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Аннотация

В данной статье рассматриваются различные подходы к построению максимальных
абелевых расширений для локальных и глобальных геометрических полей. Теория Лю-
бина — Тейта играет ключевую роль в построении максимального Абелева расширения
для локальных геометрических полей. В случае глобальных геометрических полей особый
интерес представляют модули Дринфельда. В настоящей работе рассматривается самый
простой частный случай модулей Дринфельда для проективной прямой, который называ-
ется модулем Карлица.

Во введении мы приводим мотивацию и краткую историческую справку по затронутым
в работе темам.

В первом и втором разделах мы приводим краткую информацию о модулях Любина-
Тейта и модуле Карлица.

В третьем разделе мы приводим два основных результата:

• установлена явная связь между теориями глобальных и локальных полей в геомет-
рическом случае проективной прямой над конечным полем: доказано, что башня рас-
ширения модуля Карлица индуцирует башню расширений Любина-Тейта.

• установлена связь между отображениями Артина расширений функционального по-
ля произвольной проективной гладкой неприводимой кривой и расширениями попол-
нений локальных колец в замкнутых точках этой кривой.

В последнем разделе мы формулируем различные открытые задачи и интересные на-
правления для дальнейших исследований, которые включают обобщение первого резуль-
тата для произвольной гладкой проективной кривой над конечным полем и рассмотрение
модулей Дринфельда более высокого ранга.

Ключевые слова: теория полей классов, теория Любина — Тейта, модуль Карлица, мо-
дули Дринфельда, отображение Артина, максимальное абелево расширение, проективная
прямая над конечным полем.
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Abstract

In this article we consider different approaches for constructing maximal abelian extensions
for local and global geometric fields. The Lubin–Tate theory plays key role in the maximal
abelian extension construction for local geometric fields. In the case of global geometric fields,
Drinfeld modules are of particular interest. In this paper we consider the simpliest special case
of Drinfeld modules for projective line which is called the Carlitz module.

In the introduction, we provide motivation and a brief historical background on the topics
covered in the work.

In the first and second sections we provide brief information about Lubin–Tate modules and
Carlitz module.

In the third section we present two main results:

• an explicit connection between the local and global field theory in the geometric case for
projective line over finite field: it is proved that the extension tower of Carlitz module
induces the tower of the Lubin–Tate extensions.

• a connection between Artin maps of extensions of a function field of an arbitrary projective
smooth irreducible curve and extensions of completions of local rings at closed points of
this curve.

In the last section we formulate different open problems and interesting directions for further
research, which include generalization first result for an arbitrary smooth projective curve over
a finite field and consideration Drinfeld modules of higher rank.

Keywords: class field theory, Lubin–Tate theory, Carlitz module, Drinfeld modules, Artin
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Introduction

The main motivation of this work is the study of Hilbert’s 9th problem, in particular, an attempt
to transfer the results of S. V. Vostokov [1] to the case of geometric fields. This problem is of high
interest in modern algebraic number theory and has been discussed in numerous scientific papers
[2] - [3].

In 1853, the famous Kronecker–Weber theorem was proved for the arithmetic global case. It says
that an arbitrary finite abelian extension of the field of rational numbers lies in some cyclotomic
extension of Q.

Consider a geometric analogue of this statement. Let F𝑞(𝑋) be a field of rational functions
of the projective line 𝑋 = P1F𝑞 over a finite field F𝑞. Using the theory of Carlitz module, we can
build explicitly cyclotomic extensions of F𝑞(𝑋) and construct the maximum abelian extension of
the global field F𝑞(𝑋).

Teruyoshi Yoshida built the maximum abelian extension and the Artin map for an arbitrary
local field of an arbitrary characteristic [6]. In the construction, the theory of formal Lubin–Tate
modules was applied.

The first result of this paper is a construction of a connection between theories of building
a maximal abelian extension for local and global fields. It is proved that the extension tower of
Carlitz module of the global field induces the extension tower of formal Lubin—Tate modules over
the completion of the local ring at the closed point of our curve Theorem 1.

The second result is a description of the connection between Artin mappings for an arbitrary
projective irreducible smooth curve 𝑋 and for completions of local rings at its closed points
Theorem 2.

Acknowledgement. The research is supported by the Russian Science Foundation under grant
N 16-11-10200.

Preliminaries and notation

Local fields

Throughout the work all the considered fields have characteristic other than 2.
Let 𝑝 be a prime integer not equal to 2. 𝑞 = 𝑝𝑠, where 𝑠 is an arbitrary natural number. Then

for F𝑞 we denote a finite field consisting of 𝑞 elements.
We call a field K with non-Archimedean regular valuation 𝜈K local if:

• K is complete with respect to 𝜈K;

• residue field with respect to 𝜈K is finite.

We denote ring of integers, simple ideal and residue field by OK, pK and tK respectively. If K′ is a
finite extension of local field K we denote ramification index and the degree of inertia by 𝑒K′/K and
𝑓K′/K respectively.

If 𝑒K′/K = 1, then the extension is called finite unramified. If 𝑓K′/K = 1, then we call such
extension as finite completely ramified. Finally, if 𝑒K′/K is coprime with 𝑝, then the extension is
called finite weakly ramified, and the ramification itself is called finite tamely ramification.

Now we need to take a closer look on infinite extensions.
A separable extension 𝐸/K is said to be unramified (completely ramified) if the extension is

obtained by the union of finite unramified (completely ramified) extensions over K. We assume that
the ring of integers of an arbitrary separable extension 𝐸/K is the complete closure of the ring of
integers OK in 𝐸. In the case when all our extensions are finite, this definition coincides with the
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classical one. We also call separable extension 𝐸/K a finitely-ramified if 𝐸/K is a finite extension
of some unramified extension.

It is well-known fact that for every positive integer 𝑛 and arbitrary local field K there is a unique
finite unramified extension K𝑛 such that [K𝑛 : K]=𝑛. Moreover, Gal(K𝑛/K)∼=Gal(tK𝑛/t)

∼=(Z/𝑛Z)×.
We denote the Frobenius automorphism, the generator of Gal(K𝑛/K), by Δ.

Maximal unramified extension of the local field K is
⋃︀
𝑛∈N

K𝑛 and we denote it by K𝑢𝑟. It is

unramified by the very definition. What is more, Gal(K𝑢𝑟/𝑘) is a protective limit of Gal(K𝑛/K) :

Gal(K𝑢𝑟/K) ∼= lim
←

Gal(K𝑛/K) ∼= lim
←

(Z/𝑛Z)× ∼= ̂︀Z.
A Frobenius automorphism is the unique automorphism Δ in Gal(K𝑢𝑟/K) with the property Δ(𝑥) ≡
𝑥𝑞(𝑚𝑜𝑑 pK

𝑢𝑟
) for all 𝑥 ∈ OK𝑢𝑟 . The Frobenius element maps to identity under the isomorphism

lim
←

(Z/𝑛Z)× ∼= ̂︀Z. Restriction of this automorphism on an arbitrary finite unramified field K𝑛 gives
us the corresponding Frobenius automorphism in the finite extension. It explains the name.

Proposition 1. Let 𝐸/K be a finitely ramified separable extension.

• O𝐸 is a discrete valuation ring. Moreover, the valuation obtained from this ring is a
continuation of the valuation 𝜈K. According to this valuation, we can take the completion
𝐸. We denote it by ̂︀𝐸.

• If 𝐸′/𝐸 is a finite separable extension, then 𝐸′ · ̂︀𝐸 = ̂︁𝐸′.
• ̂︀𝐸 ∩ K𝑠𝑒𝑝 = 𝐸. In particular, for finitely ramified extensions 𝐸,𝐸′ over K if ̂︀𝐸 = ̂︁𝐸′, then
𝐸 = 𝐸′.

We call the field 𝐿 a complete extension of K if 𝐿 is the completion of some finitely ramified
separable extension of K. 𝐿 is a complete unramified extension if it is the completion of an unramified
separable extension of K.

For convenience we denote the completion of K𝑢𝑟 with repect to 𝜈K by F.

If 𝐿/K is a complete unramified extension of K, and 𝐿′ is a completely ramified extension of
𝐿, then we say that this is a Galois extension if any automorphism 𝜑𝑖 ∈ Aut(𝐿/K) extends to
[𝐿′ : 𝐿] different automorphisms in Aut(𝐿′/K). We call the Weil group of such Galois extension a
𝑊 (𝐿′/K) := {𝜎 ∈ Aut(𝐿′/K) | 𝜎|𝐿 ∈ ΔZ}. If 𝐿 = F, then we introduce the map:

𝑣 : 𝑊 (𝐿′/K)→ Z;

𝜎|F ↦→ Δ−𝑣(𝜎).

Formal group laws

By a formal group law over an arbitrary ring 𝑅 we mean a series 𝐹 (𝑋,𝑌 ) ∈ 𝑅[[𝑋,𝑌 ]] which
satisfies:

• 𝐹 (𝑋,𝑌 ) ≡ 𝑋 + 𝑌 (mod deg 2);

• 𝐹 (𝑋,𝐹 (𝑌, 𝑍)) ≡ 𝐹 (𝐹 (𝑋,𝑌 ), 𝑍) (associativity);

• 𝐹 (𝑋,𝑌 ) ≡ 𝐹 (𝑌,𝑋) (commutativity).
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Lubin–Tate extensions and maximal abelian extensions

Definition 1. We call the polynomial 𝑓 ∈ OF[𝑋] Lubin–Tate polynomial if it satisfies two
properties:

1. 𝑓(𝑋) ≡ 𝜋 ·𝑋 (𝑚𝑜𝑑 𝑑𝑒𝑔 2);

2. 𝑓(𝑋) ≡ 𝑋𝑞 (𝑚𝑜𝑑 pF),

where by 𝜋 we mean the arbitrary unifomizer of local field K. Let us also define the action of Δ
on an arbitrary formal group law 𝐹 (𝑋,𝑌 ) ∈ OF[[𝑋,𝑌 ]]. If 𝐹 (𝑋,𝑌 ) =

∑︀
𝑖,𝑗>1

𝑎𝑖𝑗𝑋
𝑖𝑌 𝑗 then 𝐹Δ :=∑︀

𝑖,𝑗>1
Δ(𝑎𝑖𝑗)𝑋

𝑖𝑌 𝑗.

Then for arbitrary Lubin–Tate polynomial 𝑓 it is known [6, Lemma 3.4] that there exists a
unique formal group law 𝐹 (𝑋,𝑌 ) ∈ OF[[𝑋,𝑌 ]]:

𝑓 ∘ 𝐹 = 𝐹Δ ∘ 𝑓.

We call such a law a formal group law which corresponds to 𝑓 and denote it by 𝐹𝑓 .

Lubin–Tate polynomials are very important in the explicit construction of the maximal abelian
extension and Artin map for an arbitrary local field. In the general situation Lubin–Tate polynomials
are generalized to Lubin–Tate series with coefficients not necessary in OF but in O𝐿, where 𝐿 can
be an arbitrary complete unramified extension of K. However, in the considered here cases the series
belongs to OK[𝑋]. The next proposition partly explains it.

Proposition 2. If 𝑓 ∈ OK[𝑋], then 𝐹𝑓 ∈ OK[[𝑋,𝑌 ]] and, therefore, 𝐹Δ
𝑓 = 𝐹𝑓 .

Proof. The idea of proof is taken from [6, Lemma 3.4]. It is enough to construct such a sequence
of polynomials {𝐹𝑚} satisfying two properties:

1. 𝑑𝑒𝑔 𝐹𝑚 6 𝑚;

2. 𝑓 ∘ 𝐹𝑚 ≡ 𝐹Δ
𝑚 ∘ 𝑓 (𝑚𝑜𝑑 𝑑𝑒𝑔 (𝑚+ 1)).

However, due to our needs we only prove that 𝐹𝑚 ∈ OK[𝑋,𝑌 ] by induction.
The base case is simple, because 𝐹1 = 𝑋 + 𝑌 and required property is true. To understand

inductive step we define 𝐻𝑚+1 = 𝐹𝑚+1 − 𝐹𝑚 and 𝐺𝑚+1 as 𝑓 ∘ 𝐹𝑚 − 𝐹Δ
𝑚 ∘ 𝑓. To find 𝐹𝑚+1 it is

enough to find 𝐻𝑚+1.
From [6, Lemma 3.4] we obtain that if 𝜋 · 𝛽𝑖𝑗 is the coefficient at 𝑋𝑖𝑌 𝑗 in 𝐺𝑚+1, then the

coefficient 𝛼𝑖𝑗 at the same monomial in 𝐻𝑚+1 satisfies the equality:

𝛼𝑖𝑗 = −𝛽𝑖𝑗 −
∞∑︁
𝑙=1

𝑙−1∏︁
𝑖=0

Δ𝑖(𝜋𝑚) ·Δ𝑙(𝛽𝑖𝑗).

According to the induction hypothesis, Δ(𝛽𝑖𝑗) = 𝛽𝑖𝑗 . We note that since 𝜋 ∈ OK, then Δ(𝜋) = 𝜋.
Thus, we get Δ(𝛼𝑖𝑗) = 𝛼𝑖𝑗 . 2

Now we briefly introduce Lubin–Tate modules. As we already mentioned, we work mostly with
polynomials from OK[𝑋]. The technical details and proofs can be found in [6].

Proposition 3. For any Lubin-–Tate polynomial 𝑓 ∈ OF[[𝑋]] and for any nonzero element
𝜃 ∈ OK there exists a unique series [𝜃]𝑓 ∈ OF[[𝑋]], satisfying two properties:

1. [𝜃]𝑓 ≡ 𝜃 ·𝑋 (𝑚𝑜𝑑 𝑑𝑒𝑔 2);
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2. 𝑓 ∘ [𝜃]𝑓 = [𝜃]Δ𝑓 ∘ 𝑓.

Moreover, for arbitrary non-zero 𝜃1 and 𝜃2 of OK holds:

• [𝜃1]𝑓 +𝐹𝑓
[𝜃2]𝑓 = [𝜃1 + 𝜃2]𝑓 ;

• [𝜃1]𝑓 ∘ [𝜃2]𝑓 = [𝜃1 · 𝜃2]𝑓 ;

• 𝑓 = [𝜋]𝑓 .

Thus {[𝛼]𝑓 , 𝛼 ∈ OK} is isomorphic to OK as OK-module with the addition in the form
of a substitution in the 𝐹𝑓 and multiplying by scalar in the form of taking composition with
corresponding series.

For a Lubin–Tate polynomial 𝑓 ∈ OK[𝑋] we denote 𝑓 ∘ 𝑓 ∘ · · · ∘ 𝑓⏟  ⏞  
𝑚 times

by 𝑓𝑚. Let 𝜇𝑓,𝑚 be the set of

roots 𝑓𝑚, F𝑚𝑓 be the decomposition field of 𝑓𝑚 over F. Then 𝜇𝑓,𝑚 is a OK-module with addition in
the form of a substitution in 𝐹𝑓 and multiplication by scalars as a composition with [·]𝑓 . Moreover,
𝜇×𝑓,𝑚 := 𝜇𝑓,𝑚∖𝜇𝑓,𝑚−1.

Before introducing the Artin map let us put all necessary facts in the next proposition.

Proposition 4. • For any 𝛼 ∈ 𝜇×𝑓,𝑚 the map:

OK/p
𝑚
K → 𝜇𝑓,𝑚

𝑎→ [𝑎]𝑓 (𝛼),

is an isomorphism of OK-modules. If 𝛼 ∈ 𝜇×𝑓,𝑚, then F𝑚𝑓 = F(𝛼), 𝑁F𝑚
𝑓 /F

(−𝛼) = Δ𝑚−1(𝜋).

• 𝛼 is the uniformizer of F𝑚𝑓 and (F𝑚𝑓 /F) is a completely ramified Galois extension of degree
𝑞𝑚−1(𝑞 − 1).

• The following isomorphism is defined:

𝜌𝑓,𝑚 : Gal(F𝑚𝑓 /𝐿) ∼= AutOK
(𝜇𝑓,𝑚) ∼= (OK/p

𝑚
K )×

(𝛼 ↦→ [𝑢](𝛼) ∀ 𝛼 ∈ 𝜇𝑓,𝑚) ↦→ 𝑢 (𝑚𝑜𝑑 p𝑚K ).

• F𝑚𝑓 is a Galois extension over K. For any 𝛼 ∈ 𝜇×𝑓,𝑚, the following map is bijective:

K×/(1 + p𝑚K )→
⨆︁
𝑗∈Z

𝜇×𝑓,𝑚

𝑥 (𝑚𝑜𝑑 (1 + p𝑚K )) ↦→ [𝑥𝜋𝑗 ]𝑓 (𝛼), 𝜈K(𝑥) = −𝑗.

• The map 𝜌𝑓,𝑚 mentioned above continues to isomorphism:

𝑊 (F𝑚𝑓 /K)→ K×/(1 + p𝑚K )

(𝛼 ↦→ [𝑥𝜋𝑗 ](𝛼)) ↦→ 𝑥 (𝑚𝑜𝑑 (1 + p𝑚K )), 𝜈K(𝑥) = −𝑗.

Now if we define F𝐿𝑇𝑓 =
⋃︀
𝑚>1

F𝑚𝑓 , then passing to projective limit, we get:

𝜌𝑓 : 𝑊 (F𝐿𝑇 /K) ∼= K×.

And we immediately can define the Artin map as the inverse of the map 𝜌𝑓 :

𝐴𝑟𝑡K : K× →𝑊 (F𝐿𝑇 /K).
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Projective line over F𝑞
Let 𝑋 be an arbitrary projective smooth irreducible curve over F𝑞. We denote its field of rational

functions by 𝐾(𝑋). Let 𝑅 be a discrete valuation ring containing F𝑞 and whose field of quotients
is isomorphic to 𝐾(𝑋). Then the unique maximal ideal 𝑃 ⊂ 𝑅 is called the simple ideal of 𝐾(𝑋).
The maximal ideal 𝑃 defines the valuation on the field 𝐾(𝑋).

Then we say that:

• 𝑓(𝑋) ∈ 𝐾(𝑋) has a pole in 𝑃, if 𝜈𝑃 (𝑓) < 0.

• 𝑓(𝑋) ∈ 𝐾(𝑋) has zero in 𝑃, if 𝜈𝑃 (𝑓) > 0.

• The degree of a prime 𝑃 is the dimension of the field of quotients 𝑅/𝑃 over F𝑞.

Let 𝐿 be a finite extension of the field 𝐾(𝑋). We say that the ideal B ⊂ 𝐿 lies above the ideal
𝑃 ⊂ 𝐾(𝑋), if O𝑃 = 𝐾(𝑋) ∩OB and 𝑃 = O𝑃 ∩B. The concepts of ramification and inertia are
introduced as in the classical case. We assume that an extension over 𝐾(𝑋) is unramified if it is
unramified in all ideals.

Let us fix some simple ideal of 𝐾(𝑋) and denote it by ∞. Let 𝐴 := {𝑓(𝑋) ∈ 𝐾(𝑋) | 𝑓 has no
poles in ideals other than ∞}, then 𝐴 is the Dedekind integral domain [8]. It is well-known that
all the remaining simple ideals of 𝐾(𝑋) are in one-to-one correspondence with the simple ideals
𝐴[8, 𝑝.219].

From now we consider the projective line P1F𝑞 over F𝑞. Consider any point of degree one and call
such an ideal∞. For example, the ideal ( 1

𝑇 ) in the ring F𝑞[ 1𝑇 ]. Then F𝑞[𝑇 ] is such a subring of F𝑞(𝑇 ),
whose elements have poles only at the point ∞. All other points are in one-to-one correspondence
with the unitary irreducible polynomials F𝑞[𝑇 ].

Carlitz Module

Our goal is to find a connection between maximal abelian extenstion constructions for local
and global geometric fields. As we saw, the Lubin–Tate modules are very useful for local geometric
fields. Now we introduce the Carlitz Module the global analogue.

Let 𝐿 be an arbitrary field. A polynomial ℎ ∈ 𝐿[𝑋] is called additive if

ℎ(𝑋 + 𝑌 ) ≡ ℎ(𝑋) + ℎ(𝑌 ).

A polynomial ℎ ∈ 𝐿[𝑋] is called F𝑞-linear if it is additive and for any 𝛼 ∈ F𝑞

ℎ(𝛼𝑋) = 𝛼ℎ(𝑋).

If the field 𝐿 is of characteristic 𝑝 and 𝐿 contains F𝑞, then the set of F𝑞-linear polynomials
coincides with the set of polynomials from𝑋𝑞. On the set of F𝑞-linear polynomials, can be introduced
the ring structure with respect to addition and composition operations. Such a ring is denoted by
𝐿⟨𝜏⟩, where by 𝜏 we mean 𝑋𝑞.

For convenience we give an alternative ring construction of 𝐿⟨𝜏⟩: as a set, it is isomorphic to
𝐿[𝑋]; the addition operation is determined by coefficient-wise addition at 𝜏 in equal degrees; the
operation of multiplying two polynomials is a “twisted multiplication”: for any 𝛼 ∈ 𝐿 the following
is true 𝜏 · 𝛼 = 𝛼𝑞 · 𝜏.

It is easy to see that 𝐿⟨𝜏⟩ is a F𝑞-algebra. If 𝑅 is a subring of 𝐿, is closed under multiplication
by elements of F𝑞, then 𝑅⟨𝜏⟩ is a F𝑞-subalgebra of 𝐿⟨𝜏⟩.

Definition 2. Let 𝐿 = F𝑞(𝑇 ) and 𝑅 = F𝑞[𝑇 ].
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Consider the morphism of F𝑞-algebras:

𝐶 : F𝑞[𝑇 ]→ F𝑞(𝑇 )⟨𝜏⟩

𝐶 : 𝑇 ↦→ 𝑇 · 𝜏0 + 𝜏

𝐶 : 1 ↦→ 𝜏0

𝐶 : 0 ↦→ 0.

The image of F𝑞[𝑇 ] in F𝑞(𝑇 )⟨𝜏⟩ is called the Carlitz module. The image of an arbitrary element
𝑎 ∈ F𝑞[𝑇 ] under the action of 𝐶 is denoted by 𝐶𝑎.

As before we need to look through some statements to use them further. All technical details
and proofs can be found in [8, 12 section]. For convenience we collected all necessary statements in
one proposition.

We fix a unitary irreducible polynomial 𝑃 ∈ F𝑞[𝑇 ] of degree 𝑑𝑃 .

Proposition 5. 1. 𝐶𝑃 is the Eisenstein unitary polynomial in F𝑞[𝑇 ] of degree 𝑞𝑑𝑃 with
respect to the ideal (𝑃 ).

2. 𝐶𝑃 𝑒 is a separable polynomial.

3. Denote the set of zeros of the polynomial 𝐶𝑃 𝑒(𝑋) in the algebraic closure1 of F𝑞(𝑇 ) by Λ𝑃 𝑒 .
Then on Λ𝑃 𝑒 one can introduce the structure of a F𝑞[𝑇 ]-module with standard addition and
multiplication by a scalar 𝑎 ∈ F𝑞[𝑇 ] as an application of 𝐶𝑎.

4. The set Λ𝑃 𝑒 is isomorphic, as F𝑞[𝑇 ]-module, to F𝑞[𝑇 ]/(𝑃 𝑒·F𝑞[𝑇 ]). Moreover, for any 𝑚 ∈ F𝑞[𝑇 ]
it is true that the set Λ𝑚 is isomorphic, as F𝑞[𝑇 ]-module, to the set F𝑞[𝑇 ]/(𝑚 · F𝑞[𝑇 ]), where
Λ𝑚 is the set of zeros of the polynomial 𝐶𝑚[𝑋].

5. Denote F𝑞(𝑇 )(Λ𝑚) by 𝐾𝑚. Then the extension 𝐾𝑃 𝑒/F𝑞(𝑇 ) is a Galois extension with a Galois
group:

Gal(𝐾𝑃 𝑒/F𝑞(𝑇 )) ∼= (F𝑞[𝑇 ]/(𝑃 𝑒 · F𝑞[𝑇 ]))×.

6. If (𝑄) ̸= (𝑃 ) and (𝑄) ̸=∞, where ∞ is some simple ideal of F𝑞(𝑇 ), (see the previous section)
then 𝐾𝑃 𝑒 is unramified in (𝑄).

7. 𝐾𝑃 𝑒 is completely ramified in (𝑃 ) and, if 𝜆 is an arbitrary generator of Λ𝑃 𝑒 , and O𝐾𝑃𝑒 is the
integral closure of F𝑞[𝑇 ] in 𝐾𝑃 𝑒, then:

(𝜆)(𝑞
𝑑𝑃−1)·𝑞𝑑𝑃 ·𝑒 ·O𝐾𝑃𝑒 = (𝑃 ) ·O𝐾𝑃𝑒 .

8. O𝐾𝑃𝑒 = F𝑞[𝑇 ](𝜆).

Main results

Connection between the Lubin–Tate theory and the Carlitz module

In this section we consider projective line PF𝑞 . For this section we fix the notation:

• 𝐾 := F𝑞(𝑇 ) is a field of functions of PF𝑞 .

• ∞ := ( 1
𝑇 ) is an ideal in the subring F𝑞[ 1𝑇 ] that corresponds to one fixed point on our line.

1Throughout the paper, the algebraic closure is fixed F𝑞(𝑇 ).
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• 𝐴 := F𝑞[𝑇 ] is {𝑓(𝑋) ∈ 𝐾(𝑋) | 𝑓 has no poles in ideals other than ∞}.

• K := F𝑞((𝑇 )) is the completion of the 𝐾 with respect to ideal (𝑇 ).

• F := F𝑞((𝑇 ))𝑢𝑟 is the maximal unramifed extension of K.

Лемма 1. Consider the polynomial 𝑓 = 𝑇 · 𝑋 + 𝑋𝑞. Such a polynomial is the Lubin–Tate
polynomial for the local field K = F𝑞((𝑇 )). The Lubin–Tate law corresponding to it is the additive
law 𝐹𝑎𝑑𝑑 = 𝑋 + 𝑌 .

Since F𝑞[𝑇 ] ⊂ OK, it means that for any 𝑎 ∈ F𝑞[𝑇 ] the series [𝑎]𝑓 ∈ OF is defined. It is claimed
that for any 𝑎 ∈ F𝑞[𝑇 ] :

[𝑎]𝑓 = 𝐶𝑎,

where 𝐶𝑎 is considered as an element of F𝑞(𝑇 )[𝑋].

Moreover, let 𝑎 ∈ OK, 𝑎 =
∞∑︀
𝑖=0

𝑎𝑖 · 𝑇 𝑖, 𝑎𝑖 ∈ F𝑞. Then

[𝑎]𝑓 =

∞∑︁
𝑖=0

𝑎𝑖 · 𝐶𝑇 𝑖 .

Proof. Note that 𝑇 is uniformizer for 𝐹𝑞((𝑇 )). Also, the residue field of this local field is isomorphic
to F𝑞. From these two remarks it follows that 𝐶𝑇 is the Lubin—Tate polynomial for F𝑞((𝑇 )).
According to proposition 2, 𝐹𝑎𝑑𝑑 = 𝐹Δ

𝑎𝑑𝑑. Further, it is seen that:

𝑓 ∘ 𝐹𝑎𝑑𝑑 = 𝑇 · (𝑋 + 𝑌 ) + (𝑋 + 𝑌 )𝑞,

which is equal to:
𝐹𝑎𝑑𝑑 ∘ 𝑓 = 𝑇 ·𝑋 +𝑋𝑞 + 𝑇 · 𝑌 + 𝑌 𝑞.

The series [𝑎]𝑓 is uniquely defined by two conditions:

1. [𝑎]𝑓 ≡ 𝑎𝑋 (𝑚𝑜𝑑 𝑑𝑒𝑔 2);

2. 𝑓 ∘ [𝑎]𝑓 = [𝑎]Δ𝑓 ∘ 𝑓 .

First, check the first condition. It is enough to note that when two polynomials are added, the
coefficients at 𝑋 are added, and during composition are multiplied.

For any 𝑎 ∈ F𝑞[𝑇 ], the polynomial 𝐶𝑎 lies in F𝑞(𝑇 )[𝑋], which means 𝐶𝑎 = 𝐶Δ
𝑎 . The map 𝐶 is

a morphism of F𝑞-algebras, and F𝑞[𝑇 ] is a commutative ring, which means:

𝐶𝑇 ∘ 𝐶𝑎 = 𝐶𝑎 ∘ 𝐶𝑇 .

Now we notice that 𝑓 = 𝐶𝑇 and get:

𝑓 ∘ 𝐶𝑎 = 𝐶𝑎 ∘ 𝑓.

It is remaining to prove that if 𝑎 =
∞∑︀
𝑖=0

𝑎𝑖 · 𝑇 𝑖, 𝑎𝑖 ∈ F𝑞, then

[𝑎]𝑓 =

∞∑︁
𝑖=0

𝑎𝑖 · 𝐶𝑇 𝑖 .

First, check that the series
∞∑︀
𝑖=0

𝑎𝑖 · 𝐶𝑇 𝑖 is set correctly. Consider the coefficient 𝑏𝑞𝑟 of this series

at 𝑋𝑞𝑟 . Let us prove that for 𝑇 𝑘 in 𝑏𝑞𝑟 there is a finite sum of elements of the field F𝑞.
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𝐶𝑇𝑛 by definition is equal to
𝑛∏︀
𝑗=1

(𝑇 · 𝜏0 + 𝜏), where the multiplication is twisted. If 𝑟 < 𝑛, then

𝜏 𝑟 = 𝑋𝑞𝑟 and 𝑋𝑞𝑟 is in 𝐶𝑇𝑛 with a coefficient divisible by at least 𝑇𝑛−𝑟, since when opening the
brackets, we must take 𝑇 · 𝜏0 no later than in (𝑛− 𝑟)−th bracket. Moreover, 𝑇 · 𝜏0, and 𝜏 increase
the degree of 𝑇 by at least 1. Therefore, if 𝑛 > 𝑟 + 𝑘, then in 𝐶𝑛 at 𝑋𝑞𝑟 there are no terms whose
valuation is less or equal to 𝑘. That is, for 𝑇 𝑘 in 𝑋𝑞𝑟 there is a finite sum of elements from F𝑞.

Note that
∞∑︀
𝑖=0

𝑎𝑖 · 𝐶𝑇 𝑖 ∈ OK[[𝑋]], which means:

∞∑︁
𝑖=0

𝑎𝑖 · 𝐶𝑇 𝑖 = (
∞∑︁
𝑖=0

𝑎𝑖 · 𝐶𝑇 𝑖)Δ.

Now we are going to check two properties defining the series [𝑎]𝑓 .
The first property follows automatically from the fact that 𝐶𝑇 𝑖 ≡ 𝑇 𝑖𝑋 (𝑚𝑜𝑑 𝑑𝑒𝑔 2).
For the second property, we should understand that:

• 𝑓 ∘ (
∞∑︀
𝑖=0

𝑎𝑖 · 𝐶𝑇 𝑖) =
∞∑︀
𝑖=0

𝑎𝑖 · (𝑓 ∘ 𝐶𝑇 𝑖),

• (
∞∑︀
𝑖=0

𝑎𝑖 · 𝐶𝑇 𝑖) ∘ 𝑓 =
∞∑︀
𝑖=0

𝑎𝑖 · (𝐶𝑇 𝑖 ∘ 𝑓).

Note that both properties are true if we consider expressions modulo 𝑑𝑒𝑔 𝑛, since both series are
polynomials of finite degree, and 𝑓 is F𝑞−linear. So both equities are true for these series.

Using the fact that 𝑓 and 𝐶𝑇𝑖 commute, then equating the right-hand sides of the last two
expressions, we obtain the required property. 2

We have already noticed that all points of our projective line except infinity are in one-to-one
correspondence to unitary irreducible polynomials of F𝑞[𝑇 ]. The local field of the projective line at
a point (𝑇 ) is just F𝑞(𝑇 ). The next proposition explores these fields for other points of PF𝑞 except
infinity.

Proposition 6. Let 𝑃 ∈ F𝑞[𝑇 ] be an arbitrary unitary, irreducible polynomial from 𝑇, of
degree 𝑑𝑃 . Then the localization residue field of the ring F𝑞[𝑇 ] by the simple ideal (𝑃 ) is F𝑞𝑑𝑃 .

Proof. Localization by the ideal (𝑃 ) consists of rational functions of 𝑇 whose denominators are
coprime to 𝑃. The only maximum ideal of this ring is 𝑃 · F𝑞[𝑇 ](𝑃 ). By definition, the residue field
is F𝑞[𝑇 ](𝑃 )/(𝑃 · F𝑞[𝑇 ](𝑃 )). Let us prove that it is isomorphic to F𝑞[𝑇 ]/(𝑃 · F𝑞[𝑇 ]).

(𝑃 ) is the maximum ideal in F𝑞[𝑇 ], then F𝑞[𝑇 ]/(𝑃 · F𝑞[𝑇 ]) is a field. Consider an arbitrary
element ℎ(𝑇 )

𝑔(𝑇 ) ∈ F𝑞[𝑇 ](𝑃 )/(𝑃 · F𝑞[𝑇 ](𝑃 )), where 𝑔(𝑇 ) is coprime with 𝑃. If:

ℎ(𝑇 ) = 𝑞ℎ(𝑇 ) · 𝑃 + 𝑟ℎ(𝑇 ),

𝑔(𝑇 ) = 𝑞ℎ(𝑇 ) · 𝑃 + 𝑟𝑔(𝑇 ),

then
ℎ(𝑇 )

𝑔(𝑇 )
≡ 𝑟ℎ(𝑇 )

𝑟𝑔(𝑇 )
(𝑚𝑜𝑑 (𝑃 · F𝑞[𝑇 ])).

Since F𝑞[𝑇 ]/(𝑃 · F𝑞[𝑇 ]) is a field, then for any 𝑟𝑔(𝑇 ) there exists a polynomial 𝑏(𝑇 ), of degree less
than 𝑑𝑃 , such that 𝑔(𝑇 ) · 𝑏(𝑇 ) ≡ 1 (𝑚𝑜𝑑 (𝑃 · F𝑞[𝑇 ])). Thus, F𝑞[𝑇 ](𝑃 )/(𝑃 · F𝑞[𝑇 ](𝑃 )) is exactly the
set of polynomials, which degree less than 𝑑𝑃 . Let ℎ1(𝑇 )

𝑔1(𝑇 )
and ℎ2(𝑇 )

𝑔2(𝑇 )
be two arbitrary elements from

F𝑞[𝑇 ](𝑃 )/(𝑃 · F𝑞[𝑇 ](𝑃 )). Note that:

ℎ1(𝑇 )

𝑔1(𝑇 )
+
ℎ2(𝑇 )

𝑔2(𝑇 )
=
ℎ1(𝑇 ) · 𝑔2(𝑇 ) + ℎ2(𝑇 ) · 𝑔1(𝑇 )

𝑔1(𝑇 ) · 𝑔2(𝑇 )
≡ ℎ1(𝑇 ) · 𝑏1(𝑇 ) + ℎ2 · 𝑏2(𝑇 ).
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Similarly:
ℎ1(𝑇 )

𝑔1(𝑇 )
· ℎ2(𝑇 )

𝑔2(𝑇 )
≡ (ℎ1(𝑇 ) · 𝑏1(𝑇 )) · (ℎ2(𝑇 ) · 𝑏2(𝑇 )).

Therefore, the map ℎ(𝑇 )
𝑔(𝑇 ) ↦→ ℎ(𝑇 ) · 𝑏(𝑇 ) is an isomorphism. 2

Note that when we take the completion of the field 𝐾 with respect to the valuation associated
with the ideal (𝑃 ), the residue field and the uniformizer do not change with respect to this valuation.
The proof of this statement can be found in [9, Claim 1.1.3].

Лемма 2. 𝐶𝑃 is the Lubin–Tate polynomial for the completion of 𝐾 with respect to the
valuation associated with the simple ideal (𝑃 ).

Proof. As already noted in lemma 1, 𝐶𝑃 ≡ 𝑃 ·𝑋 (𝑚𝑜𝑑 𝑑𝑒𝑔 2). Also according to propositions 5,
𝐶𝑃 is the unitary polynomial of degree 𝑞𝑑𝑃 , and all its coefficients, except the highest, are divisible
by 𝑃. We write this in the form of two sequences:

1. 𝐶𝑃 ≡ 𝑃 ·𝑋 (𝑚𝑜𝑑 𝑑𝑒𝑔 2);

2. 𝐶𝑃 ≡ 𝑋𝑞𝑑𝑃 (𝑚𝑜𝑑 (𝑃 )).

Note that when the field F𝑞(𝑇 ) is the completion with respect to the valuation associated with the
ideal (𝑃 ), the residue field and the uniformizer do not change with respect to this valuation. The
proof of this statement can be found in [9, Claim 1.1.3].

Finally, according to the proposition 6 and remark above, the residue field of completion is
isomorphic to F𝑞𝑑𝑃 , and the maximal ideal is the main ideal (𝑃 ). 2

We fix some irreducible polynomial 𝑃 ∈ F𝑞[𝑇 ]. Let 𝑓𝑃 be the Lubin–Tate polynomial of the field
𝐾(𝑃 ), where 𝐾(𝑃 ) is the completion of 𝐾 with respect to the valuation, corresponding to the ideal
(𝑃 ). Let also 𝑓𝑃 ∈ O𝐾(𝑃 )

[𝑋]. Define 𝑓𝑃,𝑚 as 𝑓𝑃 ∘ 𝑓𝑃 ∘ · · · ∘ 𝑓𝑃⏟  ⏞  
𝑚 times

, and 𝐾(𝑃 ),𝑚 as the decomposition

field of 𝑓𝑃,𝑚 over the field 𝐾(𝑃 ). Then the extension tower
𝐾(𝑃 ) ⊂ 𝐾(𝑃 ),1 ⊂ 𝐾(𝑃 ),2 ⊂ · · · we call the Lubin–Tate extensions tower with respect to the ideal

(𝑃 ), and
∞⋃︀
𝑚=1

𝐾(𝑃 ),𝑚 by Lubin–Tate extension of the field 𝐾 with respect to the ideal (𝑃 ).

Теорема 1. The tower of extensions 𝐾 ⊂ 𝐾𝑃 ⊂ 𝐾𝑃 2 ⊂ · · · induces the Lubin–Tate extensions
tower with respect to the ideal (𝑃 ). The union of 𝐾𝑃 𝑒 over all positive integers 𝑒 induces the Lubin–
Tate extension with respect to the ideal (𝑃 ).

Proof. From the proposition 5, we know that for 𝐾𝑃 𝑒 there is only one ideal ramified, and it is
defined as (𝜆) ·O𝐾𝑃𝑒 , where O𝐾𝑃𝑒 is the integral closure of F𝑞[𝑇 ] in 𝐾𝑃 𝑒 .

Consider the ring (O𝐾𝑃𝑒 )(𝜆). Since this is the localization of some ring by a simple ideal,
(O𝐾𝑃𝑒 )(𝜆) is discrete valuation ring with maximum ideal (𝜆). The field of quotients of this ring
is the field 𝐾𝑃 𝑒 , since all elements except 𝜆 and 𝑃 are already invertible, and the addition of 𝜆−1

automatically adds the inverse to 𝑃, due to the fact that:

(𝜆)(𝑞
𝑑𝑃−1)·𝑞𝑑𝑃 ·𝑒

= (𝑃 ).

Therefore, localization by the ideal (𝜆) is the discrete valuation ring that lies above the localization
F𝑞[𝑇 ] by the ideal (𝑃 ).

We denote the completion of 𝐾 with respect to the valuation 𝜈(𝑃 ) by 𝐾(𝑃 ) and the completion
of 𝐾𝑃 𝑒 with respect to the valuation 𝜈(𝜆) by (𝐾𝑃 𝑒)(𝜆). Then, by the proposition 1:

(𝐾𝑃 𝑒)(𝜆) = 𝐾(𝑃 ) ·𝐾𝑃 𝑒 = 𝐾(𝑃 )(𝜆),
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where 𝜆 is the primitive root of 𝐶𝑃 𝑒 .

Since 𝐶𝑃 ∈ F𝑞[𝑇 ]⟨𝜏⟩, it means that it lies in O𝐾(𝑃 )
[𝑋], and therefore for any 𝑚 :

𝐶𝑃,𝑚 = 𝐶𝑃 ∘ 𝐶𝑃 ∘ · · · ∘ 𝐶𝑃⏟  ⏞  
𝑚 times

.

Thus 𝐶𝑃 𝑒 = 𝐶𝑃,𝑒. It remains to notice that according to the proposition 4,

𝐾(𝑃 )(𝜆) = 𝐾(𝑃 )(𝐶𝑃,𝑒).

Thus, the extension 𝐾𝑃 𝑒/𝑘 induces on 𝐾(𝑃 ) the Lubin–Tate extension of order 𝑒.

Passing to the projective limit with respect to 𝑒, we obtain that
∞⋃︀
𝑒=1

𝐾𝑃 𝑒 induces the maximum

abelian extension of the local field 𝐾(𝑃 ). 2

Artin maps for global and local fields

In order to relate theories for the local and global cases, we need first to recall the Artin map
in the global case.

Definition 3. Let 𝑋 be a projective smooth irreducible curve over F𝑞 and 𝐾 = 𝑘(𝑋) be its
field of functions. Then:

• For an arbitrary closed point 𝑃 ∈ 𝑋, we denote the completion of the local ring in 𝑃 by ̂︂O𝑃 ,
and the field of quotients of ̂︂O𝑃 by 𝐾𝑃 .

• By the idel group I𝐾 of the field 𝐾 we call bounded product of groups of invertible elements
𝐾𝑝 by groups of ring units ̂︂O𝑃 , by all closed points 𝑃 ∈ 𝑋.

Consider the maximal unramified extension 𝐾𝑢,𝑎𝑏. We call the Artin map [9]:

Φ𝑢
𝐾 : I𝐾/

∏︁
𝑃∈𝑋

̂︂O×𝑃 → Gal(𝐾𝑢,𝑎𝑏/𝐾)

(· · · , 𝑎𝑃 , · · · ) ↦→ 𝐹𝑟𝑜𝑏
𝑜𝑟𝑑𝑃 (𝑎𝑃 )
𝑃 .

Remark 1. If the extension of the field 𝐾 is abelian, then for any point (ideal) 𝑃 we can define
the Frobenius automorphism[8, p. 136-137]. It can be described as a mapping 𝐹𝑟𝑜𝑏𝑃 ∈ Gal(𝐾𝑢,𝑎𝑏/𝐾)
such that for any ideal B lying above 𝑃 it holds:

𝐹𝑟𝑜𝑏𝑃 (𝑤) ≡ 𝑤𝑁(𝑃 ) (𝑚𝑜𝑑B),

where 𝑁(𝑃 ) is the dimension of the residue field of the local ring at the point 𝑃 over the field F𝑞.

Consider the local case. Since the maximal unramified abelian extension 𝐾, is used, then in the
local case it is natural to consider the completion of the maximal unramified extension for 𝐾𝑃 ,
denoting it by 𝐾𝑢𝑟

𝑃 . Then the map 𝐴𝑟𝑡𝐾𝑃
, (remark 9) restricted on Gal(𝐾𝑢𝑟

𝑃 /𝐾) is defined as:

𝐴𝑟𝑡𝐾𝑃
: 𝐾×𝑃 → Gal(𝐾𝑢𝑟

𝑃 /𝐾)

𝑥 ↦→ 𝜑−𝑗𝑃 , if 𝜈𝑃 (𝑥) = 𝑗,

where 𝜑𝑃 is the Frobenius map of the extension 𝐾𝑢𝑟
𝑃 /𝐾.
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Теорема 2. For a partially defined mapping, we introduce the notation
𝜎𝑃 : Gal(𝐾𝑢,𝑎𝑏/𝐾) → Gal(𝐾𝑢𝑟/𝐾), which sends 𝐹𝑟𝑜𝑏𝑃 to 𝜑−1𝑃 . Then the following commutative
diagram holds:

𝐾×𝑃 /
̂︂O×𝑃
𝑖𝑑
��

Φ𝑢
𝐾 |𝐾×

𝑃 // Gal(𝐾𝑢,𝑎𝑏/𝐾)

𝜎𝑃

��
𝐾×𝑃 /

̂︂O×𝑃 𝐴𝑟𝑡𝐾𝑃 // Gal(𝐾𝑢𝑟
𝑃 /𝐾𝑃 )

Proof. 𝐴𝑟𝑡𝐾𝑃
|Gal(𝐾𝑢𝑟

𝑃 /𝐾) converts any element from ̂︂O×𝑃 to one, since for any 𝑥 from ̂︂O×𝑃 it is true
that 𝜈𝑃 (𝑥) = 0.

Then 𝑎𝑃 goes to 𝜎𝑃 (𝐹𝑟𝑜𝑏
𝑜𝑟𝑑𝑃 (𝑎𝑃 )
𝑃 ), therefore it goes to 𝜑−𝑜𝑟𝑑𝑃 (𝑎𝑃 )

𝑃 , which by definition is the
image of 𝑎𝑃 under action of 𝐴𝑟𝑡𝐾𝑃

|Gal(𝐾𝑢𝑟
𝑃 /𝐾). 2

Conclusion

In Lemmas 1, 2 and in the theorem 1 it is proved that the extension tower of Carlitz module
induces the extension tower of formal Lubin–Tate modules over completion of the local ring at a
closed point of the curve.
In the theorem 2 the description was given of the connection between the Artin maps for an arbitrary
projective smooth irreducible curve 𝑋 and the completions of local rings at its closed points.
Open questions

• The Carlitz module is a special case of Drinfeld modules of rank 1, which can be considered for
an arbitrary smooth projective curve over a finite field. One of the most interesting problems
is the generalization of the theorem 1 for an arbitrary smooth projective curve over a finite
field.

• As a development of Theorem 1, we can consider a morphism that takes 𝑇 to an arbitrary
polynomial in F𝑞[𝑇 ]⟨𝜏⟩, which will be a Lubin–Tate polynomial of degree 𝑟. For example, for
𝑟 = 2, one can send 𝑇 to the polynomial 𝑇 ·𝑋 +𝑋𝑞 + 𝑇 ·𝑋𝑞2 . Then, extending F𝑞(𝑇 ) by the
powers of this polynomial, we again get a tower of Lubin–Tate extensions for the ideal (𝑇 ),
but it remains unknown what will happen at the other points of our curve.

• Combining the previous two problems leads us to consider Drinfeld modules of rank greater
than 1.
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