверждения теоремы приведем слова Л.Г. Архиповой
к 80-летию со дня рождения Г.И.Архипова. “Посвящается моему дорогому отцу, который ин-
тересовался всем на свете и знал всё обо всём, мог просто и понятно ответить на любые
вопросы. Любимым занятием для него всегда была математика, а теорию чисел он называл её
венцом. Всю жизнь он старался вовлечь в свою науку всех, с кем общался, и щедро раздавал
свои знания всем, кто был готов их принять, превращая математику в красивое и интересное
занятие”.
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Abstract

This work is devoted to studying the properties of the method of the constructed function
𝜙𝜎(𝑦, 𝑥), which is defined in the infinite domain D of three-dimensional Euclidean space. In this
work, we prove results that allow us to assert the boundedness of a biharmonic function inside
a certain three-dimensional region if it is bounded with its normal derivative at the boundaries
of this region.
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1. Введение

Постановка задачи. В данной работе рассматривается следующая задача: Дана беско-
нечная область 𝐷 двухмерного пространство и бигармоническая в 𝐷 функция 𝑢(𝑃 ), непре-
рывная вплоть до границы со своими производными до третьего порядка. Требуется показать,
что если функция 𝑢(𝑃 ), ее нормальная производная, лапласиан функции и нормальная про-
изводная этого лапласиана ограничены на границе 𝐷 и 𝑢(𝑃 ) неограниченна внутри, то при
𝑃 −→ ∞ она должна расти внутри 𝐷 со скоростью, не меньшей некоторой предельной, и
оценить эту предельную скорость роста.

В работах М.А.Евграфова [1] , И.А.Чегиса [2], Аршон И.С. [3], Евграфов М.А. [4], [5],
Леоньтев А.Ф. [6] получены теоремы типа Фрагмена Линделефа. Для гармонических функций
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это задача была предметом исследования в трехмерном пространстве М.А.Евграфова [1] ,
И.А.Чегиса [2], в произвольном m-мерным Евклидовом пространстве Ш.Ярмухамедовым [7],
З.Р.Ашуровой [8], [9], Н.Жураевой [10], У.Жураевойи др.

Если рассматривать задачу по заданным на части границы граничным значениям вос-
становить ее значения всюду внутри области, при произвольных начальных данных задача
неразрешима. Если граница и начальные данные аналитичны и можно аналитически продол-
жить во внутрь области, то продолжение существует и единственно, но не устойчиво. Поэтому
оно относится к числу некорректно поставленных задач. В 1926 году Карлеман построил ин-
тегральную формулу для класса ограниченных функций. Им было предложена идея введения
в интегральную формулу Коши дополнительной функции, зависящей от положительного па-
раметра и позволяющей путем предельного перехода, погасить влияние интегралов по части
границы, где значение продолжаемой функции не задано, исследования Т.Карлемана в тече-
ние долгого времени не имело продолжения. Однако неустойчивые задачи, часто возникали
в приложениях [11]. В 1943 году А. Н. Тихонову удалось [12] выяснить истинную природу
некорректных задач. Он указал на практическую важность неустойчивых задач и показал,
что если сузить класс возможных решений до компакта, то задача становится устойчивой.
Основываясь на этих исследованиях, М.М.Лаврентьев [13] ввел важное понятие - функцию
Карлемана и с ее помощью построил регуляризацию решения задачи.
Определение. Функция Φ𝜎(𝑦, 𝑥), зависящая от параметра 𝜎 > 0 и определенная при 𝑦 ̸= 𝑥,
называется функцией Карлемана для точки 𝑥 ∈ 𝐷 и части 𝜕𝐷 ∖ 𝑆, если она удовлетворяет
следующим условиям:

1.Функция Φ𝜎(𝑦, 𝑥) представима в виде:

Φ𝜎(𝑦, 𝑥) =

{︂
𝐶𝑛,𝑚𝑟

2𝑛−𝑚 ln 𝑟 +𝐺𝜎(𝑦, 𝑥), 2𝑛 ≥ 𝑚,𝑚− чётное число,
𝐶𝑛,𝑚𝑟

2𝑛−𝑚 +𝐺𝜎(𝑦, 𝑥), в остальных случаях,

где

𝐶𝑛,𝑚 = (−1)
𝑚
2
−1(Γ(𝑛− 𝑚

2
)22𝑛−1𝜋

𝑚
2 Γ(𝑛))−1,

и 𝐺𝜎(𝑦, 𝑥) регулярная по переменному 𝑦 и непрерывно дифференцируема на 𝐷 ∪ 𝜕𝐷 = 𝐷,
решения полигармонического уравнения.

2. При фиксированном 𝑥 ∈ 𝐷 функция Φ𝜎(𝑦, 𝑥) удовлетворяет неравенству

𝑛−1∑︁
𝑘=0

∫︁
𝜕𝐷∖𝑆

(|Δ𝑘Φ𝜎(𝑦, 𝑥)| − |𝜕Δ𝑘Φ𝜎(𝑦, 𝑥)

𝜕𝑛
|)𝑑𝑠𝑦 ≤ 𝐶(𝑥)𝜀(𝜎),

где постоянная 𝐶(𝑥) зависит от 𝑥 и 𝑛 -направленная внешняя нормаль к 𝜕𝐷, 𝜀(𝜎)→ 0, когда
𝜎 →∞.

С помощью методы и идеи М.М.Лаврентьева, Ш. Ярмухамедов в работе [14] впервые пред-
лагает метод построения семейства фундаментальных решений уравнения Лапласа, исчезаю-
щего в пределе вместе со своими производными любого порядка вне произвольного фиксиро-
ванного конуса.

Один из результатов Ш. Ярмухамедова: Для неограниченной односвязной области где 𝐷
полупространство 𝑦𝑚 > 0, положим

𝐵𝜌(𝐷) = {𝑢(𝑦) : 𝑢(𝑦) ∈ 𝐴(𝐷), |𝑢(𝑦)|+ |𝑔𝑟𝑎𝑑𝑢(𝑦)| ≤ 𝑒𝑥𝑝|𝑦|𝜌, 𝜌 < 1, 𝑦 ∈ 𝐷}.

Теорема. Пусть для функции 𝑢(𝑦) ∈ 𝐵𝜌(𝐷) в любой точке, где 𝐷 полупространство 𝑦𝑚 > 0
выполняется неравенства:∫︁

𝜕𝐷

|𝑢(𝑦)|𝑑𝑠
1 + |𝑦|𝑚

<∞,
∫︁
𝜕𝐷
|𝜕𝑢
𝜕𝑛
| 𝑑𝑠

1 + |𝑦|𝑚−1
<∞.
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Тогда ∀𝑥0 ∈ 𝐷, имеет место равенство:

𝑢(𝑥0) = 𝐶

∫︁
𝜕𝐷

𝑢(𝑦)𝑑𝑠

𝑟𝑚
.

Теорема. Пусть для функции 𝑢(𝑦) ∈ 𝐵𝜌(𝐷) в любой точке, где 𝐷 полупространство
𝑦𝑚 > 0.Если выполнены условия

𝑢(𝑦) = 0,
𝜕𝑢(𝑦)

𝜕𝑛
→ 0, 𝑦 →∞, ∀𝑦 ∈ 𝜕𝐷,

то 𝑢(𝑥) ≡ 0.

Е.М.Ландис паставил задачу в виде: Пусть в цилиндре 0 ≤
∑︀𝑛−1

𝑘=0 𝑥
2
𝑖 < 1 расположена об-

ласть, уходящая в бесконечность (в одну или в оба стороны – все равно) в граница Γ этой
области как угодно гладка [11]. Пусть в области определено решение и уравнениеΔΔ𝑢 = 0как
угодно гладкое вплоть до границы и 𝑢|Γ = 0, 𝜕𝑢

𝜕𝑛 |Γ = 0. Следует ли отсюда, что неограниченно
(экспоненциально растет при уходе на бесконечность).Для того чтобы решить эту задачу ис-
пользуем, решая задачу о продолжении бигармонической функции во внутрь области, когда
на границе области задаются значения лапласианов этой функции до (n-1)го порядка, а также
нормальная производная от этих лапласианов и получим оценки роста этой функции. Полу-
ченные результаты в данной работе в некотором смысле является ответом на задачу постав-
ленном Е.М.Ландисом. В 2009 году Н.Ю. Жураева получила регуляризацию и разрешимость
задачи Коши для полигармонических уравнений порядка 𝑛 в некоторых неограниченных об-
ластях (при произвольных нечетных 𝑚 и четных 𝑚 когда 2𝑛 < 𝑚). В работе [15] построена
функция Карлемана для полигармонических уравнений порядка 𝑛 в некоторых неограничен-
ных областях лежащих в 𝑅𝑚 при четных 𝑚, когда 2𝑛 ≥ 𝑚. У.Ю.Жураевой были доказаны
теоремы типа Фрагмена-Линделефа в работах [16], [17], [18]. Позже совместно У.Жураева и
Ф.Маллаева получили результаты :

Теорема.Пусть функция 𝑢(𝑦) бигармоническая функция определенных в области𝐷 ⊂ 𝑅3,
где 𝐷 = {𝑦 : 𝑦 = (𝑦1, 𝑦2, 𝑦3), 𝑦3 > 0}. Если выполнено условие

1∑︁
𝑘=0

(|Δ𝑘𝑢(𝑦)|+ |𝑔𝑟𝑎𝑑Δ1−𝑘𝑢(𝑦)|) ⩽ 𝑐0𝑒𝑥𝑝|𝑦|𝜌2 , 𝑦 ∈ 𝐷, (1)

и в любой точке 𝑦 ∈ 𝜕𝐷 выполняется неравенство:

|Δ𝑘𝑢(𝑦)|+ |Δ
𝑘𝑢(𝑦)

𝜕𝑛
| < 𝑐0,∀𝑘 ∈ {0, 1},

∀𝑦 ∈ 𝜕𝐷 выполнено условие роста Δ𝑘𝑢(𝑦) → 0, 𝜕Δ𝑘𝑢(𝑦)
𝜕𝑛 → 0, ∀𝑘 ∈ {0, 1, 2}, ∀𝑦 ∈ 𝜕𝐷, тогда

∀𝑥 ∈ 𝐷 справедливо 𝑢(𝑥) = 0.

2. Основные результаты.

Работа посвящена теореме типа Фрегмена-Линделефа для бигармонических функций опре-
деленных в области 𝐷 ⊂ 𝑅3, где D-неограничанная область лежащая {𝑦3 > 0}, с границей
𝜕𝐷 , где 𝜕𝐷- внутри некоторого шара (предположим шара: 𝐾(0, 𝑃 ) радиуса 𝑃 c центром в
(0, 0, 0), 𝐷𝑃 = 𝐷 ∩𝐾(0, 𝑃 )) удовлетворяет условию Ляпунова, а вне шара ее можно предста-
вить как, 𝑦3 = 𝑓(𝑦1, 𝑦2) -непрерывная функция, имеющая непрерывная ограниченные частные
производные первого порядка.
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Функции 𝜙𝜎(𝑦, 𝑥) и Φ𝜎(𝑦, 𝑥) при 𝑠 > 0, 𝜎 > 0 определим следующими равенствами:

𝑐0𝜙𝜎 (𝑦, 𝑥) =

∫︁ ∞

0
𝐼𝑚

⎡⎢⎣ 𝑒𝑥𝑝
[︁
−𝜎
(︁
𝑖
√
𝑠+ 𝑢2 + 𝑦3 + 1

)︁𝜌1]︁
(︁
𝑖
√
𝑠+ 𝑢2 + 𝑦3 − 𝑥3

)︁(︁
𝑖
√
𝑠+ 𝑢2 + 𝑦3 + 𝑥3

)︁2
⎤⎥⎦ 𝑑𝑢√

𝑢2 + 𝑠
, (2)

Φ𝜎(𝑦, 𝑥) = 𝑐0𝑟
2𝜙𝜎(𝑦, 𝑥) (3)

где 𝑥 = (𝑥1;𝑥2;𝑥3), 𝑦 = (𝑦1; 𝑦2; 𝑦3), 𝑟 = |𝑦−𝑥|, 𝑠 = 𝛼2 = (𝑦1−𝑥1)2+(𝑦2−𝑥2)2, 𝑟12 = 𝑠+(𝑦3+𝑥3)
2,

𝜎 > 0, 𝑦3 > 0, 0 < 𝜌1 < 1, в дальнейшем обозначим через 𝑐0 –постоянные числа не зависящая
от𝑦.

Лемма 1. Функция 𝜙𝜎(𝑦, 𝑥), определенная в области 𝐷 ⊂ 𝑅3, будет гармонической функ-
цией по переменной у при 𝛼 > 0.

Теорема 1. Функция 𝜙𝜎(𝑦, 𝑥) определенная формулой (2), имеет вид

𝜙𝜎(𝑦, 𝑥) = 𝑐0

∫︁ ∞

0

(((𝑦3 + 𝑥3)
2 − (𝑢2 + 𝑠)) + 2(𝑦3 − 𝑥3)(𝑦3 + 𝑥3))𝑐𝑜𝑠(𝜎𝜆)

(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)
𝑑𝑢

+𝑐0

∫︁ ∞

0

[(𝑦3 − 𝑥3)((𝑦3 + 𝑥3)
2 − 𝜂2)− (𝑦3 + 𝑥3)

2 − 𝜂2]𝑠𝑖𝑛(𝜎𝜆)

(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)

𝑑𝑢

𝜂
,

где

𝐴1 = |(𝑦3 + 1)2 + 𝑢2 + 𝑠|
𝜌1
2 𝑐𝑜𝑠(𝜎𝜌1𝑎𝑟𝑐𝑡𝑔

√
𝑢2 + 𝑠

𝑦3 + 1
),

𝜆 = |(𝑦3 + 1)2 + 𝑢2 + 𝑠|
𝜌1
2 𝑠𝑖𝑛(𝜎𝜌1𝑎𝑟𝑐𝑡𝑔

√
𝑢2 + 𝑠

𝑦3 + 1
),

𝜂 =
√︀
𝑢2 + 𝑠.

Теорема 2. Функцию Φ𝜎(𝑦, 𝑥) можно представит в виде

Φ𝜎(𝑦, 𝑥) = 𝑐0𝑟 + 𝑐0𝑟
2𝐺𝜎(𝑦, 𝑥)

и она является бигармонической.

Теорема 3. Для функции Φ𝜎(𝑦, 𝑥) справедлива оценка

|Φ𝜎(𝑦, 𝑥)| ⩽ 𝑐0
𝑟2

𝛼𝑟21𝑒𝑥𝑝(𝜎𝐴)

где

𝐴 = |(𝑦3 + 1)2 + 𝑠|
𝜌1
2 𝑐𝑜𝑠

(︃
𝜎𝜌1𝑎𝑟𝑐𝑡𝑔

𝑠
1
2

(𝑦3 + 1)

)︃
Доказательство:

Для функции 𝜙𝜎(𝑦, 𝑥), определяемой условией (1) доказываем, что имеет место неравен-
ство

|𝜙𝜎(𝑦, 𝑥)| ⩽ 𝑐0
𝛼𝑟21𝑒𝑥𝑝(𝜎𝐴)

Действительно,
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𝜙𝜎(𝑦, 𝑥) = 𝑐𝑜

∫︁ ∞

0
𝐼𝑚

1

(𝑦3 − 𝑥3 + 𝑖
√
𝑢2 + 𝛼2)(𝑦3 + 𝑥3 + 𝑖

√
𝑢2 + 𝛼2)2𝑒𝑥𝑝(𝜎(𝜔 + 1)𝜌1)

𝑑𝑢√
𝑢2 + 𝛼2

,

и

𝑒𝑥𝑝((𝑦3 + 1) + 𝑖
√︀
𝑢2 + 𝑠)𝜌1 =

= 𝑒𝑥𝑝𝜎

(︂
|𝑦3 + 1 + 𝑖

√︀
𝑢2 + 𝑠|

𝜌1
2 𝑐𝑜𝑠(𝜎𝜌1𝑎𝑟𝑐𝑡𝑔

√
𝑢2 + 𝑠

𝑦3 + 1
)𝑒𝑥𝑝𝑖

(︂
|𝑦3 + 1 + 𝑖

√︀
𝑢2 + 𝑠|

𝜌1
2 𝑠𝑖𝑛(𝜎𝜌1𝑎𝑟𝑐𝑡𝑔

√
𝑢2 + 𝑠

𝑦3 + 1
)

)︂)︂
.

Учитывая 𝑐𝑜𝑠(𝜎𝜌1𝑎𝑟𝑐𝑡𝑔
√
𝑢2+𝑠
𝑦3+1 ) ⩾ 𝛿0 > 0, и обозначения 𝜂, 𝜆,𝐴1 тогда функцию 𝜙𝜎(𝑦, 𝑥) можно

переписать в виде

𝜙𝜎(𝑦, 𝑥) = 𝑐0

∫︁ ∞

0

[(𝑦3 − 𝑥3)((𝑦3 + 𝑥3)
2 − 𝜂2)− (𝑦3 + 𝑥3)

2 − 𝜂2]𝑠𝑖𝑛(𝜎𝜆)

(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)

𝑑𝑢

𝜂
+

+𝑐0

∫︁ ∞

0

[((𝑦3 + 𝑥3)
2 − 𝜂2) + 2(𝑦3 − 𝑥3)(𝑦3 + 𝑥3)]

(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2
𝑐𝑜𝑠𝜎𝜆𝑑𝑢

𝑒𝑥𝑝(𝜎𝐴1)
.

Введём обозначения 𝜙𝜎 = 𝜑1 + 𝜑2, где

𝜑1 = 𝑐0

∫︁ ∞

0

[(𝑦3 − 𝑥3)((𝑦3 + 𝑥3)
2 − 𝜂2)− (𝑦3 + 𝑥3)

2 − 𝜂2]𝑠𝑖𝑛𝜎𝜆
(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)

𝑑𝑢

𝜂
,

𝜑2 = 𝑐0

∫︁ ∞

0

[((𝑦3 + 𝑥3)
2 − 𝜂2) + 2(𝑦3 − 𝑥3)(𝑦3 + 𝑥3)]

(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2
𝑐𝑜𝑠𝜎𝜆𝑑𝑢

𝑒𝑥𝑝(𝜎𝐴1)
,

𝜑1 = 𝐹1 − 𝐹2,

𝐹1 = 𝑐𝑜

∫︁ ∞

0

(𝑦3 − 𝑥3)((𝑦3 + 𝑥3)
2 − 𝜂2)𝑠𝑖𝑛𝜎𝜆

(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)

𝑑𝑢

𝜂
,

𝐹2 = 𝑐𝑜

∫︁ ∞

0

((𝑦3 + 𝑥3)
2 + 𝜂2)𝑠𝑖𝑛𝜎𝜆

(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)

𝑑𝑢

𝜂
.

Точно также имеем

|𝐹1| ⩽
⃒⃒⃒⃒∫︁ ∞

0

𝑠𝑖𝑛𝜎𝜆√
𝑢2 + 𝑠𝑒𝑥𝑝{𝜎𝐴1}

(𝑦3 + 𝑥3)
2

(𝑢2 + 𝑟21)2
(𝑦3 − 𝑥3)𝑑𝑢
(𝑢2 + 𝑟2)

⃒⃒⃒⃒

+

⃒⃒⃒⃒∫︁ ∞

0

𝑠𝑖𝑛𝜎𝜆√
𝑢2 + 𝑠𝑒𝑥𝑝(𝜎𝐴1)

(𝑢2 + 𝑠2)

(𝑢2 + 𝑟21)2
(𝑦3 − 𝑥3)𝑑𝑢
(𝑢2 + 𝑟2)

⃒⃒⃒⃒
⩽

⩽
𝑐0

𝛼𝑟21𝑒𝑥𝑝(𝜎𝐴)
.

|𝐹2| =
⃒⃒⃒⃒
𝑐𝑜

∫︁ ∞

0

((𝑦3 + 𝑥3)
2 + 𝜂2)𝑠𝑖𝑛𝜎𝜆

(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)

𝑑𝑢

𝜂

⃒⃒⃒⃒
⩽

𝑐0
𝛼𝑟21𝑒𝑥𝑝(𝜎𝐴)

,

𝜑2 = 𝐹3 + 𝐹4,

𝐹3 = 𝑐𝑜

∫︁ ∞

0

((𝑦3 + 𝑥3)
2 − 𝜂2)𝑐𝑜𝑠𝜎𝜆𝑑𝑢

(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)
, 𝐹4 = 𝑐0

∫︁ ∞

0

2(𝑦3 + 𝑥3)(𝑦3 − 𝑥3)𝑐𝑜𝑠(𝜎𝜆)𝑑𝑢

(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)
,
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|𝐹3| =
⃒⃒⃒⃒
𝑐𝑜

∫︁ ∞

0

((𝑦3 + 𝑥3)
2 − 𝜂2)𝑐𝑜𝑠𝜆𝑑𝑢

(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)

⃒⃒⃒⃒
⩽

⩽

⃒⃒⃒⃒
𝑐𝑜

∫︁ ∞

0

(𝑦3 + 𝑥3)
2

(𝑢2 + 𝑟21)2
𝑐𝑜𝑠𝜆

𝑒𝑥𝑝{𝜎𝐴1}
𝑑𝑢

(𝑢2 + 𝑟2)

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑐𝑜

∫︁ ∞

0

𝑐𝑜𝑠𝜆

𝑒𝑥𝑝(𝜎𝐴1)

𝑑𝑢

(𝑢2 + 𝑟2)

𝜂2

(𝑢2 + 𝑟21)2

⃒⃒⃒⃒
⩽

𝑐0
𝑟𝑟21𝑒𝑥𝑝(𝜎𝐴)

,

|𝐹4| =
⃒⃒⃒⃒
𝑐𝑜

∫︁ ∞

0

2(𝑦3 + 𝑥3)(𝑦3 − 𝑥3)𝑐𝑜𝑠𝜎𝜆𝑑𝑢
(𝑢2 + 𝑟2)(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)

⃒⃒⃒⃒
⩽

⩽ 𝑐0

∫︁ ∞

0

⃒⃒⃒⃒
(𝑦3 + 𝑥3)𝑐𝑜𝑠𝜆

(𝑢2 + 𝑟21)2𝑒𝑥𝑝(𝜎𝐴1)

2(𝑦3 − 𝑥3)
(𝑢2 + 𝑟2)

⃒⃒⃒⃒
⩽

𝑐0
𝑟31𝑒𝑥𝑝(𝜎𝐴)

.

Поэтому для |𝜙𝜎(𝑦;𝑥)| получим оценку

|𝜙𝜎(𝑦;𝑥)| ⩽ 𝑐0
𝛼𝑟21𝑒𝑥𝑝(𝜎𝐴)

+
𝑐0

𝛼𝑟21𝑒𝑥𝑝(𝜎𝐴)
+

𝑐0
𝑟𝑟21𝑒𝑥𝑝(𝜎𝐴)

+
𝑐0

𝑟31𝑒𝑥𝑝(𝜎𝐴)
⩽

𝑐0
𝛼𝑟21𝑒𝑥𝑝(𝜎𝐴)

.

Теорема 4. Пусть 𝑛- внешняя нормаль к границе 𝜕𝐷. Тогда для функции Φ𝜎(𝑦, 𝑥) спра-
ведливы неравенства:

|𝜕Φ𝜎(𝑦, 𝑥)

𝜕𝑦𝑖
| ⩽ (1 +

1

𝛼𝑟
+
𝑟

𝛼
+

𝑟

𝛼2
)

𝑐0
𝑟21𝑒𝑥𝑝(𝜎𝐴)

, 𝑖 = 1, 2

|𝜕Φ𝜎(𝑦, 𝑥)

𝜕𝑦3
| ⩽ (1 +

1

𝛼𝑟
+
𝑟

𝛼
+

𝑟

𝛼2
)

𝑐0
𝑟21𝑒𝑥𝑝(𝜎𝐴)

,

|𝜕Φ𝜎(𝑦, 𝑥)

𝜕𝑛
| ⩽ (1 +

1

𝛼2
+

1

𝛼𝑟
+
𝑟

𝛼
+

𝑟

𝛼2
+
𝑟2

𝛼2
)

𝑐0
𝑟21𝑒𝑥𝑝(𝜎𝐴)

.

Доказательство: Обозначим 𝐴3 = 𝐴𝑘
3 +𝐴3

3 = 𝐴𝑘
3, так как 𝐴

3
3 = 0. Для 𝐴𝑘

3 имеем:

𝐴𝑘
3 =

∫︁ ∞

0
𝜓2(𝑦;𝑥)𝜓3(𝑦;𝑥)𝜓4(𝑦;𝑥)

𝜕𝜓3(𝑦;𝑥)

𝜕𝑦𝑘
𝑑𝑢, 𝑘 = 1, 2.

Для 𝐴3
3:

𝐴3
3 =

∫︁ ∞

0
𝜓2(𝑦;𝑥)𝜓3(𝑦;𝑥)𝜓4(𝑦;𝑥)

𝜕𝜓3(𝑦;𝑥)

𝜕𝑦3
𝑑𝑢.

Поскольку 𝐴3
3 = 0, мы сосредоточимся на оценке 𝐴𝑘

3. Для модуля |𝐴𝑘
3| получаем:

|𝐴𝑘
3| =

𝑐0
exp(𝜎𝐴)

⃒⃒⃒⃒∫︁ ∞

0

(𝑦𝑘 − 𝑥𝑘) 𝑑𝑢

(𝑖
√
𝑢2 + 𝑠+ 𝑦3 − 𝑥3)(𝑖

√
𝑢2 + 𝑠+ 𝑦3 + 𝑥3)2(𝑢2 + 𝑠)3/2

⃒⃒⃒⃒
.

С использованием дополнительных оценок интеграла:

|𝐴𝑘
3| ⩽

𝑐0
exp(𝜎𝐴)

⃒⃒⃒⃒∫︁ ∞

0

(𝑦𝑘 − 𝑥𝑘)√
𝑢2 + 𝑠

1

(𝑢2 + 𝑠)

1

(𝑢2 + 𝑟21)2
𝑑𝑢

(𝑢2 + 𝑟2)

⃒⃒⃒⃒
⩽

1

𝛼2𝑟

𝑐0
exp(𝜎𝐴)

, 𝑘 = 1, 2.

Теперь обозначим 𝐴𝑘
4 следующим образом:

𝐴𝑘
4 =

∫︁ ∞

0
𝜓1(𝑦;𝑥)𝜓2(𝑦;𝑥)𝜓3(𝑦;𝑥)

𝜕𝜓4(𝑦;𝑥)

𝜕𝑦𝑘
𝑑𝑢, 𝑘 = 1, 2,
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и аналогично для 𝐴3
4:

𝐴3
4 =

∫︁ ∞

0
𝜓1(𝑦;𝑥)𝜓2(𝑦;𝑥)𝜓3(𝑦;𝑥)

𝜕𝜓4(𝑦;𝑥)

𝜕𝑦3
𝑑𝑢.

Суммарно 𝐴4 = 𝐴𝑘
4 +𝐴3

4. Для вычислений нам потребуются выражения для производных:

𝜕𝜓4(𝑦;𝑥)

𝜕𝑦𝑘
= −𝜌1𝜎𝑖(𝑦𝑘 − 𝑥𝑘) exp

(︁
−𝜎(

√︀
𝑢2 + 𝑠+ 𝑦3 + 1)𝜌1

)︁
(𝑢2 + 𝑠)−1/2,

𝜕𝜓4(𝑦;𝑥)

𝜕𝑦3
= 𝜌1𝜎𝑖 exp

(︁
−𝜎(

√︀
𝑢2 + 𝑠+ 𝑦3 + 1)𝜌1

)︁
𝜎(
√︀
𝑢2 + 𝑠+ 𝑦3 + 1)𝜌1−1,

где 𝜌1 − 1 < 0.
Теперь оценим эти интегралы. Для |𝐴𝑘

4|:

|𝐴𝑘
4| ⩽

𝑐0𝜌1𝜎

exp(𝜎𝐴)

⃒⃒⃒⃒∫︁ ∞

0

(𝑦𝑘 − 𝑥𝑘)

(𝑢2 + 𝑠)

1

(𝑢2 + 𝑟21)2
𝑑𝑢

(𝑢2 + 𝑟2)

⃒⃒⃒⃒
⩽

1

𝛼2

𝑐0
exp(𝜎𝐴)

, 𝑘 = 1, 2.

Для |𝐴3
4|:

|𝐴3
4| ⩽

𝑐0𝜌1𝜎

exp(𝜎𝐴)

⃒⃒⃒⃒∫︁ ∞

0

1

(𝑢2 + 𝑠)

1

(𝑢2 + 𝑟21)2
1

(𝑢2 + 𝑠+ (𝑦3 + 1)2)

𝑑𝑢

(𝑢2 + 𝑟2)

⃒⃒⃒⃒
⩽

1

𝛼2𝑟

𝑐0
exp(𝜎𝐴)

.

Объединяя оценки, получаем:

4∑︁
𝑖=1

|𝐴𝑘
𝑖 | ⩽

(︂
1

𝛼2𝑟2
+

1

𝛼2
+

1

𝛼2𝑟

)︂
𝑐0

exp(𝜎𝐴)
, 𝑘 = 1, 2,

4∑︁
𝑖=1

|𝐴3
𝑖 | ⩽

(︂
1

𝛼𝑟3
+

1

𝛼2𝑟
+

1

𝛼𝑟

)︂
𝑐0

exp(𝜎𝐴)
.

Для производной 𝜕𝜑𝜎(𝑦;𝑥)
𝜕𝑛 справедливо:

𝜕𝜑𝜎(𝑦;𝑥)

𝜕𝑛
=
𝜕𝜑𝜎(𝑦;𝑥)

𝜕𝑦1
cos𝛼+

𝜕𝜑𝜎(𝑦;𝑥)

𝜕𝑦2
cos𝛼2 +

𝜕𝜑𝜎(𝑦;𝑥)

𝜕𝑦3
cos𝛼3.

Используя неравенство⃒⃒⃒⃒
𝜕𝜑𝜎(𝑦;𝑥)

𝜕𝑛

⃒⃒⃒⃒
≤
⃒⃒⃒⃒
𝜕𝜑𝜎(𝑦;𝑥)

𝜕𝑦1

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝜕𝜑𝜎(𝑦;𝑥)

𝜕𝑦2

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝜕𝜑𝜎(𝑦;𝑥)

𝜕𝑦3

⃒⃒⃒⃒
,

и формулу (3) получаем утверждение теоремы.
Теорема 5. Для функции Φ(𝑦, 𝑥) имеет место оценка

|ΔΦ𝜎(𝑦, 𝑥)| ⩽ (1 +
1

𝛼
+

1

𝛼2
+

1

𝛼𝑟
+

1

𝛼𝑟2
)

𝑐0
𝑟21𝑒𝑥𝑝(𝜎𝐴)

.

Лемма 2. Для функции Φ(𝑦, 𝑥) справедливы неравенства:

|𝜕ΔΦ𝜎(𝑦, 𝑥)

𝜕𝑦𝑘
| ⩽ (1+

1

𝛼𝑟4
+

1

𝛼2𝑟
+

1

𝛼2𝑟2
+

1

𝛼2𝑟3
+

1

𝛼
+

1

𝛼2
+

1

𝛼3
+

1

𝛼4
+
𝑟

𝛼
+

𝑟

𝛼2
)

𝑐0
𝑟41𝑒𝑥𝑝(𝜎𝐴)

, 𝑘 = 1, 2,

|𝜕ΔΦ𝜎(𝑦, 𝑥)

𝜕𝑦3
| ⩽ (1 +

1

𝛼𝑟3
+

1

𝛼𝑟
+

1

𝛼2𝑟
+

1

𝛼𝑟4
+

1

𝛼
+

1

𝛼2
)

𝑐0
𝑟41𝑒𝑥𝑝(𝜎𝐴)

,
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|𝜕ΔΦ𝜎(𝑦, 𝑥)

𝜕𝑛
| ⩽ (1+

1

𝛼𝑟3
+

1

𝛼𝑟
+

1

𝛼𝑟4
+

1

𝛼2𝑟
+

1

𝛼2𝑟2
+

1

𝛼2𝑟3
+

1

𝛼
+

1

𝛼2
+

1

𝛼3
+

1

𝛼4
+
𝑟

𝛼
+
𝑟

𝛼2
)

𝑐0
𝑟41𝑒𝑥𝑝(𝜎𝐴)

.

Теорема 6. Функция Φ𝜎(𝑦, 𝑥) зависящая от параметра 𝜎 > 0, определенная формулой
(2), при 𝑦 ̸= 𝑥 является функцией Карлемана для точки 𝑥 ∈ 𝐷 и части 𝜕𝐷∫︁

𝜕𝐷

(︂
|Φ𝜎(𝑦, 𝑥)|+ |𝜕Φ𝜎(𝑦, 𝑥)

𝜕𝑛
|+ |ΔΦ𝜎(𝑦, 𝑥)|+ |𝜕ΔΦ𝜎(𝑦, 𝑥)

𝜕𝑛
|
)︂
|𝑑𝑠| ⩽ 𝐶(𝑥)𝜀(𝜎)

где постоянная C(x) зависит от x и 𝑛 внешняя нормаль к границе 𝜕𝐷, 𝜀(𝜎)�0 когда 𝜎
� ∞.

Доказательство:

Так как поверхность 𝜕𝐷𝑃 , поверхность Ляпунова, т.е в каждой точке 𝑀 ∈ 𝜕𝐷𝑃 ,𝑀 =
= (𝑦1, 𝑦2, 𝑦3) существует определенная касательная плоскость и следовательно нормаль;
существует такое число 𝑟 > 0 , одно и то же для всех точек 𝜕𝐷𝑃 , что если взять
часть поверхности 𝜕𝐷𝑃 , попавшую внутрь сферы Ляпунова с центром в любой точке
𝑀0 ∈ 𝜕𝐷𝑃 ,𝑀0 = (𝑦01, 𝑦02, 𝑦03) радиуса r , то прямые , параллельные нормали к 𝜕𝐷𝑃 , в точке𝑦0,
встречают поверхность не более чем один раз т.е поверхность попавшую внутрь сферы Ляпу-
нова задаётся с помощи 𝑦03 = 𝜑0(𝑦01, 𝑦02); Кроме того существуют такие два числа 𝐴 > 0 и
𝜆, 0 < 𝜆 ⩽ 1 одни и те же для всей поверхности 𝜕𝐷𝑃 , что для любых двух точек𝑀1,𝑀2 ∈ 𝜕𝐷𝑃

выполняется неравенство: |𝜃| < 𝐴|(|𝑀1|−|𝑀2|)|𝜆, где 𝜃 угол между нормалями к 𝜕𝐷𝑃 в точках
𝑀1 и 𝑀2 т.е если ds -элемент площади тогда 𝑑𝑠 < 𝐶𝑑𝑦3. Используя свойства компактности
𝜕𝐷𝑃 и условия поверхности Ляпунова , получаем доказательство теоремы.

Теорема 7. Пусть функция u(y) бигармоническая функция определенных в области
𝐷 ⊂ 𝑅3. Если выполнено условие

1∑︁
𝑘=0

(|Δ𝑘𝑢(𝑦)|+ |𝑔𝑟𝑎𝑑Δ1−𝑘𝑢(𝑦)|) ⩽ 𝑐0𝑒𝑥𝑝|𝑦|𝜌2 , 𝑦 ∈ 𝐷, (4)

и в любой точке 𝑦 ∈ 𝜕𝐷 выполняется неравенство:

|Δ𝑘𝑢(𝑦)|+ |Δ
𝑘𝑢(𝑦)

𝜕𝑛
| < 𝑐0, ∀𝑘 ∈ {0, 1}

тогда ∀𝑥0 ∈ 𝐷 имеет место равенство:

𝑢(𝑥0) =

1∑︁
𝑘=0

∫︁
𝜕𝐷

(Δ𝑘Φ𝜎(𝑦, 𝑥0)
𝜕Δ1−𝑘𝑢(𝑦)

𝜕𝑛
−Δ1−𝑘𝑢(𝑦)

𝜕Δ𝑘Φ𝜎(𝑦, 𝑥0)

𝜕𝑛
)𝑑𝑠.

𝑦 ∈ 𝜕𝐷
Теорема 8. Пусть функция u(y) бигармоническая функция определенный в области

𝐷 ⊂ 𝑅3. Если выполнено условия теоремы 7 и условие роста Δ𝑘𝑢(𝑦) < 𝑐, 𝜕Δ𝑘𝑢(𝑦)

𝜕𝑛
< 𝑐,

∀𝑘 ∈ {0, 1, 2}, ∀𝑦 ∈ 𝜕𝐷, тогда ∀𝑥0 ∈ 𝐷 справедливо

𝑢(𝑥0) =

1∑︁
𝑘=0

∫︁
𝜕𝐷

(︂
Δ𝑘Φ𝜎(𝑦, 𝑥0)

𝜕Δ1−𝑘𝑢(𝑦)

𝜕𝑛
−Δ1−𝑘𝑢(𝑦)

𝜕Δ𝑘Φ𝜎(𝑦, 𝑥0)

𝜕𝑛

)︂
𝑑𝑠.

Теорема 9. Пусть функция 𝑢 удовлетворяет условия теоремы 7 и ∀𝑦 ∈ 𝜕𝐷 выполнено

условие роста Δ𝑘𝑢(𝑦) → 0, 𝜕Δ𝑘𝑢(𝑦)
𝜕𝑛 → 0, ∀𝑘 ∈ {0, 1, 2}, ∀𝑦 ∈ 𝜕𝐷, тогда ∀𝑥 ∈ 𝐷 справедливо

𝑢(𝑥) = 0.
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3. Заключение

В данном исследовании мы доказали теоремы типа Фрагмена–Линделёфа для бигармони-
ческих функций, определённых в области 𝐷 ⊂ 𝑅3, где D-неограничанная область лежащая
{𝑦3 > 0}, с границей 𝜕𝐷 , где 𝜕𝐷- внутри некоторого шара (предположим шара: 𝐾(0, 𝑃 ) ради-
уса 𝑃 c центром в (0, 0, 0), 𝐷𝑃 = 𝐷∩𝐾(0, 𝑃 )) удовлетворяет условию Ляпунова, а вне шара ее
можно представить как, 𝑦3 = 𝑓(𝑦1, 𝑦2) -непрерывная функция, имеющая непрерывная ограни-
ченные частные производные первого порядка. Сначала мы построили специальную функцию
для этой области и оценили скорость её роста, лапласиан этой функции, её нормальные про-
изводные и нормальные производные лапласиана. Затем мы доказали, что эта специальная
функция является функцией Карлемана для данной области. Используя интегральное пред-
ставление бигармонической функции, мы получили основную теорему.
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Аннотация

Исследуется задача нахождения стационарной цепи Маркова с максимальной энтро-
пией на множестве бесконечных двоичных последовательностей, запрещающих появление
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Abstract

This work addresses the problem of finding a stationary Markov chain with maximum
entropy on the set of infinite binary sequences that forbid three consecutive ones. A connection
is established between this problem and the non-integer base numeration system studied by A.
O. Gelfond. A probabilistic interpretation of Gelfond’s distribution of remainders is provided
in terms of a three-state ergodic Markov chain. As the main result, the parameters of the
extremal chain are explicitly determined. It is shown that the transition probability matrix and
the stationary distribution are expressed via the root 𝜃 > 1 of the equation 1 = 𝜃−1 +𝜃−2 +𝜃−3.
The entropy of the resulting chain equals ln 𝜃, which defines the maximum achievable entropy
in the class of sequences with this forbidden pattern.

Keywords: Markov chain, maximum entropy, binary sequences, forbidden subsequences,
Gelfond’s numeration system, stationary distribution.
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1. Введение

Рассмотрим множество всех бесконечных бинарных последовательностей с запретом на
три подряд идущие единицы [1]. Будем моделировать такие последовательности как траекто-
рии некоторой цепи Маркова [2] с тремя состояниями, где состояние процесса определяется
окончанием формируемой последовательности:

� Состояние 𝐶0: последовательность заканчивается на 0.

� Состояние 𝐶1: последовательность заканчивается на 01.

� Состояние 𝐶2: последовательность заканчивается на 011.

Запрет на три единицы подряд означает, что переход (путем добавления символа) из состояния
𝐶2 возможен только в состояние 𝐶0.

На основании введённых состояний определим цепь Маркова, задав начальное распреде-
ление
𝜋 = (𝜋0, 𝜋1, 𝜋2) и матрицу переходных вероятностей P.

Пусть параметры 𝛼1, 𝛼2 задают вероятности добавления единицы при условии, что этот
переход допустим.
Тогда цепь Маркова можно представить в виде графа переходов из одного состояния в другое:

𝐶0

𝐶1

𝐶2

1− 𝛼1

𝛼1

𝛼2

1− 𝛼2

1
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Её матрица переходных вероятностей P имеет вид:

𝐶0 𝐶1 𝐶2(︃ )︃𝐶0 1− 𝛼1 𝛼1 0
𝐶1 1− 𝛼2 0 𝛼2

𝐶2 1 0 0

где строки и столбцы соответствуют состояниям 𝐶0, 𝐶1, 𝐶2 в указанном порядке.
Среди всех стационарных цепей Маркова [2], порождающих допустимые последовательно-

сти, нас интересует цепь с максимальной энтропией [3].

Теорема 1. Стационарная цепь Маркова, порождающая двоичные последовательности
без трех подряд идущих единиц и имеющая максимальную энтропию, определяется матри-
цей переходных вероятностей

P =

⎛⎝ 1
𝜃

𝜃−1
𝜃 0

𝜃
𝜃+1 0 1

𝜃+1

1 0 0

⎞⎠ ,

в которой 𝜃 ∈ (1, 2) – корень уравнения

1 =
1

𝜃
+

1

𝜃2
+

1

𝜃3
,

и стационарным распределением 𝜋 = (𝜋1, 𝜋2, 𝜋3), которое задаётся

𝜋 =

(︂
𝜃3

𝜃3 + 𝜃 + 2
,

𝜃 + 1

𝜃3 + 𝜃 + 2
,

1

𝜃3 + 𝜃 + 2

)︂
.

Основная идея работы состоит в установлении связи представленной в данной теореме
цепи Маркова с системой счисления с нецелым основанием, изученной А. О. Гельфондом [4].

2. Система счисления

2.1. Система счисления A. O. Гельфонда

Пусть 𝜃 > 1 – фиксированное нецелое число (случай целого 𝜃 см. в [5], мы его рассматри-
вать не будем). Тогда для всякое число 0 ⩽ 𝛼 ⩽ 1, можно однозначно представить рядом

𝛼 =
∞∑︁
𝑖=1

𝜆𝑖
𝜃𝑖

=
𝑛∑︁

𝑖=1

𝜆𝑖
𝜃𝑖

+
𝑥𝑛+1

𝜃𝑛
, 0 ⩽ 𝑥𝑛 < 1 ,

где 𝜆𝑖 – целые числа, удовлетворяющие 0 ⩽ 𝜆𝑖 < 𝜃 и 𝑥𝑛 = 𝑥𝑛 (𝛼), если последовательно
определять эти числа соотношениями:

𝑥1 = 𝛼, 𝑥2 = {𝜃𝑥1}, . . . , 𝑥𝑛+1 = {𝜃𝑥𝑛}, . . . (1)

𝜆1 = [𝛼𝜃], . . . , 𝜆𝑛 = [𝜃𝑥𝑛], . . . (2)

Здесь {}, [] – дробная и целая часть числа соответственно.
А. О. Гельфонд для описания закона распределения остатков 𝑥𝑛 (𝛼) при произвольном

нецелом 𝜃 ввел числа 𝑡𝑛. Рассмотрим частный случай разложения, для 𝛼 = 1. Тогда из общих
соотношений получаем:
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1 =

𝑛∑︁
𝑖=1

𝜆𝑖(1)

𝜃𝑖
+
𝑡𝑛+1

𝜃𝑛
, 𝑡1 = 1 ,

где 𝑡𝑛 = 𝑥𝑛 (1) – это остатки, возникающие при разложении единицы.

По этим остаткам А. О. Гельфонд определяет константу

𝜏 =

∞∑︁
𝑖=1

𝑡𝑖
𝜃𝑖−1

.

2.2. Теорема А.О. Гельфонда

Говорят, что последовательность остатков 𝑥𝑛 (𝛼) имеет закон распределения 𝜎 (𝑡), если для
почти всех 𝛼, существует предел

lim
𝑁→∞

1

𝑁

𝑁∑︁
𝑛=1

𝜓 (1− 𝑡+ 𝑥𝑛) = 𝜎 (𝑡) ,

где 𝜓 (𝑥) =

{︃
1 , 0 ⩽ 𝑥 ⩽ 1

0 , иначе
.

Теорема 2 (А. О. Гельфонд). Если 𝜃 > 1 – не целое число, то почти для всех имеет
место соотношение

𝜎 (𝑡) =
1

𝜏

∞∑︁
𝑖=1

min (𝑡, 𝑡𝑖)

𝜃𝑖−1
,

где функция 𝜓 (𝑥) и числа 𝜏, 𝑡1, 𝑡2, . . . определены выше.

В контексте нашей задачи представляет интерес частный случай, в котором 𝜃 удовлетво-
ряет уравнению

1 =
1

𝜃
+

1

𝜃2
+

1

𝜃3
.

В соответствии с рекуррентными соотношениями (1), найдем числа 𝑡1, 𝑡2, 𝑡3, . . . и константу 𝜏 .
Они выражаются через корень 𝜃:

𝑡𝑚 =

⎧⎪⎪⎨⎪⎪⎩
4−𝑚∑︁
𝑖=1

1

𝜃𝑖
, 1 ⩽ 𝑚 ⩽ 3,

0, 𝑚 > 3,

, 𝜏 =

∞∑︁
𝑖=1

𝑡𝑖
𝜃𝑖−1

=
3

𝜃3
+

2

𝜃2
+

1

𝜃
.

Подставляя найденные значения 𝑡𝑚 и 𝜏 в теорему Гельфонда, получаем явный вид закона
распределения 𝑥𝑛 (𝛼):

𝜎 (𝑡) =

{︃
1
𝜏

∑︀3
𝑙=1

𝑡
𝜃𝑙−1 𝑡 ∈ [0, 𝑡3]

1
𝜏

(︁∑︀𝑚
𝑙=1

𝑡
𝜃𝑙−1 +

∑︀3
𝑙=𝑚+1

𝑡𝑙
𝜃𝑙−1

)︁
𝑡 ∈ [𝑡𝑚+1, 𝑡𝑚]

(3)

где 𝑚 = 1, 2 .

Для того чтобы проиллюстрировать это распределения построим график:
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1
𝜃

1
𝜃 + 1

𝜃2
1

1

𝑡

𝜎(𝑡)

2.3. Последовательности без трех подряд идущих единиц и система счисле-
ния

Лемма 1. Разложение по основанию 𝜃, удовлетворяющему уравнению 1 = 1
𝜃 + 1

𝜃2
+ 1

𝜃3
,

обладает следующим свойством: для почти всех 𝛼 ∈ [0, 1) соответствующая ему последо-
вательность {𝜆𝑖}, полученная из (2), не содержит трёх подряд идущих единиц.

Доказательство. Доказательство выполним от противного, пусть в последовательности
{𝜆𝑖} есть три единицы подряд. Тогда в разложении числа 𝛼 по основанию 𝜃 найдутся подряд
идущие слагаемые

1

𝜃𝑙
+

1

𝜃𝑙+1
+

1

𝜃𝑙+2
=

1

𝜃𝑙−1
. (4)

Сопоставив два разложения 𝛼 с остаточными членами 𝑥𝑙−1 (𝛼) и 𝑥𝑙+3 (𝛼), получим равенство

𝑆 +
𝑥𝑙−1 (𝛼)

𝜃𝑙−2
= 𝑆 +

𝜆𝑙−1

𝜃𝑙−1
+

(︂
1

𝜃𝑙
+

1

𝜃𝑙+1
+

1

𝜃𝑙+2

)︂
+
𝑥𝑙+3 (𝛼)

𝜃𝑙+2
,

где 𝑆 – совпадающая часть разложений до позиции 𝑙 − 1. Откуда

𝑥𝑙−1 (𝛼)

𝜃𝑙−2
=
𝜆𝑙−1

𝜃𝑙−1
+

1

𝜃𝑙−1
+
𝑥𝑙+3 (𝛼)

𝜃𝑙+2
⇒ [𝜃𝑥𝑙−1 (𝛼)] = 𝜆𝑙−1 + 1 ,

что противоречит определению 𝜆𝑙−1 = [𝜃𝑥𝑙−1]. 2 Таким образом наше ограничение на последо-
вательности в виде количества подряд идущих единиц, оказывается встроенным в структуру
разложения числа 𝛼 ∈ [0, 1) по основанию 𝜃.

3. Цепь Маркова

3.1. Марковская модель для распределения А. О. Гельфонда

Проанализируем структуру полученного распределения 𝜎 (𝑡) заданного формулой (3). За-
метим, что функция распределения имеет изломы в точках 1

𝜃 ,
1
𝜃 + 1

𝜃2
. Они разбивают отрезок

[0, 1] на интервалы [0, 1𝜃 ), [1𝜃 ,
1
𝜃 + 1

𝜃2
) и [1𝜃 + 1

𝜃2
, 1). Последовательность {𝜆𝑖} для числа 𝛼 из

интервалов:

� [0, 1𝜃 ) начинается на 0

� [1𝜃 ,
1
𝜃 + 1

𝜃2
) начинается на 10

� [1𝜃 + 1
𝜃2
, 1) начинается на 110



304 С. Е. Тюрин, В. Н. Соболев

Таким образом для каждого 𝑚 = 0, 1, 2 установлено взаимно однозначное соответствие
между:

� Ровно 𝑚 единиц в начале последовательности {𝜆𝑖} в разложении А. О. Гельфонда

� Состояние 𝐶𝑚 в цепи Маркова

3.2. Стационарный режим и энтропия

Исследуем стационарное распределение и энтропийные характеристики цепи Маркова, с
заданной матрицей переходных вероятностей :

P =

⎛⎝ 1− 𝛼1 𝛼1 0
1− 𝛼2 0 𝛼2

1 0 0

⎞⎠
Известно [2], что стационарное распределение 𝜋 = (𝜋1, 𝜋2, 𝜋3) удовлетворяет системе урав-

нений, которую для нашей цепи можно записать в матричном виде как{︃
𝜋P = 𝜋,∑︀3

𝑖=1 𝜋𝑖 = 1.
(5)

Её решение имеет вид: ⎧⎪⎨⎪⎩
𝜋1 = 1

1+𝛼1+𝛼1𝛼2
,

𝜋2 = 𝛼1
1+𝛼1+𝛼1𝛼2

,

𝜋3 = 𝛼1𝛼2
1+𝛼1+𝛼1𝛼2

.

(6)

Таким образом, стационарное распределение существует и единственно для всех значениях
𝛼1, 𝛼2 ∈ (0, 1), что также следует из эргодичности цепи, обусловленной возможностью попасть
из любого состояния в любое другое за конечное число шагов.

Энтропия цепи Маркова [3] с матрицей переходных вероятностей (𝑝𝑖𝑗) и стационарным
распределением (𝜋1, 𝜋2, 𝜋3) определяется формулой:

𝐻 = −
3∑︁

𝑖=1

3∑︁
𝑗=1

𝜋𝑖𝑝𝑖𝑗 ln (𝑝𝑖𝑗) .

После подстановки 𝑝𝑖𝑗 из матрицы P энтропия цепи принимает вид:

𝐻(𝛼1, 𝛼2) = −
2∑︁

𝑖=1

𝜋𝑖 [(1− 𝛼𝑖) ln(1− 𝛼𝑖) + 𝛼𝑖 ln𝛼𝑖] .

Энтропия цепи Маркова из теоремы 1 будет равна

𝐻(𝛼1, 𝛼2) = ln 𝜃 .

3.3. Максимизация энтропии

Установленное взаимно однозначное соответствие подсказывает нам вид стационарного
распределения 𝜋 = (𝜋1, 𝜋2, 𝜋3) для цепи Маркова с максимальной энтропией.

А именно, естественно предположить, что для значений 𝜎(𝑡𝑚) имеет место следующее
представление:
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{︁
𝜎(𝑡𝑚) =

∑︀4−𝑚
𝑙=1 𝜋𝑙 , 1 ⩽ 𝑚 ⩽ 3 . (7)

Из (3) и (7) найдем явный вид распределения 𝜋

𝜎 (𝑡) =

{︃
𝜋1
𝑡3
𝑡 𝑡 ∈ [0, 𝑡3]
𝜋4−𝑚

𝑡𝑚−𝑡𝑚+1
𝑡+ 𝑡𝑚+1

𝑡𝑚−𝑡𝑚+1
𝜋4−𝑚 +

∑︀3−𝑚
𝑙=1 𝜋𝑙 𝑡 ∈ [𝑡𝑚+1, 𝑡𝑚]

(8)

где 𝑚 = 1, 2 .
Сопоставляя коэффициенты при 𝑡 в (3) и (8), получим связь между значениями стацио-

нарного распределения цепи Маркова и числами 𝑡𝑚 из закона распределения А. О. Гельфонда
в виде следующих соотношений: {︁

𝜋𝑚 = 1−𝑡5−𝑚

𝜏 1 ⩽ 𝑚 ⩽ 3 (9)

Для полноты картины остается найти параметры 𝛼1, 𝛼2, определяющие матрицу пере-
ходных вероятностей P, через числа 𝑡𝑚 из закона распределения А. О. Гельфонда и через
действительный корень 𝜃 уравнения, подобного уравнению для чисел Фибоначчи [6]. Из пред-
ставлений (6) и (9) получаем явные формулы:{︃

𝛼1 = 1− 𝑡3 = 𝜃−1
𝜃

𝛼2 = 1−𝑡2
1−𝑡3

= 1
𝜃+1

4. Заключение

В работе решена задача о нахождении стационарной цепи Маркова с максимальной энтро-
пией на множестве бинарных последовательностей без трёх подряд идущих единиц. Установ-
лена связь этой задачи с системой счисления А. О. Гельфонда с основанием 𝜃, являющимся
корнем уравнения 1 = 𝜃−1 + 𝜃−2 + 𝜃−3. Данная связь позволяет находить стационарное рас-
пределение цепи Маркова через теорему А. О. Гельфонда, и наоборот.

Полученные результаты допускают естественное обобщение на случай запрета последова-
тельности из 𝑘 единиц (при 𝑘 = 2 см. [6]). В этом случае параметры экстремальной цепи
Маркова будут выражаться через корень 1 < 𝜃 < 2 уравнения

1 =
1

𝜃
+

1

𝜃2
+ · · ·+ 1

𝜃𝑘
,

а максимальная энтропия будет равна ln 𝜃. Другим направлением дальнейших исследований
является изучение цепей Маркова с максимальной энтропией , где запрещены конкретные
комбинации подряд идущих символов.
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Аннотация

Линейное пространство операторных полей, состоящее из операторов Нийенхейса, на-
зывают пучком Нийенхейса. Интересными примерами таких пучков являются максималь-
ные (по включению) пучки Нийенхейса. Случай, когда максимальный пучок Нийенхейса
содержит подпучок симметричных постоянных (𝑛× 𝑛)-матриц (в некоторой фиксирован-
ной системе координат), недавно рассматривался в работе [4], в которой было получено
полное описание таких максимальных пучков при 𝑛 ⩾ 3. Как оказалось, случай 𝑛 = 2
требует отдельного исследования. Эта задача решена в данной работе.
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Abstract

A linear space of operator fields that consists of Nijenhuis operators is called a Nijenhuis
pencil. Maximal (by inclusion) Nijenhuis pencils serve as interesting examples of such pencils.
The case when maximal Nijehuis pencil contains a subpencil of symmetric constant (𝑛 × 𝑛)-
matrices (in some fixed coordinate system) was recently investigated in paper [4], in which the
complete description of such maximal pencils was obtained for 𝑛 ⩾ 3. As it turned out, the case
𝑛 = 2 requires special research. This problem is solved in the present paper.

Keywords: Nijenhuis operators, Frolicher – Nijenhuis bracket, Nijenhuis pencils.
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1. Введение

Операторы Нийенхейса естественным образом возникают в различных задачах, связанных
с геометрией, алгеброй, математической физикой (см., например, [1, 2]). В частности, в теории
интегрируемых систем важную роль играют пространства операторных полей, состоящие из
операторов Нийенхейса, которые называют пучками Нийенхейса (см. [3]). Интересными при-
мерами таких пучков являются максимальные (по включению) пучки Нийенхейса. Например,
в недавней работе [4] рассматривались пучки Нийенхейса, содержащие подпучок симметрич-
ных постоянных (𝑛 × 𝑛)-матриц (в некоторой фиксированной системе координат), где было
получено полное описание максимальных пучков, обладающих этим свойством, при 𝑛 ⩾ 3.
Как оказалось, в случае 𝑛 = 2 требуется дополнительное исследование для описания макси-
мальных нийенхейсовых пучков указанного типа, что и сделано в данной работе.

Напомним необходимые определения.

Скобка Фролихера – Нийенхейса [[ , ]] двух тензорных полей типа (1, 1) (операторных
полей) 𝐿 и 𝑅 на многообразии 𝑀𝑛 задается формулой

[[𝐿,𝑅]](𝜉, 𝜂) = 𝐿[𝜉,𝑅𝜂] +𝑅[𝐿𝜉, 𝜂] +𝑅[𝜉, 𝐿𝜂] +𝐿[𝑅𝜉, 𝜂]− [𝐿𝜉,𝑅𝜂]− [𝑅𝜉,𝐿𝜂]−𝐿𝑅[𝜉, 𝜂]−𝑅𝐿[𝜉, 𝜂],

где 𝜉, 𝜂 — произвольные векторные поля, а [ , ] — стандартный коммутатор векторных полей.
Это выражение определяет кососимметричный по нижним индексам тензор типа (1, 2).

Кручение Нийенхейса — это тензор 𝒩𝐿 = 1
2 [[𝐿,𝐿]], где 𝐿 — операторное поле.

Операторное поле 𝐿 называют оператором Нийенхейса, если 𝒩𝐿 = 0.

Нийенхейсов пучок 𝒫 — это такое подпространство в бесконечномерном линейном про-
странстве тензорных полей типа (1, 1) на многообразии 𝑀𝑛, что для любых 𝐿,𝑅 ∈ 𝒫 выпол-
нено условие [[𝐿,𝑅]] = 0.

Централизатор 𝐶(𝒫) нийенхейсова пучка 𝒫 — это линейное пространство, состоящее из
таких операторных полей 𝐿, что [[𝐿,𝑅]] = 0 для любого операторного поля 𝑅 ∈ 𝒫.

По определению пучок Нийенхейса 𝒫 максимален, если любое операторное поле 𝐿, для
которого [[𝐿,𝑅]] = 0 для всех 𝑅 ∈ 𝒫, лежит в 𝒫. Иными словами, пучок Нийенхейса 𝒫
максимален, если он не является подпучком никакого большего пучка.

Пусть 𝒮 — пучок Нийенхейса, который состоит из операторов, матрицы которых в данной
системе координат симметричны. Задача описания всех нийенхейсовых пучков, содержащих
𝒮, рассматривалась А.Ю. Коняевым в работе [4], где им был получен ответ для 𝑛 ≥ 3. А
именно, им было показано, что в фиксированных координатах 𝑢1, . . . , 𝑢𝑛 любой максимальный
нийенхейсов пучок, содержащий 𝒮, совпадает либо с 𝒜, либо с ℬ, где
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𝒜 = {Операторы, матрицы которых в данной системе координат имеют вид 𝑙𝑖𝑗 = 𝑎𝑖𝑗 + 𝑢𝑖𝑐𝑗 ,

где 𝑎𝑖𝑗 — компоненты произвольной постоянной матрицы 𝐴, a 𝑐𝑗 , 𝑗 = 1, . . . , 𝑛 — произвольные
константы.}

ℬ = {Операторы, матрицы которых в данной системе координат имеют вид 𝑙𝑖𝑗 = 𝑎𝑖𝑗 +𝑐𝑖𝑢𝑗 +

+ 𝑢𝑖𝑐𝑗 + 𝐾𝑢𝑖𝑢𝑗 , где 𝑎𝑖𝑗 — компоненты произвольной симметрической постоянной матрицы 𝐴,

a 𝐾, 𝑐1, . . . , 𝑐𝑛 — произвольные константы.}.

В данной статье мы рассматриваем описанную задачу классификации максимальных ний-
енхейсовых пучков, содержащих 𝒮, при 𝑛 = 2. Как оказалось, полученный ответ совпадает с
результатом для 𝑛 ≥ 3.

2. Классификация максимальных пучков, содержащих 𝒮

Для описания максимальных нийенхейсовых пучков, содержащих 𝒮, целесообразно снача-
ла найти
𝐶(𝒮) = {𝐿 | | [[𝐿,𝑅]] = 0∀𝑅 ∈ 𝒮}, т.е. централизатор пучка 𝒮.

Теорема 1. Централизатор 𝐶(𝒮) при 𝑛 = 2 состоит из операторов с матрицами
𝑅 = (𝑟𝑖𝑗) вида [︃

𝐷𝑥2

2 + 𝐶1𝑥+𝑁 𝑓3(𝑥, 𝑦)

𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦) 𝐷𝑦2

2 + 𝐶2𝑦 +𝑀

]︃
,

где 𝐴,𝐶1, 𝐶2, 𝐷,𝑀,𝑁 — произвольные вещественные числа, 𝑥, 𝑦 — локальные координаты на
многообразии 𝑀2, а 𝑓3(𝑥, 𝑦) — произвольная дифференцируемая функция.

Доказательство. Пусть 𝐿 ∈ 𝒮 — оператор, матрица которого в фиксированной системе
координат (𝑥, 𝑦) диагональна с различными числами 𝜆1 и 𝜆2 на диагонали. Положим 𝑥 = 𝑢1,
𝑦 = 𝑢2. Тогда для любого 𝑅 ∈ 𝐶(𝒮)

[[𝑅,𝐿]](𝜕𝑢1 , 𝜕𝑢2) = 𝐿[𝑅𝜕𝑢1 , 𝜕𝑢2 ] + 𝐿[𝜕𝑢1 , 𝑅𝜕𝑢2 ]− [𝑅𝜕𝑢1 , 𝐿𝜕𝑢2 ]− [𝐿𝜕𝑢1 , 𝑅𝜕𝑢2 ] =

=
2∑︁

𝛼=1

(︂
𝜆𝛼
𝜕𝑟𝛼1
𝜕𝑢2
− 𝜆𝛼

𝜕𝑟𝛼2
𝜕𝑢1
− 𝜆2

𝜕𝑟𝛼1
𝜕𝑢2

+ 𝜆1
𝜕𝑟𝛼2
𝜕𝑢1

)︂
𝜕𝑢𝛼 = 0.

Приравнивая к нулю коэффициенты при 𝜕𝑢1 и 𝜕𝑢2 , получаем систему из двух уравнений⎧⎪⎪⎨⎪⎪⎩
(𝜆1 − 𝜆2)

𝜕𝑟11
𝜕𝑢2

= 0

(𝜆1 − 𝜆2)
𝜕𝑟22
𝜕𝑢1

= 0

, (1)

из которой вытекает (так как 𝜆1 ̸= 𝜆2), что 𝑟
1
1 не зависит от 𝑢

2, а 𝑟22 — от 𝑢1.

Теперь рассмотрим 𝐿 ∈ 𝒮 такой, что 𝐿𝜕𝑢1 = 𝜕𝑢2 и 𝐿𝜕𝑢2 = 𝜕𝑢1 . Тогда для любого 𝑅 ∈ 𝐶(𝒮)
(здесь идет суммирование по 𝛼)

[[𝑅,𝐿]](𝜕𝑢1 , 𝜕𝑢2) = 𝐿[𝑅𝜕𝑢1 , 𝜕𝑢2 ] + 𝐿[𝜕𝑢1 , 𝑅𝜕𝑢2 ]− [𝑅𝜕𝑢1 , 𝐿𝜕𝑢2 ]− [𝐿𝜕𝑢1 , 𝑅𝜕𝑢2 ] =

= 𝐿[𝑅𝜕𝑢1 , 𝜕𝑢2 ] + 𝐿[𝜕𝑢1 , 𝑅𝜕𝑢2 ]− [𝑅𝜕𝑢1 , 𝜕𝑢1 ]− [𝜕𝑢2 , 𝑅𝜕𝑢2 ] =

= −𝜕𝑟
1
1

𝜕𝑢2
𝜕𝑢2 −

𝜕𝑟21
𝜕𝑢2

𝜕𝑢1 +
𝜕𝑟12
𝜕𝑢1

𝜕𝑢2 +
𝜕𝑟22
𝜕𝑢1

𝜕𝑢1 +
𝜕𝑟𝛼1
𝜕𝑢1

𝜕𝑢𝛼 − 𝜕𝑟𝛼2
𝜕𝑢2

𝜕𝑢𝛼 =

= −
(︂
𝜕𝑟21
𝜕𝑢2

+
𝜕𝑟12
𝜕𝑢2
− 𝜕𝑟11
𝜕𝑢1

)︂
𝜕𝑢1 +

(︂
𝜕𝑟12
𝜕𝑢1

+
𝜕𝑟21
𝜕𝑢1
− 𝜕𝑟22
𝜕𝑢2

)︂
𝜕𝑢2 = 0,
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где учтено, что
𝜕𝑟22
𝜕𝑢1 =

𝜕𝑟11
𝜕𝑢2 = 0. Таким образом, мы получаем систему⎧⎪⎪⎨⎪⎪⎩

𝜕𝑟21
𝜕𝑢2

+
𝜕𝑟12
𝜕𝑢2
− 𝜕𝑟11
𝜕𝑢1

= 0

𝜕𝑟12
𝜕𝑢1

+
𝜕𝑟21
𝜕𝑢1
− 𝜕𝑟22
𝜕𝑢2

= 0

(2)

Выше было выведено, что 𝑟11 не зависит от 𝑦, а 𝑟
2
2 не зависит от 𝑥, поэтому

𝑟11(𝑥, 𝑦) = 𝑓1(𝑥) и 𝑟22(𝑥, 𝑦) = 𝑓2(𝑦).

Продифференцировав первое уравнение системы (2) по 𝑦, а второе по 𝑥, получим, что

𝑟21(𝑥, 𝑦) + 𝑟12(𝑥, 𝑦) = 𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦.

Итак, получаем систему⎧⎪⎨⎪⎩
𝑟21(𝑥, 𝑦) + 𝑟12(𝑥, 𝑦) = 𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦

𝑟11(𝑥) = 𝑓1(𝑥)

𝑟22(𝑦) = 𝑓2(𝑦)

(3)

Из системы (2) следует, что ⎧⎪⎪⎨⎪⎪⎩
𝜕𝑟21
𝜕𝑢2

+
𝜕𝑟12
𝜕𝑢2

=
𝜕𝑟11
𝜕𝑢1

= 𝑓
′
1(𝑥)

𝜕𝑟12
𝜕𝑢1

+
𝜕𝑟21
𝜕𝑢1

=
𝜕𝑟22
𝜕𝑢2

= 𝑓
′
2(𝑦)

то есть {︃
𝐶1 +𝐷𝑥 = 𝑓

′
1(𝑥)

𝐶2 +𝐷𝑦 = 𝑓
′
2(𝑦)

Система (3) принимает вид⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑟21(𝑥, 𝑦) + 𝑟12(𝑥, 𝑦) = 𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦

𝑟11(𝑥) =
𝐷𝑥2

2
+ 𝐶1𝑥+𝑁

𝑟22(𝑦) =
𝐷𝑦2

2
+ 𝐶2𝑦 +𝑀

Положим 𝑟12(𝑥, 𝑦) = 𝑓3(𝑥, 𝑦). Тогда

𝑟21(𝑥, 𝑦) = 𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦).

Получаем, что операторы из 𝐶(𝒮) имеют матрицы вида

𝑅 =

[︃
𝐷𝑥2

2 + 𝐶1𝑥+𝑁 𝑓3(𝑥, 𝑦)

𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦) 𝐷𝑦2

2 + 𝐶2𝑦 +𝑀

]︃
.

Таким образом, мы получили централизатор пучка 𝒮. Теперь нам нужно найти пучки
Нийенхейса. Для этого необходимо наложить дополнительное условие [[𝑅,𝑅]] ≡ 0, то есть
(𝒩𝑅)112 ≡ 0 и (𝒩𝑅)212 ≡ 0.
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Как известно, в локальных координатах 𝑥1, . . . , 𝑥𝑛 компоненты (𝒩𝐿)𝑖𝑗𝑘 тензора 𝒩𝐿 опреде-
ляются по следующей формуле:

(𝒩𝐿)𝑖𝑗𝑘 = 𝐿𝑙
𝑗

𝜕𝐿𝑖
𝑘

𝜕𝑥𝑙
− 𝐿𝑙

𝑘

𝜕𝐿𝑖
𝑗

𝜕𝑥𝑙
− 𝐿𝑖

𝑙

𝜕𝐿𝑙
𝑘

𝜕𝑥𝑗
+ 𝐿𝑖

𝑙

𝜕𝐿𝑙
𝑗

𝜕𝑥𝑘
,

где 𝐿𝑖
𝑗 обозначают компоненты 𝐿. Тогда в нашем случае

(𝒩𝑅)112 = 𝑟𝑙1
𝜕𝑟12
𝜕𝑢𝑙
− 𝑟𝑙2

𝜕𝑟11
𝜕𝑢𝑙
− 𝑟1𝑙

𝜕𝑟𝑙2
𝜕𝑢1

+ 𝑟1𝑙
𝜕𝑟𝑙1
𝜕𝑢2

=

=
𝜕𝑓3
𝜕𝑥
·
(︁𝐷𝑥2

2
+ 𝐶1𝑥+𝑁

)︁
+
𝜕𝑓3
𝜕𝑦
· (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦))−

− (𝐷𝑥+ 𝐶1) · 𝑓3(𝑥, 𝑦)−
(︁𝐷𝑥2

2
+ 𝐶1𝑥+𝑁

)︁
· 𝜕𝑓3
𝜕𝑥

+ 𝑓3(𝑥, 𝑦) ·
(︁
𝐶1 +𝐷𝑥− 𝜕𝑓3

𝜕𝑦

)︁
=

=
𝜕𝑓3
𝜕𝑦
· (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 2𝑓3(𝑥, 𝑦)) = 0,

(𝒩𝑅)212 = 𝑟𝑙1
𝜕𝑟22
𝜕𝑢𝑙
− 𝑟𝑙2

𝜕𝑟21
𝜕𝑢𝑙
− 𝑟2𝑙

𝜕𝑟𝑙2
𝜕𝑢1

+ 𝑟2𝑙
𝜕𝑟𝑙1
𝜕𝑢2

=

= (𝐷𝑦 + 𝐶2) · (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦))− 𝑓3(𝑥, 𝑦) ·
(︁
𝐶2 +𝐷𝑦 − 𝜕𝑓3

𝜕𝑥

)︁
−

−
(︁𝐷𝑦2

2
+ 𝐶2𝑦 +𝑀

)︁
·
(︁
𝐶1 +𝐷𝑥− 𝜕𝑓3

𝜕𝑦

)︁
−

− (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 𝑓3(𝑥, 𝑦) · 𝜕𝑓3
𝜕𝑥

+
(︁𝐷𝑦2

2
+ 𝐶2𝑦 +𝑀

)︁(︁
𝐶1 +𝐷𝑥− 𝜕𝑓3

𝜕𝑦

)︁
=

=
(︁
𝐶2 +𝐷𝑦 − 𝜕𝑓3

𝜕𝑥

)︁
· (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 2𝑓3(𝑥, 𝑦)) = 0

для любых 𝑥, 𝑦.
Так мы получаем систему из двух уравнений, задающих условия на коэффициенты мат-

рицы 𝑅 из формулировки теоремы 1:⎧⎪⎪⎨⎪⎪⎩
𝜕𝑓3
𝜕𝑦
· (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 2𝑓3(𝑥, 𝑦)) = 0

(𝐶2 +𝐷𝑦 − 𝜕𝑓3
𝜕𝑥

) · (𝐶1𝑦 + 𝐶2𝑥+𝐴+𝐷𝑥𝑦 − 2𝑓3(𝑥, 𝑦)) = 0

(4)

Первый случай: 𝐶1𝑦+𝐶2𝑥+𝐴+𝐷𝑥𝑦−2𝑓3(𝑥, 𝑦)=0, то есть 𝑓3(𝑥, 𝑦)= 1
2(𝐶1𝑦+𝐶2𝑥+𝐴+𝐷𝑥𝑦).

Тогда

𝑅 =

[︂
𝑁 0
0 𝑀

]︂
+

[︃
𝐷𝑥2

2 + 𝐶1𝑥
1
2(𝐷𝑥𝑦 + 𝐶1𝑦 + 𝐶2𝑥+𝐴)

1
2(𝐷𝑥𝑦 + 𝐶1𝑦 + 𝐶2𝑥+𝐴) 𝐷𝑦2

2 + 𝐶2𝑦

]︃
. (5)

Второй случай: 𝜕𝑓3
𝜕𝑦 = 0, то есть 𝑓3 = 𝑓3(𝑥). Из второго уравнения системы (4) имеем

𝜕𝑓3
𝜕𝑥

= 𝐶2 +𝐷𝑦,

то есть
𝑓3(𝑥) = 𝑥 · (𝐶2 +𝐷𝑦) + 𝑔(𝑦).

У нас 𝜕𝑓3
𝜕𝑦 = 0, поэтому 𝜕𝑓3

𝜕𝑦 = 𝐷𝑥 + 𝑔
′
(𝑦) ≡ 0, то есть 𝑓3(𝑥) = 𝐶2𝑥 + 𝐶, где 𝐶 — константа.

В итоге

𝑅 =

[︂
𝑁 0
0 𝑀

]︂
+

[︂
𝐶1𝑥 𝐶2𝑥+ 𝐶

𝐶1𝑦 +𝐴− 𝐶 𝐶2𝑦

]︂
. (6)
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Таким образом, мы получаем два максимальных нийенхейсовых пучка 𝒫1, 𝒫2:
𝒫1 = {Операторы, матрицы которых в данной системе координат (𝑥, 𝑦) имеют вид (5)},
𝒫2 = {Операторы, матрицы которых в данной системе координат (𝑥, 𝑦) имеют вид (6)}.
Ясно, что 𝒫1∩𝒫2 = 𝒮, 𝒫1+𝒫2 ⊂ 𝐶(𝒮). Как мы выяснили, множество операторов Нийенхей-

са в централизаторе совпадает с 𝒫1 ∪ 𝒫2. По определению любой максимальный нийенхейсов
пучок 𝒫, содержащий 𝒮, целиком лежит в 𝐶(𝒮) и, так как пучок — это линейное простран-
ство, целиком лежит либо в 𝒫1, либо в 𝒫2. Так как эти пучки максимальны, 𝒫 совпадает с
одним из них. Таким образом, доказано следующее утверждение.

Теорема 2. В фиксированных координатах 𝑥, 𝑦 любой максимальный нийенхейсов пучок,
содержащий 𝒮, совпадает либо с 𝒫1, либо с 𝒫2, где матрицы операторов из пучков 𝒫1 и 𝒫2
задаются матрицами вида 𝑅1 и 𝑅2 соответственно:

𝑅1 =

[︂
𝑚 𝑎
𝑎 𝑛

]︂
+

[︂
𝐷𝑥2 𝐷𝑥𝑦
𝐷𝑥𝑦 𝐷𝑦2

]︂
+

[︂
2𝐶1𝑥 𝐶1𝑦 + 𝐶2𝑥

𝐶1𝑦 + 𝐶2𝑥 2𝐶2𝑦

]︂
,

𝑅2 =

[︂
𝑚 𝑎
𝑏 𝑛

]︂
+

[︂
𝐶1𝑥 𝐶2𝑥
𝐶1𝑦 𝐶2𝑦

]︂
.
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Аннотация

Представлены двухконстантные формы связей между напряжениями и деформациями
нелинейно-упругих изотропных материалов. Такого рода материалы могут использовать-
ся для гашения колебаний строительных конструкций при динамических воздействиях
(землетрясения, ударные волны при взрывах). Свободная энергия рассматриваемых со-
отношений представляется функцией алгебраических инвариантов тензора деформаций
Коши-Грина либо естественных инвариантов «левого» тензора деформаций Генки. Раз-
работана методика определения констант представленных связей между напряжениями и
деформациями. Предлагаемая методика основана на анализе экспериментальных зависи-
мостей окружных деформаций на внешней и внутренней поверхностях от приложенного
внутреннего давления и решениях задачи Ламе для полого цилиндра в плоском деформи-
рованном состоянии. Показано, что конкретизация приведенных определяющих соотноше-
ний возможна на основе выделения линейного участка экспериментальных зависимостей
и построения теоретических зависимостей в предположении малости деформаций. Таким
образом, следующие за линейным участком данные могут быть использованы для конкре-
тизации модулей упругости третьего порядка определяющих соотношений, построенных
на основе рассмотренных. Следовательно, изложенную в работе методику можно также
рассматривать как частичное решение задачи конкретизации связей между напряжениями
и деформациями, включающих модули упругости третьего порядка. Для представленных
экспериментальных данных показано, что результаты конкретизации по выдвинутой мето-
дике соответствуют определенным с помощью классического эксперимента на растяжение
модулям упругости. Приведенная методика может использоваться как непосредственно,
так и с целью минимизации числа экспериментов в задачах конкретизации определяющих
значений нелинейной теории упругости.

Ключевые слова: задача Ламе, нелинейно-упругая модель, алгебраический инвариант,
плоское деформированное состояние, конкретизация определяющих соотношений.
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Abstract

Two-constant forms of relationships between stresses and strains in nonlinear-elastic isotropic
materials are presented. Such materials can be used to dampen vibrations in building structures
under dynamic loads (earthquakes, shock waves from explosions). The free energy of the
considered relationships is represented as a function of algebraic invariants of the Cauchy-
Green strain tensor or natural invariants of the “left” Hencky strain tensor. A method for
determining the constants of the presented relationships between stresses and strains has been
developed. The proposed method is based on the analysis of experimental dependencies of
circumferential deformations on the outer and inner surfaces on the applied internal pressure
and solutions to the Lamé problem for a hollow cylinder in a flat deformed state. It is shown that
the present constitutive relationships can be particularized by identifying the linear section of
the experimental dependencies and constructing theoretical dependencies under the assumption
of small deformations. Thus, the data following the linear section can be used to specify the
third-order elasticity moduli of the determining relations constructed on the basis of those
considered. Consequently, the methodology presented in the work can also be considered as
a partial solution to the problem of particularization the relationships between stresses and
strains, including third-order elasticity moduli. For the experimental data presented, it is
shown that the results of particularization according to the proposed method correspond to
the elasticity moduli determined by means of a classical tensile experiment. The presented
method can be used both directly and for the purpose of minimizing the number of experiments
in the tasks of particularization the constitutive parameters of nonlinear elasticity theory.

Keywords: Lame problem, nonlinear elastic model, algebraic invariant, plane strain, consti-
tutive law particularization.
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Введение

Построение и экспериментальная конкретизация соотношений, определяющих поведение
упругих тел при конечных деформациях, остается актуальной задачей ввиду отсутствия един-
ственности её решения [1, 2, 3, 4]. Каждое определяющее соотношение содержит специфичный
для него ряд материальных параметров [5, 6, 7, 8]. Использование связи между напряжениями
и деформациями для конкретного материала предполагает предварительное решение задачи
установления значений всех материальных констант определяющего соотношения — его кон-
кретизацию.

Решения задачи конкретизации некоторых определяющих соотношений представлены в
работах [9, 10, 11, 12]. В данной статье предлагается методика конкретизации двухконстант-
ных связей между напряжениями и деформациями для изотермических процессов изотропных
нелинейно-упругих материалов [13, 14, 15]. Представленную методику можно рассматривать
и как частичное решение вопроса конкретизации более сложных определяющих соотноше-
ний, в частности, Мурнагана [16], построенных как расширение рассматриваемых. В отличие
от классического способа определения констант упругости с помощью эксперимента о рас-
тяжении образца [17, 18] предлагаемая методика основана на рассмотрении задачи Ламе для
полого цилиндра, находящегося в условии плоско-деформированного состояния под действием
внутреннего давления [19]. Соответствующие модельные соотношения содержат связи между
экспериментально наблюдаемыми характеристиками процесса. Из требования соответствия
модельных уравнений экспериментальным данным решается задача конкретизации определя-
ющего соотношения.

1. Определение упругих констант на основе решения задачи Ла-

ме

Рассмотрим вопрос конкретизации двухконстантных определяющих соотношений нелиней-
ной теории упругости, являющихся прямым обобщением закона Гука на случай изотропных
нелинейно-упругих материалов. К таким можно отнести соотношение [13]

˜
T = (2𝑐1 + 𝑐2) 𝐼1

˜
E− 𝑐2

˜
𝜀𝜀𝜀, (1)

где
˜
T – энергетический тензор напряжений,

˜
𝜀𝜀𝜀 – тензор деформаций Коши-Грина, 𝐼1 – первый

алгебраический инвариант
˜
𝜀𝜀𝜀,

˜
E – единичный тензор.

Представленная связь является частным случаем связи напряжений и деформаций Мур-
нагана [16]

˜
T𝑀𝑢𝑟𝑛 =

[︀
(2𝑐1 + 𝑐2) 𝐼1 + (3𝑐3 + 𝑐4) 𝐼

2
1 + 𝑐5𝐼2

]︀
˜
E−

− [𝑐2 + (𝑐4 + 𝑐5) 𝐼1]
˜
𝜀𝜀𝜀+ 𝑐5

˜
𝜀𝜀𝜀2,

(2)

содержащего также константы упругости третьего порядка 𝑐3, 𝑐4, 𝑐5, вопрос конкретизации
которых в данной работе не рассматривается.

Также к определяющим соотношениям с двумя константами относится соотношение [13, 18]

˜
𝜎𝜎𝜎𝑅 = 2𝐺*Γ̃ΓΓ +𝐾*Θ

˜
E, (3)

построенное в рамках предельного случая частного постулата изотропии Ильюшина, где
˜
𝜎𝜎𝜎𝑅

– повернутый обобщенный тензор напряжений, Γ̃ΓΓ – девиатор тензора деформаций Генки, Θ –
первый естественный инвариант тензора Генки.
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Общим при решении проблемы конкретизации определяющих соотношений (1), (3) являет-
ся требование их асимптотического вырождения в классический закон Гука линейной теории
упругости [20]:

˜
S = 𝜆𝐼1

˜
E+ 2𝐺

˜
𝜀𝜀𝜀𝑙𝑖𝑛 =

(︂
𝐾 − 2𝐺

3

)︂
𝐼1

˜
E+ 2𝐺

˜
𝜀𝜀𝜀𝑙𝑖𝑛, (4)

где 𝜆, 𝐺, 𝐾 – классические параметры Ламе: модуль сдвига и модуль объемного расширения
соответственно, а 𝐼1 – первый алгебраический инвариант линеаризованного тензора деформа-
ций Коши-Грина

˜
𝜀𝜀𝜀𝑙𝑖𝑛 =

1

2

(︂ ∘

∇⃗𝑢⃗+ 𝑢⃗
∘

∇⃗
)︂
. (5)

При использовании (1), (3) в рамках линейной теории упругости как энергетический тен-
зор напряжений, так и обобщенный тензор

˜
𝜎𝜎𝜎𝑅 вырождаются в тензор истинных напряже-

ний Коши. Линеаризация тензора деформаций Генки и его первого естественного инварианта
приводят к тензору деформаций

˜
𝜀𝜀𝜀𝑙𝑖𝑛 и алгебраическому инварианту 𝐼1 соответственно. Тогда

соотношения (1), (3) примут вид, эквивалентный (4)

˜
S = (2𝑐1 + 𝑐2) 𝐼1

˜
E− 𝑐2

˜
𝜀𝜀𝜀𝑙𝑖𝑛 =

(︂
𝐾* − 2𝐺*

3

)︂
𝐼1

˜
E+ 2𝐺*

˜
𝜀𝜀𝜀𝑙𝑖𝑛 =

=

(︂
𝐾 − 2𝐺

3

)︂
𝐼1

˜
E+ 2𝐺

˜
𝜀𝜀𝜀𝑙𝑖𝑛.

(6)

Из (6) следует связь между парами значений (𝑐1, 𝑐2), (𝐺*,𝐾*), (𝐺,𝐾):{︃
2𝑐1 + 𝑐2 = 𝐾 − 2𝐺

3
,

−𝑐2 = 2𝐺.
⇔

⎧⎨⎩ 𝑐1 =
1

2

(︂
𝐾 − 2𝐺

3

)︂
+𝐺,

𝑐2 = −2𝐺.{︂
𝐺* = 𝐺,
𝐾* = 𝐾.

(7)

Классически коэффициенты закона Гука определяются с помощью эксперимента на растя-
жение образца [17]. В то же время набор экспериментов для нахождения значения параметров
определяющих соотношений нелинейной теории упругости, включающих константы упруго-
сти третьего порядка, таких как (2), более обширный и может включать рассмотрение неод-
нородных процессов деформирования. Решим вопрос конкретизации констант 𝑐1, 𝑐2 в случае
доступных экспериментальных данных задачи Ламе. Заметим при этом, что пара значений
𝐺*, 𝐾*, может быть легко выражена через 𝑐1, 𝑐2 с помощью системы (7) и далее выкладки
конкретизации производятся только для 𝑐1, 𝑐2.

Схема нагружения полого цилиндра представлена на рис. 1. Координаты точек в недефор-
мированном состоянии (𝜌0, 𝜙0, 𝑧0), в деформированном (𝜌, 𝜙, 𝑧) и 𝑎 ⩽ 𝜌0 ⩽ 𝑏, ℎ/2 ⩽ 𝑧0 ⩽ ℎ/2.
На поверхность 𝜌0 = 𝑎 действует внутреннее давление 𝑝, внешняя поверхность свободна от
нагрузок. Предполагается плоско-деформированное состояние.

Запишем связь между координатами в начальном и деформированном состояниях

𝜌 = 𝜌 (𝜌0) , 𝜙 = 𝜙0, 𝑧 = 𝑧0. (8)

Выражение (8) позволяет представить радиус-вектор положения точки в деформирован-
ном состоянии

𝑥⃗ = 𝜌 (𝜌0) 𝑒⃗
0
𝜌 + 𝑧0𝑒⃗𝑧, (9)

где 𝑒⃗0𝜌,𝑒⃗𝑧 – соответствующие базисные векторы цилиндрической системы координат.
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Рис. 1: Схема модели

С учётом определения в цилиндрической системе координат оператора Гамильтона
∘

∇⃗ = 𝑒⃗0𝜌
𝜕

𝜕𝜌0
+ 𝑒⃗0𝜙

1

𝜌0

𝜕

𝜕𝜙0
+ 𝑒⃗𝑧

𝜕

𝜕𝑧0
определим аффинор деформаций, используя (6):

˜
ΦΦΦ =

∘

∇⃗𝑥⃗ = 𝜌′𝑒⃗0𝜌𝑒⃗
0
𝜌 +

𝜌

𝜌0

𝜕𝑒⃗0𝜌
𝜕𝜙0

𝜕𝑒⃗0𝜌
𝜕𝜙0

+ 𝑒⃗𝑧 𝑒⃗𝑧 =

= 𝜌′𝑒⃗0𝜌𝑒⃗
0
𝜌 + 𝜆𝜌𝑒⃗

0
𝜙𝑒⃗

0
𝜙 + 𝑒⃗𝑧 𝑒⃗𝑧.

(10)

Здесь 𝜌′, 𝜆𝜌 соответствуют радиальному и окружному растяжениям материальных волокон
соответственно. Из определения полярного разложения

˜
ΦΦΦ =

˜
U ·

˜
R [21] и (10) следует, что

аффинор деформации задачи Ламе совпадает с симметричной левой мерой искажения
˜
U, в

то время как ортогональный тензор поворота
˜
R является единичным. При этом 𝑒⃗0𝜌, 𝑒⃗

0
𝜙, 𝑒⃗𝑧

образуют ортонормированную тройку векторов.
С помощью соотношения (10) запишем градиент перемещений

∘

∇⃗𝑢⃗ =
∘

∇⃗𝑥⃗−
˜
E =

(︀
𝜌′ − 1

)︀
𝑒⃗0𝜌𝑒⃗

0
𝜌 + (𝜆𝜌 − 1) 𝑒⃗0𝜙𝑒⃗

0
𝜙. (11)

Для малых деформаций линеаризованный тензор деформаций Коши-Грина (5) в соответ-
ствии с градиентом перемещений (11) примет вид

˜
𝜀𝜀𝜀𝑙𝑖𝑛 =

(︀
𝜌′ − 1

)︀
𝑒⃗0𝜌𝑒⃗

0
𝜌 + (𝜆𝜌 − 1) 𝑒⃗0𝜙𝑒⃗

0
𝜙 = (𝜀𝜌𝜌)𝑙𝑖𝑛 𝑒⃗

0
𝜌𝑒⃗

0
𝜌 + (𝜀𝜙𝜙)𝑙𝑖𝑛 𝑒⃗

0
𝜙𝑒⃗

0
𝜙. (12)

С учётом (12) выразим тензор истинных напряжений (6):

˜
S = (2𝑐1 + 𝑐2)

(︀
𝜌′ + 𝜆𝑝 − 2

)︀ (︀
𝑒⃗0𝜌𝑒⃗

0
𝜌 + 𝑒⃗0𝜙𝑒⃗

0
𝜙 + 𝑒⃗𝑧 𝑒⃗𝑧

)︀
− 𝑐2

[︀(︀
𝜌′ − 1

)︀
𝑒⃗0𝜌𝑒⃗

0
𝜌 + (𝜆𝜌 − 1) 𝑒⃗0𝜙𝑒⃗

0
𝜙

]︀
=

= 𝑒⃗0𝜌𝑒⃗
0
𝜌

[︀
(2𝑐1 + 𝑐2)

(︀
𝜌′ + 𝜆𝑝 − 2

)︀
− 𝑐2

(︀
𝜌′ − 1

)︀]︀
+

+ 𝑒⃗0𝜙𝑒⃗
0
𝜙

[︀
(2𝑐1 + 𝑐2)

(︀
𝜌′ + 𝜆𝑝 − 2

)︀
− 𝑐2 (𝜆𝜌 − 1)

]︀
+ 𝑒⃗𝑧 𝑒⃗𝑧 (2𝑐1 + 𝑐2)

(︀
𝜌′ + 𝜆𝑝 − 2

)︀
=

= 𝑆𝜌𝜌𝑒⃗
0
𝜌𝑒⃗

0
𝜌 + 𝑆𝜙𝜙𝑒⃗

0
𝜙𝑒⃗

0
𝜙 + 𝑆𝑧𝑧 𝑒⃗𝑧 𝑒⃗𝑧.

(13)

Если записать уравнение равновесия, приходим к известной [19] зависимости

𝜌 (𝜌0) = 𝐴𝜌0 +
𝐵

𝜌0
. (14)

Найдем константы 𝐴, 𝐵. Из (13) и (14) выразим нормальные радиальные напряжения

𝑆𝜌𝜌 (𝜌0) = (4𝑐1 + 𝑐2) (𝐴− 1) + 𝑐2
𝐵

𝜌20
.
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Используем граничные условия 𝑆𝜌𝜌

⃒⃒⃒⃒
𝜌0=𝑎

= −𝑝, 𝑆𝜌𝜌
⃒⃒⃒⃒
𝜌0=𝑏

= 0 и запишем последнее выражение

на внутреннем и внешнем радиусах цилиндра:⎧⎪⎨⎪⎩
(4𝑐1 + 𝑐2)𝐴+ 𝑐2

𝐵

𝑎2
= 4𝑐1 + 𝑐2 − 𝑝,

(4𝑐1 + 𝑐2)𝐴+ 𝑐2
𝐵

𝑏2
= 4𝑐1 + 𝑐2.

(15)

Решим систему алгебраических уравнений (15) относительно 𝐴 и 𝐵:

𝐴 = 1− 𝑝𝑎2

(4𝑐1 + 𝑐2) (𝑎2 − 𝑏2)
,

𝐵 =
𝑝𝑎2𝑏2

𝑐2 (𝑎2 − 𝑏2)
.

(16)

Выражения (14), (16) вместе с (9) полностью определяют закон движения материальных
точек цилиндра, конкретизируют меры описания напряженно-деформированного состояния.
В частности, компонента окружных деформаций тензора Коши-Грина (5) примет вид:

(𝜀𝜙𝜙)𝑙𝑖𝑛 =
𝜌

𝜌0
− 1 = 𝐴+

𝐵

𝜌20
− 1 = 1− 𝑝𝑎2

(4𝑐1 + 𝑐2) (𝑎2 − 𝑏2)
+

+
𝑝𝑎2𝑏2

𝑐2𝜌2 (𝑎2 − 𝑏2)
− 1 =

𝑝𝑎2

𝑎2 − 𝑏2

(︂
𝑏2

𝜌20𝑐2
− 1

4𝑐1 + 𝑐2

)︂
.

На внутреннем и внешнем радиусах получим⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝜀𝜙𝜙)𝑙𝑖𝑛

⃒⃒⃒⃒
𝜌0=𝑎

=
𝑝𝑎2

𝑎2 − 𝑏2

(︂
𝑏2

𝑎2𝑐2
− 1

4𝑐1 + 𝑐2

)︂
= 𝑝𝑐*1,

(𝜀𝜙𝜙)𝑙𝑖𝑛

⃒⃒⃒⃒
𝜌0=𝑏

=
𝑝𝑎2

𝑎2 − 𝑏2

(︂
𝑏2

𝑐2
− 1

4𝑐1 + 𝑐2

)︂
= 𝑝𝑐*2.

(17)

Принимая во внимание, что 𝑐1, 𝑐2 – материальные константы, получим, что 𝑐*1, 𝑐
*
2 также

постоянные величины, а зависимости (17) – линейные относительно давления 𝑝. Таким обра-

зом, для нахождения 𝑐1, 𝑐2 на экспериментальных кривых 𝜀
𝑒
𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝), 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝) необходимо

выделить линейный участок, произвольная точка которого может быть использована для со-
ставления системы уравнений (17) относительно неизвестных 𝑐1, 𝑐2.

Рассмотрим вопрос возможности получения экспериментальных данных 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝),

𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝). Экспериментально наблюдаемыми величинами рассматриваемой постановки яв-

ляются деформированные значения внешнего 𝜌𝑒 (𝑏) и внутреннего 𝜌𝑒 (𝑎) радиусов и соответ-
ствующее внутреннее давление 𝑝𝑒. Используя выражение аффинора деформаций (10), запи-
шем тензор Коши-Грина

˜
𝜀𝜀𝜀 =

1

2
(
˜
ΦΦΦ ·

˜
ΦΦΦ⊺ −

˜
E) =

1

2

(︀
𝜌′ − 1

)︀2
𝑒⃗0𝜌𝑒⃗

0
𝜌 +

1

2

(︂
𝜌

𝜌0
− 1

)︂2

𝑒⃗0𝜙𝑒⃗
0
𝜙 = 𝜀𝜌𝜌𝑒⃗

0
𝜌𝑒⃗

0
𝜌 + 𝜀𝜙𝜙𝑒⃗

0
𝜙𝑒⃗

0
𝜙.

Таким образом, окружные деформации определяются соответствующими значениями де-

формированного радиуса и могут быть измерены 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝), 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝).

Применим методику конкретизации констант 𝑐1, 𝑐2 для следующих экспериментальных
данных, полученных для цилиндра, имеющие безразмерные геометрические характеристики
𝑎 = 0.5 и 𝑏 = 1:
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Рис. 2: Экспериментальные зависимости 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝), 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝)

Заметим, что представленные на рис. 2 зависимости были получены для материала, име-
ющего классическим образом определенные модуль сдвига, коэффициент объемного расши-
рения 𝐺𝑐𝑙𝑎𝑠𝑠𝑖𝑐 = 2.069 МПа, 𝐾𝑐𝑙𝑎𝑠𝑠𝑖𝑐 = 20 МПа соответственно. Выберем в качестве участка,

на котором 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝), 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝) растут предположительно линейно, интервал 𝑝 ∈ [0; 0.1]

МПа. Решив систему (17) для произвольной точки данного интервала, получим искомые зна-
чения материальных параметров. В таблице 1 приведены материальные константы 𝑐1, 𝑐2, а
также соответствующие им модули упругости 𝐺, 𝐾, выраженные с помощью системы (7).

Таблица 1: Материальные константы, найденные для значений 𝑝 = 0.025𝑖, 𝑖 ∈ [1; 4]

Внутреннее давление max
(︀
𝜀𝑒𝜙𝜙
)︀

𝑐1 𝑐1 𝐾 𝐺

0.025 0.0083909 11.067 −4.0717 19.419 2.0358

0.05 0.017059 10.891 −4.0055 19.111 2.0027

0.075 0.026021 10.714 −3.9391 18.802 1.9695

0.1 0.035293 10.536 −3.8724 18.491 1.9362

Анализируя приведенные в таблице 1 значения, наблюдаем, что вычисленные на основе по
представленной методике модули сдвига, объемного расширения асимптотически вырожда-
ются в классические значения с уменьшением внутреннего давления и приближения экспери-

ментальных зависимостей 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑎

(𝑝), 𝜀𝑒𝜙𝜙

⃒⃒⃒⃒
𝜌0=𝑏

(𝑝) к линейным. Таким образом, определение

параметров может быть осуществлено как с помощью стандартным образом определенных
модулей 𝐺𝑐𝑙𝑎𝑠𝑠𝑖𝑐, 𝐾𝑐𝑙𝑎𝑠𝑠𝑖𝑐, так и посредством представленной методики.

Заключение

Предложена методика конкретизации модулей упругости двухконстантного определяюще-
го соотношения на основе решения задачи Ламе для полого изотропного однородного цилин-
дра. Показано, что выделение линейной части экспериментальных зависимостей поверхност-
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ных окружных деформаций от внутреннего давления приводит к определению классических
модулей. Это означает, что классические модули данного материала должны входить в нели-
нейные определяющие соотношения. Результаты применения методики могут быть использо-
ваны как непосредственно, так и в целях минимизации числа экспериментов, используемых
при решении задачи конкретизации определяющих соотношений нелинейной теории упруго-
сти.
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В статье рассматривается задача о дифракции цилиндрической гармонической звуко-
вой волны на неоднородном жидком сфероиде с абсолютно жестким шаровым включением.
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ник, генерирующий звуковые волны, параллелен оси вращения сфероида. Материал сфе-
роида характеризуется переменными плотностью и скоростью звука, которые являются
непрерывными функциями радиальной координаты.

Методом возмущений получено приближенное аналитическое решение задачи с исполь-
зованием разложений по волновым сферическим функциям.

Представлены результаты численных расчетов диаграмм направленности рассеянного
акустического поля в дальней зоне.
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Abstract

In paper the problem of diffraction of a cylindrical harmonic sound wave on an inhomoge-
neous liquid spheroid with an absolutely rigid spherical inclusion is considered.

It is assumed that the square eccentricity of the spheroid is a small value. The spheroid
is placed in an infinite homogeneous incompressible ideal liquid. A linear source generating
sound waves is parallel to the axis of rotation of the spheroid. The material of the spheroid
is characterized by variable density and speed of sound which are continuous functions of the
radial coordinate.

An approximate analytical solution is obtained by the perturbation method problems with
using decompositions in a row by spherical wave functions.

The results of numerical calculations of the directional patterns of the scattered acoustic
field in the far zone are presented.
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1. Введение

Дифракция гармонических звуковых волн на жидких сфероидах и сфероидальных телах
из подобных жидкости материалов, в которых не распространяются сдвиговые волны, иссле-
довалась в ряде работ.

В [1 – 4] получены решения задач о рассеянии плоских звуковых волн на однородных
проницаемых (жидких) сфероидах.

Работы [5, 6] посвящены изучению дифракции плоских звуковых волн на неоднородных
жидких сфероидах, находящихся в однородной идеальной жидкости.

Дифракция плоских звуковыях волн на абсолютно жестком сфероиде, окруженном неод-
нородным жидким слоем, обсуждалась в [7].

В [8] решена задача о рассеянии плоской звуковой волны неоднородным проницаемым
сфероидом с жестким шаровым включением.
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Непрерывно-неоднородное тело можно аппроксимировать дискретно-слоистым, то есть те-
лом состоящим из совокупности тонких однородных слоев. Подобный подход для сфероидаль-
ных тел реализован в работах [9 – 11]. Задача о рассеянии сферической волны на многослойном
проницаемом сфероиде с жестким сфероидальным включением решена в [9]. На основе по-
лученного решения рассмотрен случай одного сфероидального жидкого слоя, окружающего
жесткий сфероид [10]. В [11] рассматривается дифракция цилиндрических звуковых волн на
многослойном проницаемом сфероиде с абсолютно жестким сфероидальным включением.

В настоящей работе рассматривается задача о дифракции звуковых волн, излучаемых
линейным источником, на неоднородном жидком сфероиде с абсолютно жестким шаровым
включением.

2. Постановка задачи

Рассмотрим неоднородный жидкий сфероид с полуосью вращения 𝑎 и второй полуосью 𝑏,

эксцентриситет которого 𝜀. Причем для вытянутого сфероида (𝑎 > 𝑏) 𝜀 =

(︂
1− 𝑏2

𝑎2

)︂1/2

, а для

сплюснутого сфероида (𝑎 < 𝑏) 𝜀 =

(︂
1− 𝑎2

𝑏2

)︂1/2

. Сфероид имеет абсолютно жесткое шаровое

включение радиуса 𝑟0. Центры сфероида и шара совмещены. Сфероид помещен в безгранич-
ную однородную сжимаемую идеальную жидкость, которая характеризуется плотностью в
невозмущенном состоянии 𝜌1 и скоростью звука 𝑐1.

Введем прямоугольную декартову систему координат 𝑥, 𝑦, 𝑧 с началом в центре сфероида
так, чтобы ось вращения сфероида располагалась на оси 𝑧. Свяжем с координатной системой
𝑥, 𝑦, 𝑧 сферическую 𝑟, 𝜃, 𝜙 и цилиндрическую 𝑟, 𝜙, 𝑧 системы координат, начала которых
совмещены с центром сфероида:

𝑥 = 𝑟 sin 𝜃 cos𝜙, 𝑦 = 𝑟 sin 𝜃 sin𝜙, 𝑧 = cos 𝜃;

𝑥 = 𝑟 cos𝜙, 𝑦 = 𝑟 sin𝜙, 𝑧 = 𝑧.

Уравнение сфероида в сферической системе координат имеет вид

𝑟(𝜃) = 𝑎(1− 𝑒 sin2 𝜃)−1/2, (2.1)

где 𝑒 =
𝜀2

𝜀2 − 1
для вытянутого сфероида и 𝑒 = 𝜀2 для сплюснутого сфероида.

Будем полагать, что материал сфероида характеризуется переменными плотностью 𝜌 и
скоростью звука 𝑐, которые являются непрерывными функциями радиальной координаты 𝑟:

𝜌 = 𝜌(𝑟); 𝑐 = 𝑐(𝑟).

Из внешнего пространства на сфероид падает гармоническая симметричная цилиндриче-
ская звуковая волна давления 𝑝0, излучаемая бесконечно длинным линейным источником с
временной зависимостью 𝑒−𝑖𝜔𝑡, где 𝜔 — круговая частота; 𝑡 — время (в дальнейшем временной
множитель будем опускать). Линейный источник параллелен оси вращения сфероида и имеет
цилиндрические координаты (𝑟0, 𝜙0) (рис. 1). Без ограничения общности положим 𝜙0 = 0.

Падающая волна имеет вид

𝑝0 = 𝐴𝐻0(𝑘1𝑅), 𝑅 = [𝑟2 + 𝑟20 − 2𝑟𝑟0 cos𝜙]1/2,
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Рис. 1: Геометрия задачи

где 𝐴 — амплитуда падающей волны, 𝐻0(𝑥) — цилиндрическая функция Ганкеля первого
рода нулевого порядка, 𝑘1 = 𝜔/𝑐1 — волновое число содержащей жидкости, 𝑅 — расстояние
от источника до произвольной точки внешнего пространства.

Определим акустическое поле, рассеянное сфероидом, в предположении малости величины
𝑒.

3. Математическая модель задачи

Распространение малых возмущений в однородной идеальной жидкости в случае устано-
вившихся колебаний описывается уравнением Гельмгольца [12]

Δ𝑝1 + 𝑘21𝑝1 = 0, (3.1)

где 𝑝1 = 𝑝0 + 𝑝𝑠 — давление полного акустического поля во внешней области; 𝑝𝑠 — звуковое
давление в рассеянной волне; 𝑘1 = 𝜔/𝑐1 — волновое число внешней среды.

Распространение звука в неоднородной сжимаемой идеальной жидкости описывается урав-
нением [13]

Δ𝑝+ 𝑘2𝑝− 1

𝜌
grad 𝜌 · grad 𝑝 = 0, (3.2)

где 𝑝 — звуковое давление в неоднородной среде; 𝑘 = 𝜔/𝑐 — волновое число в неоднородной
жидкости; 𝑐 = 𝑐(𝑟); 𝜌 = 𝜌(𝑟).

Скорости частиц в однородной и неоднородной жидкостях определяются соответственно
по формулам

v1 =
1

𝑖𝜌1𝜔
grad 𝑝1, v =

1

𝑖𝜌𝜔
grad 𝑝. (3.3)

Граничные условия на поверхности сфероида 𝑆 заключаются в равенстве нормальных ско-
ростей частиц внешней среды и неоднородной жидкости и равенстве акустических давлений

𝑣𝑛1|𝑆 = 𝑣𝑛|𝑆 , 𝑝1|𝑆 = 𝑝|𝑆 . (3.4)

Граничное условие на поверхности жесткого шарового включения заключается в равенстве
нулю нормальной скорости частиц прилегающей неоднородной жидкости

𝑣𝑛|𝑟=𝑟0 = 0. (3.5)
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Кроме того, для давления в рассеянной волне должно выполняться условие излучения на
бесконечности [12]

lim
𝑟→∞

𝑟

(︂
𝜕𝑝𝑠
𝜕𝑟
− 𝑖𝑘1𝑝𝑠

)︂
= 0. (3.6)

Таким образом, в математической постановке задача заключается в нахождении решений
дифференциальных уравнений (3.1) и (3.2), удовлетворяющих граничным условиям (3,4) и
(3.5), а также условию излучения на бесконечности (3.6).

4. Аналитическое решение задачи

В цилиндрической системе координат падающая цилиндрическая волна может быть пред-
ставлена разложением [14]

𝑝0 = 𝐴

∞∑︁
𝑚=0

(2− 𝛿0𝑚) cos𝑚𝜙

{︂
𝐽𝑚(𝑘1𝑟)𝐻𝑚(𝑘1𝑟0), 𝑟 < 𝑟0;
𝐽𝑚(𝑘1𝑟0)𝐻𝑚(𝑘1𝑟), 𝑟 > 𝑟0,

(4.1)

где 𝐽𝑚(𝑥) и 𝐻𝑚(𝑥) — цилиндрические функции Бесселя и Ганкеля первого рода порядка 𝑚,
𝛿0𝑚 — символ Кронекера.

В сферической системе координат уравнение Гельмгольца, которому удовлетворяет иско-
мое давление 𝑝𝑠, уравнение (3.2) и граничные условия (3.4), (3.5) принимают вид

1

𝑟2

[︂
𝜕

𝜕𝑟

(︂
𝑟2
𝜕𝑝𝑠
𝜕𝑟

)︂
+

1

sin 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕𝑝𝑠
𝜕𝜃

)︂
+

1

sin2 𝜃

𝜕2𝑝𝑠
𝜕𝜙2

]︂
+ 𝑘21𝑝𝑠 = 0, (4.2)

𝜕2𝑝

𝜕𝑟2
+

(︂
2

𝑟
− 1

𝜌(𝑟)

𝑑𝜌

𝑑𝑟

)︂
𝜕𝑝

𝜕𝑟
+

1

𝑟2 sin2 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕𝑝

𝜕𝜃

)︂
+

1

𝑟2 sin2 𝜃

𝜕2𝑝

𝜕𝜙2
+ 𝑘2(𝑟)𝑝 = 0; (4.3)

𝜌−1
1

𝜕

𝜕𝑛
(𝑝0 + 𝑝𝑠)

⃒⃒⃒⃒
𝑟=𝑟(𝜃)

= 𝜌−1(𝑟)
𝜕𝑝

𝜕𝑛

⃒⃒⃒⃒
𝑟=𝑟(𝜃)

, (𝑝0 + 𝑝𝑠)|𝑟=𝑟(𝜃) = 𝑝|𝑟=𝑟(𝜃); (4.4)

𝜕𝑝

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟0

= 0. (4.5)

При этом
𝜕

𝜕𝑛
определяется формулой

𝜕

𝜕𝑛
= cos 𝛾

𝜕

𝜕𝑟
+ sin 𝛾

1

𝑟

𝜕

𝜕𝜃
, (4.6))

где 𝛾 — угол между радиус-вектором r и внешней нормалью n к поверхности тела, а выра-
жение для cos 𝛾 имеет вид

cos 𝛾 =

[︃
1 +

(︂
𝑒 sin 𝜃 cos 𝜃

1− 𝑒 sin2 𝜃

)︂2
]︃−1/2

. (4.7))

Получим приближенное решение задачи методом возмущений [15].
Искомые функции 𝑝𝑠 и 𝑝 представим в виде разложений по малому параметру 𝑒

𝑝𝑠(𝑟, 𝜃, 𝜙) = 𝑝0𝑠(𝑟, 𝜃, 𝜙) + 𝑒𝑝1𝑠(𝑟, 𝜃, 𝜙) + . . . , (4.8)

𝑝(𝑟, 𝜃, 𝜙) = 𝑝0(𝑟, 𝜃, 𝜙) + 𝑒𝑝1(𝑟, 𝜃, 𝜙) + . . . , (4.9)
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ограничиваясь членами со степенями 𝑒 не выше первой.
Подставим разложения (4.8) и (4.9) в уравнения (4.2) и (4.3) и приравниваем нулю члены

с одинаковыми степенями 𝑒. В результате для определения функций 𝑝𝑗𝑠 и 𝑝𝑗 (𝑗 = 0, 1) получим
следующие уравнения:

1

𝑟2

[︃
𝜕

𝜕𝑟

(︃
𝑟2
𝜕𝑝𝑗𝑠
𝜕𝑟

)︃
+

1

sin 𝜃

𝜕

𝜕𝜃

(︃
sin 𝜃

𝜕𝑝𝑗𝑠
𝜕𝜃

)︃
+

1

sin2 𝜃

𝜕2𝑝𝑗𝑠
𝜕𝜙2

]︃
+ 𝑘21𝑝

𝑗
𝑠 = 0, (4.10)

𝜕2𝑝𝑗

𝜕𝑟2
+

(︂
2

𝑟
− 1

𝜌(𝑟)

𝑑𝜌

𝑑𝑟

)︂
𝑑𝑝𝑗

𝑑𝑟
+

1

𝑟2 sin2 𝜃

𝜕

𝜕𝜃

(︂
sin 𝜃

𝜕𝑝𝑗

𝜕𝜃

)︂
+

1

𝑟2 sin2 𝜃

𝜕2𝑝𝑗

𝜕𝜙2
+𝑘2(𝑟)𝑝𝑗 = 0, 𝑗 = 0, 1. (4.11)

С выбранной степенью точности из (4.6) и (4.7) находим

cos 𝛾 = 1 +𝑂(𝑒2), sin 𝛾 = −𝑒 sin 𝜃 cos 𝜃 +𝑂(𝑒2),
𝜕

𝜕𝑛
=

𝜕

𝜕𝑟
− 𝑒 sin 𝜃 cos 𝜃

1

𝑟

𝜕

𝜕𝜃
. (4.12)

С учетом (4.12) подставим разложения (4.8) и (4.9) в граничные условия (4.3) и (4.4),
а затем приравняем члены с одинаковыми степенями 𝑒, стоящие в левой и правой частях
каждого уравнения. Поскольку условия (4.3) и (4.4) должны выполняться на поверхности
сфероида 𝑟 = 𝑟(𝜃), определяемой выражением (2.1), то в этих условиях 𝑟 представляет собой
функцию от 𝜃. Поэтому в каждое граничное условие параметр 𝑒 будет входить как явно, так
и неявно. Cледовательно, непосредственно приравнять члены с одинаковыми степенями 𝑒 в
левой и правой частях уравнений не представляется возможным. Необходимо предварительно
разложить все функции, неявно содержащие 𝑒, в ряды Тейлора в окрестности 𝑟 = 𝑎 с тем,
чтобы получить их явную зависимость от 𝑒. Проделав указанные операции и сохранив только
линейные относительно 𝑒 члены, получим следующие условия:

1

𝜌1

𝜕

𝜕𝑟
(𝑝0 + 𝑝0𝑠)

⃒⃒⃒⃒
𝑟=𝑎

=
1

𝜌(𝑟)

𝜕𝑝0

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑎

, (4.13)

[𝑝0 + 𝑝0𝑠]𝑟=𝑎 = 𝑝0|𝑟=𝑎, (4.14)

𝜕𝑝1𝑠
𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑎

=

{︂
𝜌1
𝜌(𝑎)

𝜕𝑝1

𝜕𝑟
+
𝑎

2
sin2 𝜃

[︂
𝜌1
𝜌(𝑎)

(︂
𝜕2𝑝0

𝜕𝑟2
− 1

𝜌(𝑎)

𝑑𝜌

𝑑𝑟

𝜕𝑝0

𝜕𝑟

)︂
− 𝜕2

𝜕𝑟2
(𝑝0 + 𝑝0𝑠)

]︂
+

+
1

𝑎
sin 𝜃 cos 𝜃

[︂
𝜕

𝜕𝜃
(𝑝0 + 𝑝0𝑠)−

𝜌1
𝜌(𝑎)

𝜕𝑝0

𝜕𝜃

]︂}︂
𝑟=𝑎

, (4.15)

𝑝1𝑠|𝑟=𝑎 =

[︂
𝑝1 +

𝑎

2
sin2 𝜃

𝜕

𝜕𝑟
(𝑝0 − 𝑝0 − 𝑝0𝑠)

]︂
𝑟=𝑎

. (4.16)

Теперь подставим (4.9) в условие (4.5). Получаем

𝜕𝑝𝑗

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟0

= 0, 𝑗 = 0, 1. (4.17)

Уравнения (4.10) и (4.11) будем решать методом разделения переменных. Так как акусти-
ческие поля во внешней среде и в неоднородной части сфероида симметричны относительно
плоскости 𝑥𝑂𝑧, то с учетом условий излучения на бесконечности (3.6) функций 𝑝𝑗𝑠 (𝑗 = 0, 1)
будем искать в виде

𝑝𝑗𝑠 =

∞∑︁
𝑛=0

𝑛∑︁
𝑚=0

𝐴𝑗
𝑚𝑛ℎ𝑛(𝑘1𝑟)𝑃

𝑚
𝑛 (cos 𝜃) cos𝑚𝜙, (4.18),
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а функции 𝑝𝑗 (𝑗 = 0, 1) — в виде

𝑝𝑗 =
∞∑︁
𝑛=0

𝑛∑︁
𝑚=0

𝑅𝑗
𝑛(𝑟)𝑃𝑚

𝑛 (cos 𝜃) cos𝑚𝜙. (4.19)

Здесь ℎ𝑛(𝑥) — сферическая функция Ганкеля первого рода порядка 𝑛; 𝑃𝑚
𝑛 (𝑥) — присоеди-

ненный многочлен Лежандра степени 𝑛 порядка 𝑚. Коэффициенты 𝐴𝑗
𝑚𝑛 и функции 𝑅𝑗

𝑛(𝑟)
(𝑗 = 0, 1) подлежат определению.

Подставляя (4.19) в уравнение (4.11) и используя дифференциальное уравнение для при-
соединенных многочленов Лежандра [14]

1

sin 𝜃

𝑑

𝑑𝜃

(︂
sin 𝜃

𝑑

𝑑𝜃
𝑃𝑚
𝑛 (cos 𝜃)

)︂
+

[︂
𝑛(𝑛+ 1)− 𝑚2

sin2 𝜃

]︂
𝑃𝑚
𝑛 (cos 𝜃) = 0,

получим линейное обыкновенное дифференциальное уравнение второго порядка с перемен-
ными коэффициентами относительно неизвестной функции 𝑅𝑗

𝑛(𝑟) (𝑗 = 0, 1) для каждого 𝑛
(𝑛 = 0, 1, 2, ...)

𝑑2𝑅𝑗
𝑛

𝑑𝑟2
+ 𝑔(𝑟)

𝑑𝑅𝑗
𝑛

𝑑𝑟
+ 𝑞(𝑟)𝑅𝑗

𝑛 = 0, (4.20)

где

𝑔(𝑟) =
2

𝑟
− 1

𝜌(𝑟)

𝑑𝜌

𝑑𝑟
, 𝑞(𝑟) = 𝑘2(𝑟)− 𝑛(𝑛+ 1)

𝑟2
.

Используя условия (4.13) – (4.17) определим коэффициенты 𝐴0
𝑚𝑛, 𝐴

1
𝑚𝑛 и по два краевых

условия для дифференциальнолго уравнения (4.20) при 𝑗 = 0 и 𝑗 = 1.
Прежде всего получим интегральные соотношения между цилиндрическими и сферически-

мими функциями, которые будут использованы при удовлетворении условий (4.13) – (4.17).
Воспользуемся соотношением [14]

𝜋∫︁
0

𝐽𝑚(𝑘1𝑟 sin 𝜃)𝑃𝑚
𝑛 (cos 𝜃) sin 𝜃 𝑑𝜃 = 2𝑖𝑛−𝑚𝑗𝑛(𝑘1𝑟)𝑃

𝑚
𝑛 (0), (4.21)

где 𝑗𝑛(𝑥) — сферическая функция Бесселя порядка 𝑛, а величина 𝑃𝑚
𝑛 (0) определятся форму-

лой [16]

𝑃𝑚
𝑛 (0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, (𝑛−𝑚)— нечетное;

(−1)
𝑛−𝑚

2 (𝑛+𝑚)!

2𝑛
(︀
𝑛−𝑚
2

)︀
!
(︀
𝑛+𝑚
2

)︀
!
, (𝑛−𝑚)— четное.

Дифференцируя обе части равенства (4.21) по 𝑘1𝑟, получим

𝜋∫︁
0

𝐽 ′
𝑚(𝑘1𝑟 sin 𝜃)𝑃𝑚

𝑛 (cos 𝜃) sin2 𝜃 𝑑𝜃 = 2𝑖𝑛−𝑚𝑗′𝑛(𝑘1𝑟)𝑃
𝑚
𝑛 (0). (4.22)

Здесь и далее штрихи обозначают дифференцирование по аргументу.
Подставим (4.1), (4.18) и (4.19) в условия (4.13) – (4.16), заменяя цилиндрическую коор-

динату 𝑟 ее выражением 𝑟 sin 𝜃 в сферических координатах. Затем умножим левые и правые
части полученных равенств на 𝑃𝑚

𝑙 (cos 𝜃) sin 𝜃 и проинтегрируем по 𝜃 от 0 до 𝜋.
Используя интегральные соотношения (4.21) и (4.22), условия ортогональности для при-

соединенных многочленов Лежандра [16]

𝜋∫︁
0

𝑃𝑚
𝑛 (cos 𝜃)𝑃𝑚

𝑙 (cos 𝜃) sin 𝜃 𝑑𝜃 =

⎧⎨⎩
0, 𝑛 ̸= 𝑙;

𝑁𝑚𝑙, 𝑛 = 𝑙,
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где 𝑁𝑚𝑙 =
2

(2𝑙 + 1)

(𝑙 +𝑚)!

(𝑙 −𝑚)!
— квадрат нормы присоединенных многочленов Лежандра,

и выражение для вронскиана

𝑗𝑛(𝑥)ℎ′𝑛(𝑥)− 𝑗′𝑛(𝑥)ℎ𝑛(𝑥) =
𝑖

𝑥2
,

получим следующие выражения для коэффициентов 𝐴𝑗
𝑚𝑛 (𝑗 = 0, 1) и краевые условия для

уравнения (4.20) при 𝑟 = 𝑎:

𝐴0
𝑚𝑛 =

𝑅0
𝑛(𝑎)𝑁𝑚𝑛 − 2𝐴(2− 𝛿0𝑚)𝑖𝑛−𝑚𝐻𝑚(𝑘1𝑟0)𝑗𝑛(𝑘1𝑎)𝑃𝑚

𝑛 (0)

ℎ𝑛(𝑘1𝑎)𝑁𝑚𝑛
,

𝐴1
𝑚𝑛 =

𝑅1
𝑛(𝑎)

ℎ𝑛(𝑘1𝑎)
+

𝑎

2𝑁𝑚𝑛ℎ𝑛(𝑘1𝑎)

{︃
−𝐴𝑘1(2− 𝛿0𝑚)𝐻𝑚(𝑘1𝑟0)𝛾𝑚𝑛 +

∞∑︁
𝑙=𝑚

[︀
𝑅0

𝑙
′(𝑎)−𝐴0

𝑚𝑙𝑘1ℎ
′
𝑙(𝑘1𝑎)

]︀
𝛼𝑚
ln

}︃
,

𝑅0
𝑛
′(𝑟) + 𝑎𝑛𝑅

0
𝑛(𝑟)

⃒⃒
𝑟=𝑎

= 𝑏𝑚𝑛, (4.23)

𝑅1
𝑛
′(𝑟) + 𝑎𝑛𝑅

1
𝑛(𝑟)

⃒⃒
𝑟=𝑎

= 𝑐𝑚𝑛, (4.24)

где

𝛾𝑚𝑛 =

𝜋∫︁
0

sin4 𝜃𝑃𝑚
𝑛 (cos 𝜃)𝐽 ′

𝑚(𝑘1𝑎 sin 𝜃) 𝑑𝜃; 𝛼𝑚
𝑙𝑛 =

∫︁ 𝜋

0
sin3 𝜃𝑃𝑚

𝑙 (cos 𝜃)𝑃𝑚
𝑛 (cos 𝜃) 𝑑𝜃;

𝑎𝑛 = −𝑘1ℎ
′
𝑛(𝑘1𝑎)𝜌(𝑎)

𝜌1ℎ𝑛(𝑘1𝑎)
; 𝑏𝑚𝑛 = − 𝑖𝐴2(2− 𝛿0𝑚)𝑖𝑛−𝑚𝐻𝑚(𝑘1𝑟0)𝑃

𝑚
𝑛 (0)𝜌(𝑎)

𝑘1𝑎2𝜌1ℎ𝑛(𝑘1𝑎)𝑁𝑚𝑛
;

𝑐𝑚𝑛 =
𝑎𝜌(𝑎)

2𝜌1𝑁𝑚𝑛

{︃
𝐴(2− 𝛿0𝑚)𝐻𝑚(𝑘1𝑟0)𝑓𝑚𝑛 +

∞∑︁
𝑙=𝑚

[︂(︂
− 𝜌1
𝜌(𝑎)

𝑅0
𝑙
′′(𝑎)+

+𝑓
(1)
𝑛𝑙 𝑅

0
𝑙
′(𝑎) + 𝑓

(2)
𝑛𝑙 𝐴

0
𝑚𝑙

)︁
𝛼𝑚
𝑙𝑛 −

2

𝑎2

(︂
𝐴0

𝑚𝑙ℎ𝑙(𝑘1𝑎)− 𝜌1
𝜌(𝑎)

𝑅0
𝑙 (𝑎)

)︂
𝛽𝑚𝑙𝑛

]︂}︂
;

𝑓1𝑛𝑙 =
𝜌1𝜌

′(𝑎)

𝜌2(𝑎)
+
𝑘1ℎ𝑛

′(𝑘1𝑎)

ℎ𝑛(𝑘1𝑎)
; 𝑓2𝑛𝑙 = 𝑘21

ℎ𝑛(𝑘1𝑎)ℎ𝑙
′′(𝑘1𝑎)− ℎ𝑛′(𝑘1𝑎)ℎ𝑙

′(𝑘1𝑎)

ℎ𝑛(𝑘1𝑎)
;

𝛽𝑚𝑙𝑛 =

𝜋∫︁
0

sin2 𝜃 cos 𝜃𝑃𝑚
𝑙 (cos 𝜃)

𝑑

𝑑𝜃
𝑃𝑚
𝑛 (cos 𝜃)𝑑𝜃; 𝑓𝑛𝑚 = 𝑘21

[︂
−ℎ𝑛

′(𝑘1𝑎)

ℎ𝑛(𝑘1𝑎)
𝛾𝑚𝑛 + 𝜆𝑚𝑛 −

2

𝑘1𝑎
𝜇𝑚𝑛

]︂
;

𝜆𝑚𝑛 =

𝜋∫︁
0

sin5 𝜃𝑃𝑚
𝑛 (cos 𝜃)𝐽 ′′

𝑚(𝑘1𝑎 sin 𝜃)𝑑𝜃; 𝜇𝑚𝑛 =

𝜋∫︁
0

sin2 𝜃 cos2 𝜃𝑃𝑚
𝑛 (cos 𝜃)

𝑑

𝑑𝜃
𝐽𝑚(𝑘1𝑎 sin 𝜃)𝑑𝜃.

Подстановка (4.19) в (4.17) дает два краевых условия при 𝑟 = 𝑟0

𝑅0
𝑛
′(𝑟)
⃒⃒
𝑟=𝑟0

= 0, (4.25)

𝑅1
𝑛
′(𝑟)
⃒⃒
𝑟=𝑟0

= 0. (4.26)

Коэффициенты 𝐴0
𝑚𝑛 и 𝐴1

𝑚𝑛 могут быть вычислены только после нахождения значений
𝑅0

𝑛(𝑎), 𝑅1
𝑛(𝑎), 𝑅0

𝑛
′(𝑎). Для нахождения этих значений необходимо решить краевые задачи для
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обыкновенного дифференциального уравнения (4.20) при 𝑗 = 0 и 𝑗 = 1 с краевыми условиями
(4.23), (4.25) и (4.24), (4.26) соответственно.

После решения краевых задач вычисляются коэффициенты 𝐴𝑗
𝑚𝑛 (𝑗 = 0, 1). В результате

получаем приближенное аналитическое описание рассеянного акустического поля с помощью
выражений (4.8) и (4.18).

Отметим, что из решения задачи дифракции цилиндрических волн на неоднородном сфе-
роиде с абсолютно жестким включением можно найти решение задачи для случая, когда
падающая волна является плоской. Для этого в полученном решении, считая, что расстоя-
ние между источником и рассеивателем достаточно велико ( 𝑘1𝑟0 >> 1), следует заменить
функцию 𝐻𝑚(𝑘1𝑟0) ее асимптотическим выражением при больших значениях аргумента [16]

𝐻𝑚(𝑘1𝑟0) ≈
√︂

2

𝜋𝑘1𝑟0
exp

[︁
𝑖
(︁
𝑘1𝑟0 −

𝜋𝑚

2
− 𝜋

4

)︁]︁
.

В результате получим решение задачи дифракции плоской волны, амплитуда которой рав-
на

𝐴

√︂
2

𝜋𝑘1𝑟0
exp

[︁
𝑖
(︁
𝑘1𝑟0 − 𝜋𝑚−

𝜋

4

)︁]︁
.

Рассмотрим дальнюю зону рассеянного акустического поля. Используя асимптотическую
формулу для сферической функции Ганкеля первого рода при больших значениях аргумента
(𝑘1𝑟 >> 1) [16]

ℎ𝑛(𝑘1𝑟) ≈ (−𝑖)𝑛+1 𝑒
𝑖𝑘1𝑟

𝑘1𝑟
,

из (4.8) и (4.18) находим

𝑝𝑠 ≈
𝑎

2𝑟
exp(𝑖𝑘1𝑟)𝐹 (𝜃, 𝜙),

где

𝐹 (𝜃, 𝜙) =
2

𝑘1𝑎

∞∑︁
𝑛=0

𝑛∑︁
𝑚=0

(−𝑖)𝑛+1(𝐴0
𝑚𝑛 + 𝑒 𝐴1

𝑚𝑛)𝑃𝑚
𝑛 (cos 𝜃) cos 𝑚𝜙. (4.27)

5. Численные исследования

На основании выражения (4.27) были проведены расчеты угловых характеристик рассе-
янного акустического поля в дальней зоне. Диаграммы направленности |𝐹 (𝜃, 𝜙)| /𝐴 рассчи-
тывались в диапазоне углов 0 ⩽ 𝜃 ⩽ 𝜋 в плоскости 𝑥𝑂𝑧 для сфероида, находящегося в воде
(𝜌1 = 103 кг/м3, 𝑐1 = 1485 м/с).

Расчеты проводились как для однородного сфероида с плотностью 𝜌 = 1.26 · 103 кг/м3 и
скоростью звука 𝑐 = 1920 м/с (глицерин), так и для неоднородного материала, механические
характеристики которого менялись по радиальной координате по квадратичным законам

𝜌 = 𝜌 𝑓(𝑟), 𝑐 = 𝑐 𝑓(𝑟),

𝑓1(𝑟) = 100

(︂
𝑟 − 𝑟0
𝑎− 𝑟0

)︂2

+ 1, 𝑓2(𝑟) = 100

(︂
𝑎− 𝑟
𝑎− 𝑟0

)︂2

+ 1.

Зависимости 𝑓1(𝑟) и 𝑓2(𝑟) выбраны такими, что их графики являются зеркальным отоб-
ражением друг друга относительно прямой 𝑟 = (𝑟0 + 𝑎)/2. При этом функция 𝑓1(𝑟) достигает
максимума при 𝑟 = 𝑎, а на поверхности шара при 𝑟 = 𝑟0 – минимума. Функция 𝑓2(𝑟) достигает
тех же максимальных и минимальных значений, но уже наоборот на поверхностях 𝑟 = 𝑟0 и
𝑟 = 𝑎.
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Краевые задачи для дифференциального уравнения (4.20) при 𝑗 = 0 и 𝑗 = 1 решены
методом сведения их к задачам с начальными условиями. Решение задач Коши проведено
методом Рунге-Кутты четвертого порядка [17].

На рис. 2 – 4 представлены диаграммы направленности, рассчитанные для волнового раз-
мера сфероида 𝑘1𝑎 = 3 при 𝑒 = 0, 𝑒 = −0.2 и 𝑒 = 0.2. При этом полагалось: 𝑟0 = 4 м, 𝑟0 = 0.1
м, 𝑎 = 1.1 м.

На лучах диаграмм отложены значения безразмерной амплитуды рассеяния |𝐹 |/𝐴, вычис-
ленной для соответствующих значений угла 𝜃. На рисунках сплошная линия соответствует
однородному сфероиду, штриховая – неоднородному вида 𝑓1(𝑟), пунктирная – неоднородному
вида 𝑓2(𝑟). Стрелкой показано направление падения волны.

Рис. 2: Диаграммы направленности при 𝑒 = 0

Рис. 3: Диаграммы направленности при 𝑒 = −0.2
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Рис. 4: Диаграммы направленности при 𝑒 = 0.2

На рис. 5 представлены диаграммы направленности, рассчитанные для однородного сфе-
роида при 𝑘1𝑎 = 3, 𝑒 = −0.2 и разном удалении линейного источника от сфероида: 𝑘1𝑟0 = 5
(пунктирная линия), 𝑘1𝑟0 = 8 (штриховая линия) и 𝑘1𝑟0 = 50 (сплошная линия). Для сравне-
ния приведена диаграмма направленности для случая падения плоской волны (штрихпунк-
тирная линия).

Рис. 5: Диаграммы направленности при разном удалении линейного источника от сфероида

6. Заключение

В настоящей работе методом возмущений получено приближенное аналитическое реше-
ние задачи дифракции симметричной цилиндрической звуковой волны на жидком сфероиде
с жестким шаровым включением. Найденное решение позволяет численно исследовать рассе-
янное сфероидом акустическое поле при любых значениях волнового размера тела 𝑘𝑎 и про-
извольном удалении линейного источника от рассеивателя. Проведенные численные расчеты
показали, что что диаграмма направленности рассеянного поля в дальней зоне существенно
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зависит от конфигурации тела и закона неоднородности материала сфероида. При прибли-
жении источника к рассеивателю диаграммы направленности существенно изменяются, что
подтверждает необходимость учета криволинейности фронта падающей волны.
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