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AnHoTanus

B namboit crarhe paccMaTpUBAIOTCS PA3JIUYIHBIE IOIXOMBI K IMOCTPOEHUI0 MAKCHMAJIHHBIX
abeJIeBbIX PACIIAPEHUN IS JIOKAJBHBIX U IJIODAJBHBIX reoMeTpudeckux moseii. Teopus Jlro-
ouna — TeiiTa urpaer KJ0OUYEBYIO POJib B IIOCTPOEHUHN MaKCUMaabHOTrO AbejieBa pacliupeHust
JIJIsI JIOKAJIBHBIX F€OMETPHYECKUX IoJeil. B ciydae riobajabHBIX TeOMeTPUYeCKUX H0JIel 0COObIi
WHTEpeC TpecTaBissioT Moy Ipundenpaa. B Hacrosmeir paboTe paccMaTPpUBAECTCS CAMbIi
[IPOCTOI YaCTHBIN cirydait mojysteit JIpuudenbaa st TPOEKTUBHON IPsiMOii, KOTOPBII Ha3bIBA-
ercs momysiem Kapimra.

Bo BBeennn Mbl IPUBOAMM MOTHBAIINIO ¥ KPATKYIO HCTOPUIECKYIO CIIPABKY IO 3aTPOHY THIM
B paboTe TeMaM.

B nepsoMm u BropoM pasiesiax Mbl IPUBOIUM KPAaTKyI MHEMOPMAIUIO 0 MOIy/stX JIrobuna-
Tetita n momyne Kapmura.

B tperbem pasesie MbI IPUBOAUM IBa OCHOBHBIX PE3YJIbTATA:

® YCTAHOBJIEHA SIBHASI CBSA3b MEXKJY TEOPHUSIMHU TJIODATBLHBIX U JIOKAJBHBIX I0JIeil B reoMeT-
PUYECKOM CJIydae MPOEKTUBHOM IPsIMOil Hal KOHEYHBIM II0JIEM: JIOKA3aHO, YTO OAIIHS Pac-
mupenus Monyas Kapiuna napynupyer bammHio paciupennii JIrobuna-Teiita.

® YCTAHOBJIEHA CBSI3b MEXKJy OTOOpayKeHUsIMU ApTHHA pacIupeHuil QyHKIIMOHAIBLHOTO 0~
JISI IPOU3BOJIBHOM IIPOEKTUBHOM IVIAJIKON HEITPUBOAUMON KPUBOI U PACIIUPEHUSIMH ITOTIOJI-
HEHUI JIOKAJbHBIX KOJIEIl B 3aMKHYTBHIX TOYKaX 3TON KPUBOM.

B mocnemnem pazene Mbl hOpMyNIHpyeM pa3nTHbIE OTKPLITHIE 3319l U WHTEPECHbIE Ha-
MIpaBJIEHUs IS JTAJbLHEHIINX UCCIeIOBAHUN, KOTOPhIe BKJIIOYAIOT 0000IIeHNe IepPBOTO PE3y b
TaTa JJId HpOI/ISBOHLHOfI I‘JIa,ZLKOfI HpOBKTI/IBHOﬁ KpI/IBOfI Ha/J KOHEYHBIM IIOJIEM U PaCCMOTPEHUE
momyneit Ipurdennba 6ojiee BEICOKOrO paHra.

Karuesnvie caosa: Teopust noseit kiraccos, Teopus Jlobuua — Teitra, momyns Kapauma, mo-
nymua dpundensia, orobpaxkenue ApTuHa, MAKCUMaJIbHOE abesIeBO PaCIIMpeHne, IIPOeKTUBHAS
npamMasi HaJl KOHEIHbIM IIOJIEM.
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Abstract

In this article we consider different approaches for constructing maximal abelian extensions
for local and global geometric fields. The Lubin—Tate theory plays key role in the maximal
abelian extension construction for local geometric fields. In the case of global geometric fields,
Drinfeld modules are of particular interest. In this paper we consider the simpliest special case
of Drinfeld modules for projective line which is called the Carlitz module.

In the introduction, we provide motivation and a brief historical background on the topics
covered in the work.

In the first and second sections we provide brief information about Lubin—Tate modules and
Carlitz module.

In the third section we present two main results:

e an explicit connection between the local and global field theory in the geometric case for
projective line over finite field: it is proved that the extension tower of Carlitz module
induces the tower of the Lubin—Tate extensions.

e a connection between Artin maps of extensions of a function field of an arbitrary projective
smooth irreducible curve and extensions of completions of local rings at closed points of
this curve.

In the last section we formulate different open problems and interesting directions for further
research, which include generalization first result for an arbitrary smooth projective curve over
a finite field and consideration Drinfeld modules of higher rank.

Keywords: class field theory, Lubin—Tate theory, Carlitz module, Drinfeld modules, Artin
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Introduction

The main motivation of this work is the study of Hilbert’s 9th problem, in particular, an attempt
to transfer the results of S. V. Vostokov [1] to the case of geometric fields. This problem is of high
interest in modern algebraic number theory and has been discussed in numerous scientific papers
2] - [3]

In 1853, the famous Kronecker—Weber theorem was proved for the arithmetic global case. It says
that an arbitrary finite abelian extension of the field of rational numbers lies in some cyclotomic
extension of Q.

Consider a geometric analogue of this statement. Let Fy(X) be a field of rational functions
of the projective line X = IP’]qu over a finite field F;. Using the theory of Carlitz module, we can
build explicitly cyclotomic extensions of Fq(X) and construct the maximum abelian extension of
the global field Fq(X).

Teruyoshi Yoshida built the maximum abelian extension and the Artin map for an arbitrary
local field of an arbitrary characteristic [6]. In the construction, the theory of formal Lubin—Tate
modules was applied.

The first result of this paper is a construction of a connection between theories of building
a maximal abelian extension for local and global fields. It is proved that the extension tower of
Carlitz module of the global field induces the extension tower of formal Lubin—Tate modules over
the completion of the local ring at the closed point of our curve Theorem 1.

The second result is a description of the connection between Artin mappings for an arbitrary
projective irreducible smooth curve X and for completions of local rings at its closed points
Theorem 2.

Acknowledgement. The research is supported by the Russian Science Foundation under grant
N 16-11-10200.

Preliminaries and notation

Local fields

Throughout the work all the considered fields have characteristic other than 2.

Let p be a prime integer not equal to 2. ¢ = p®, where s is an arbitrary natural number. Then
for F, we denote a finite field consisting of ¢ elements.

We call a field & with non-Archimedean regular valuation vg local if:

e R is complete with respect to vg;
e residue field with respect to vg is finite.

We denote ring of integers, simple ideal and residue field by Dg, pg and tg respectively. If R is a
finite extension of local field & we denote ramification index and the degree of inertia by eg /g and
Jar/a respectively.

If eqr/a = 1, then the extension is called finite unramified. If fgq,q = 1, then we call such
extension as finite completely ramified. Finally, if egq g is coprime with p, then the extension is
called finite weakly ramified, and the ramification itself is called finite tamely ramification.

Now we need to take a closer look on infinite extensions.

A separable extension E/R is said to be unramified (completely ramified) if the extension is
obtained by the union of finite unramified (completely ramified) extensions over 8. We assume that
the ring of integers of an arbitrary separable extension E/R is the complete closure of the ring of
integers Og in F. In the case when all our extensions are finite, this definition coincides with the
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classical one. We also call separable extension E/f a finitely-ramified if E/f is a finite extension
of some unramified extension.

It is well-known fact that for every positive integer n and arbitrary local field K there is a unique
finite unramified extension &, such that [R]), : &] =n. Moreover, Gal(8,/R) = Gal(tg, /t) = (Z/nZ)*.
We denote the Frobenius automorphism, the generator of Gal(&,/R), by A.

Mazimal unramified extension of the local field & is |J K, and we denote it by & It is

neN
unramified by the very definition. What is more, Gal(8"" /k) is a protective limit of Gal(&,/R) :

Gal(R""/®) = lim Gal(R,/8) = lim(Z/nZ)* = Z.

A Frobenius automorphism is the unique automorphism A in Gal(8"" /&) with the property A(z) =
z9(mod p*"") for all x € Ogur. The Frobenius element maps to identity under the isomorphism
lim(Z/nZ)* = 7. Restriction of this automorphism on an arbitrary finite unramified field &, gives
e

us the corresponding Frobenius automorphism in the finite extension. It explains the name.

PROPOSITION 1. Let E/R be a finitely ramified separable extension.

e Op is a discrete valuation ring. Moreover, the wvaluation obtained from this ring is a
continuation of the valuation vg. According to this valuation, we can take the completion
E. We denote it by E.

e If E'/E is a finite separable extension, then E' - E=F.

e ENRP = E. In particular, for finitely ramified extensions E, E' over K if E = E\’, then
E=F.

We call the field L a complete extension of K if L is the completion of some finitely ramified
separable extension of K. L is a complete unramified extension if it is the completion of an unramified
separable extension of R.

For convenience we denote the completion of " with repect to vg by §.

If L/R is a complete unramified extension of K, and L’ is a completely ramified extension of
L, then we say that this is a Galois ertension if any automorphism ¢ € Aut(L/f) extends to
[L' : L] different automorphisms in Aut(L'/8). We call the Weil group of such Galois extension a
W(L'/R) = {0 € Aut(L'/R) | 0|, € AZ}. If L = §, then we introduce the map:

v W(L'/R) = Z

0"3 — A_v(g).

Formal group laws

By a formal group law over an arbitrary ring R we mean a series FI(X,Y) € R[[X, Y]] which
satisfies:

e F(X,Y)= X+ Y (mod deg 2);
e F(X,F(Y,Z)) = F(F(X,Y), Z) (associativity);

e F(X,Y)=F(Y, X) (commutativity).



94 H. B. Enuzapos, C. B. Bocrokos

Lubin—Tate extensions and maximal abelian extensions

DEFINITION 1. We call the polynomial f € Oz[X] Lubin—Tate polynomial if it satisfies two
properties:

1. f(X)=7-X (moddeg2);
2. f(X) = X7 (mod pg),

where by ™ we mean the arbitrary unifomizer of local field R. Let us also define the action of A
on an arbitrary formal group law F(X,Y) € O5[[X,Y]]. If F(X,Y) = Y a;;X'Y7 then FA =
i,j>1
> Aay) XY,
i,j>1
Then for arbitrary Lubin—Tate polynomial f it is known [6, Lemma 3.4/ that there exists a
unique formal group law F(X,Y) € Oz[[X,Y]]:

foF=F"0of.
We call such a law a formal group law which corresponds to f and denote it by Fy.

Lubin—Tate polynomials are very important in the explicit construction of the maximal abelian
extension and Artin map for an arbitrary local field. In the general situation Lubin—Tate polynomials
are generalized to Lubin—Tate series with coeflicients not necessary in Og but in Oy, where L can
be an arbitrary complete unramified extension of 8. However, in the considered here cases the series
belongs to Dg[X]. The next proposition partly explains it.

PROPOSITION 2. If f € Og[X], then Fy € Og[[X,Y]] and, therefore, FfA = Fy.

PROOF. The idea of proof is taken from |6, Lemma 3.4]. It is enough to construct such a sequence
of polynomials {F},,} satisfying two properties:

1. deg F,, <m;
2. foF, =F5of (moddeg(m+1)).

However, due to our needs we only prove that F,, € Og[X,Y] by induction.

The base case is simple, because F1 = X + Y and required property is true. To understand
inductive step we define Hy, 11 = Fin41 — Fin and Gppqq as fo Fy, — Fn% o f. To find Fp,4q it is
enough to find Hy,11.

From [6, Lemma 3.4] we obtain that if 7 - 3;; is the coefficient at X% in Gyyy1, then the
coefficient «;; at the same monomial in H,, 1 satisfies the equality:

oo -1

Qyj = _Bij - Z HAi(Wm) : Al(ﬁz’j)'

=1 1=0

According to the induction hypothesis, A(5;;) = fi;. We note that since m € Og, then A(7) = 7.
Thus, we get A(wy;) = a;5. O

Now we briefly introduce Lubin—-Tate modules. As we already mentioned, we work mostly with
polynomials from Og[X]. The technical details and proofs can be found in [6].

PROPOSITION 3. For any Lubin-—Tate polynomial f € Oz[[X]] and for any nonzero element
0 € Og there exists a unique series [0]y € Oz[[X]], satisfying two properties:

1. 0]y =60-X (moddeg2);
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2. folbly =107 f.

Moreover, for arbitrary non-zero 8, and 0y of O holds:
o [h]y +r, [02]f = [01+ 02

o [01]f o [B2]f = [01 - O]

o f=Imly.

Thus {[a]f, a € Og} is isomorphic to Og as Og-module with the addition in the form
of a substitution in the F; and multiplying by scalar in the form of taking composition with
corresponding series.

For a Lubin-Tate polynomial f € Oz[X] we denote fo fo---o f by fp,. Let us.m, be the set of

—

m times

roots fi,, 3’}” be the decomposition field of f,,, over §. Then jy p, is a Og-module with addition in
the form of a substitution in Fy and multiplication by scalars as a composition with [] ;. Moreover,

u’}im = Nf,m\ﬂf,m—l-
Before introducing the Artin map let us put all necessary facts in the next proposition.

PROPOSITION 4. e For any a € ,u?m the map:
Dﬁ/p?g — Hfm
a — [a]¢(a),

is an isomorphism of O g-modules. If o € /L}(m, then §'' = §(a), Ng}n/@(—oz) =A™ (7).

« 1s the uniformizer of §f and (3?/%) 1s a completely ramified Galois extension of degree
q" g —1).
The following isomorphism is defined:

prm : Gal(FF /L) =2 Auto (pfm) = (Da/py)”

(a [ul(a) Ya € pfm) — u (modpg).

’JZ‘ 1s a Galois extension over K. For any o € ,u;m, the following map is bijective:

KA+ = | #f,
j€Z

z (mod (1+pF)) = [z7?]s(a), va(z) = —j.

The map py,, mentioned above continues to isomorphism.:
WEP/R) - 8/ (1+ p)
(@ [zr9](a)) = z (mod (1+pT)), va(z) = —j.

Now if we define SJ%T = U 3’}", then passing to projective limit, we get:

m>=1
pr: W(EFEHT/R) = &%
And we immediately can define the Artin map as the inverse of the map py:

Artg : 8% — W(FT/R).
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Projective line over F,

Let X be an arbitrary projective smooth irreducible curve over IF,. We denote its field of rational
functions by K (X). Let R be a discrete valuation ring containing F, and whose field of quotients
is isomorphic to K(X). Then the unique maximal ideal P C R is called the simple ideal of K (X).
The maximal ideal P defines the valuation on the field K(X).

Then we say that:

e f(X)e€ K(X) has a pole in P, if vp(f) < 0.
o f(X) € K(X) has zero in P, if vp(f) > 0.
e The degree of a prime P is the dimension of the field of quotients R/P over F,,.

Let L be a finite extension of the field K(X). We say that the ideal B C L lies above the ideal
PCK(X),if Op=K(X)NOg and P = Op NB. The concepts of ramification and inertia are
introduced as in the classical case. We assume that an extension over K (X) is unramified if it is
unramified in all ideals.

Let us fix some simple ideal of K(X) and denote it by co. Let A := {f(X) € K(X) | f has no
poles in ideals other than oo}, then A is the Dedekind integral domain [8]. It is well-known that
all the remaining simple ideals of K(X) are in one-to-one correspondence with the simple ideals
A[8,p.219].

From now we consider the projective line IP)%Fq over FF,. Consider any point of degree one and call
such an ideal co. For example, the ideal () in the ring F4[4]. Then Fy[T] is such a subring of Fy(T),
whose elements have poles only at the point co. All other points are in one-to-one correspondence
with the unitary irreducible polynomials F,[T7].

Carlitz Module

Our goal is to find a connection between maximal abelian extenstion constructions for local
and global geometric fields. As we saw, the Lubin—Tate modules are very useful for local geometric
fields. Now we introduce the Carlitz Module the global analogue.

Let L be an arbitrary field. A polynomial h € L[X] is called additive if

hM(X+Y)=h(X)+h(Y).
A polynomial h € L[X] is called F-linear if it is additive and for any o € F,
h(aX) = ah(X).

If the field L is of characteristic p and L contains [F,, then the set of Fy-linear polynomials
coincides with the set of polynomials from X?. On the set of Fy-linear polynomials, can be introduced
the ring structure with respect to addition and composition operations. Such a ring is denoted by
L{r), where by 7 we mean X?.

For convenience we give an alternative ring construction of L(7): as a set, it is isomorphic to
L[X]; the addition operation is determined by coefficient-wise addition at 7 in equal degrees; the
operation of multiplying two polynomials is a “twisted multiplication”: for any « € L the following
istrue7-a=af-71.

It is easy to see that L(7) is a F -algebra. If R is a subring of L, is closed under multiplication
by elements of F,, then R(r) is a F-subalgebra of L(r).

DEFINITION 2. Let L =F,(T) and R = F4[T].
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Consider the morphism of Fq-algebras:
C: Fg[T] = Fo(T)(7)
C:T—T-7°+71
C:1—7°
C:0~0.

The image of Fq[T] in Fq(T)(7) is called the Carlitz module. The image of an arbitrary element
a € Fy[T] under the action of C is denoted by C,.

As before we need to look through some statements to use them further. All technical details
and proofs can be found in [8, 12 section|. For convenience we collected all necessary statements in
one proposition.

We fix a unitary irreducible polynomial P € Fy[T] of degree dp.

PROPOSITION 5. 1. Cp is the Eisenstein unitary polynomial in Fy[T] of degree q%r with
respect to the ideal (P).

2. Cpe is a separable polynomial.

3. Denote the set of zeros of the polynomial Cpe(X) in the algebraic closure' of Fy(T) by Ape.
Then on Ape one can introduce the structure of a Fy[T|-module with standard addition and
multiplication by a scalar a € Fy[T] as an application of C,.

4. The set Ape is isomorphic, asFq[T]-module, to Fy[T|/(P¢-F4[T]). Moreover, for anym € Fq[T]
it is true that the set Ay, is isomorphic, as Fq[T|-module, to the set Fy[T]/(m - F,[T]), where
Ay, is the set of zeros of the polynomial Cy,[X].

5. Denote Fy(T)(Ar,) by Ky, Then the extension Kpe/Fq(T) is a Galois extension with a Galois
group:
Gal(Kpe [Fq(T)) = (Fo[T]/(P° - Fo[T])) .

6. If (Q) # (P) and (Q) # oo, where 0o is some simple ideal of Fy(T'), (see the previous section)
then Kpe is unramified in (Q).

7. Kpe is completely ramified in (P) and, if X is an arbitrary generator of Ape, and Ok . is the
integral closure of Fy[T] in Kpe, then:

dp _1).,dp-e
()\)(qp 1)-q*P Okpe = (P)- Ok pe-

8. Dicpe = F [T)(N).

Main results

Connection between the Lubin—Tate theory and the Carlitz module

In this section we consider projective line Pg, . For this section we fix the notation:

o K :=T,(T) is a field of functions of Pp,.

e 00 :=( %) is an ideal in the subring Fq[%] that corresponds to one fixed point on our line.

'Throughout the paper, the algebraic closure is fixed Fy(T).
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o A:=TF,[T]is {f(X) € K(X)]| f has no poles in ideals other than co}.
e R:=F,((T)) is the completion of the K with respect to ideal (T').

o §:=TF,((T))" is the maximal unramifed extension of &.

JIEMMA 1. Consider the polynomial f = T - X + X49. Such a polynomial is the Lubin—Tate
polynomial for the local field & = Fy((T)). The Lubin-Tate law corresponding to it is the additive
law Fpgqg =X + Y.

Since Fy[T| C Og, it means that for any a € Fy[T| the series [a]y € Og is defined. It is claimed
that for any a € Fy[T] :

[a]y = Ca,

where C,, is considered as an element of Fq(T')[X].

= .
Moreover, let a € Og, a= Y a;-T", a; € Fy. Then
i=0

la]f = Zai - Cri.
=0

PRrROOF. Note that T is uniformizer for Fy,((T)). Also, the residue field of this local field is isomorphic
to F,. From these two remarks it follows that Cp is the Lubin—Tate polynomial for F,((T)).
According to proposition 2, Fpyq = F aAdd. Further, it is seen that:

fOFadd:T'(X+Y)+(X+Y)q,

which is equal to:
Foggof=T - X+X'+T -Y+Y1

The series [a]; is uniquely defined by two conditions:
1. [a]f = aX (mod deg 2);
2. folaly= (a2,

First, check the first condition. It is enough to note that when two polynomials are added, the
coefficients at X are added, and during composition are multiplied.

For any a € F,[T], the polynomial C, lies in F,(7T")[X], which means C, = C5. The map C is
a morphism of Fg-algebras, and F,[T] is a commutative ring, which means:

CTOCa:CaOCT.
Now we notice that f = Cr and get:

fOCa:Caof'

0 .
It is remaining to prove that if a = ) a; - T*, a; € Fy, then
i=0

o
la]f = Zai - Cri.
=0

[e.e]
First, check that the series ) a; - Cpi is set correctly. Consider the coefficient by- of this series
i=0
at X9 . Let us prove that for T% in byr there is a finite sum of elements of the field F,.
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n
Crn by definition is equal to [] (7 -7° + 7), where the multiplication is twisted. If 7 < n, then
j=1
7" = X7 and X7 is in Cpn with a coefficient divisible by at least 7™~", since when opening the
brackets, we must take 7 - 7° no later than in (n — 7)—th bracket. Moreover, T - 7°, and 7 increase
the degree of T by at least 1. Therefore, if n > r + k, then in C,, at X9  there are no terms whose
valuation is less or equal to k. That is, for 7% in X7 there is a finite sum of elements from F,.

o
Note that > a; - Cpi € Og[[X]], which means:
i=0

Zai . CTi = (Z a; - CTi)A.
=0 =0

Now we are going to check two properties defining the series [a]f.
The first property follows automatically from the fact that Cpi = T'X (mod deg 2).
For the second property, we should understand that:

¢ fo(Xa-Cr)= L a(foCr).

=0
[ ] (i}al . CT'L) Of = i%oai . (CTZ Of)

Note that both properties are true if we consider expressions modulo deg n, since both series are
polynomials of finite degree, and f is [F,—linear. So both equities are true for these series.

Using the fact that f and Cr7, commute, then equating the right-hand sides of the last two
expressions, we obtain the required property. O

We have already noticed that all points of our projective line except infinity are in one-to-one
correspondence to unitary irreducible polynomials of F,[7T"]. The local field of the projective line at
a point (T') is just Fy(7"). The next proposition explores these fields for other points of Pp, except
infinity.

PROPOSITION 6. Let P € F[T] be an arbitrary unitary, irreducible polynomial from T, of
degree dp. Then the localization residue field of the ring Fo[T] by the simple ideal (P) is F .

PROOF. Localization by the ideal (P) consists of rational functions of 7" whose denominators are
coprime to P. The only maximum ideal of this ring is P - Fy[T](py. By definition, the residue field
is Fy[T](py/(P - Fq[T](py). Let us prove that it is isomorphic to Fy[T]/(P - Fy[T7]).

(P) i}sl ;he maximum ideal in Fy[T], then F,[T]/(P - F4[T]) is a field. Consider an arbitrary

element % € Fy[T)(py/(P - Fy[T](py), where g(T) is coprime with P. If:

MT) = qn(T) - P+ ru(T),

9(T) = aqn(T) - P +ry(T),
then WT) (1)
_Th _
o) = ) (mod (P ET)).

Since Fy[T]/(P - F4[T]) is a field, then for any r4(T") there exists a polynomial b(T'), of degree less
than dp, such that g(T) - b(T) = 1 (mod (P - Fy[T1])). Thus, F,[T]p)/(P - F4[T](p)) is exactly the
ha(T) ha(T)
g1

2 . }
8] 92 (T) be two arbitrary elements from

and

set of polynomials, which degree less than dp. Let
FQ[T](p)/(P . Fq[T](P)). Note that:
hi(T) | hao(T) — ha(T) - g2(T) + ho(T) - 92 (T) _

g1(T) * (1) 91(T) - go(T) = hi(T) - b1(T) + ha - bo(T).
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Similarly:
hi(T) ho (T)

q(T)  g2(T)

Therefore, the map % — h(T) - b(T) is an isomorphism. O

Note that when we take the completion of the field K with respect to the valuation associated
with the ideal (P), the residue field and the uniformizer do not change with respect to this valuation.
The proof of this statement can be found in [9, Claim 1.1.3|.

= (h(T) - b1(T)) - (ha(T) - bo(T)).

JIEMMA 2. Cp is the Lubin—Tate polynomial for the completion of K with respect to the
valuation associated with the simple ideal (P).

PROOF. As already noted in lemma 1, Cp = P - X (mod deg 2). Also according to propositions 5,
Cp is the unitary polynomial of degree ¢?7, and all its coefficients, except the highest, are divisible
by P. We write this in the form of two sequences:

1. Cp=P-X (moddeg 2);
2. Cp = X417 (mod (P)).

Note that when the field Fy(T) is the completion with respect to the valuation associated with the
ideal (P), the residue field and the uniformizer do not change with respect to this valuation. The
proof of this statement can be found in [9, Claim 1.1.3].

Finally, according to the proposition 6 and remark above, the residue field of completion is
isomorphic to F ap, and the maximal ideal is the main ideal (P). O

We fix some irreducible polynomial P € Fy[T]. Let fp be the Lubin-Tate polynomial of the field
K (py, where K p) is the completion of K with respect to the valuation, corresponding to the ideal
(P). Let also fp € Ok, [X]. Define fp, as fpo fpo---o fp, and K(p),, as the decomposition

vV
m times

field of fp,, over the field K(py. Then the extension tower
Kppy C Kpy1 C K(p)2 C --- we call the Lubin—Tate extensions tower with respect to the ideal

o

(P), and |J K(p), by Lubin-Tate extension of the field K with respect to the ideal (P).
m=1

TEOPEMA 1. The tower of extensions K C Kp C Kp2 C --- induces the Lubin—Tate extensions
tower with respect to the ideal (P). The union of Kpe over all positive integers e induces the Lubin—
Tate extension with respect to the ideal (P).

PRrROOF. From the proposition 5, we know that for Kpe there is only one ideal ramified, and it is
defined as () - Ok ., where O, is the integral closure of Fy[T] in Kpe.

Consider the ring (O . )(\)- Since this is the localization of some ring by a simple ideal,
(OKpe)(n) is discrete valuation ring with maximum ideal (A). The field of quotients of this ring
is the field K pe, since all elements except A and P are already invertible, and the addition of A\~!
automatically adds the inverse to P, due to the fact that:

()\)(qdpfl)-qdf:"e = (P).

Therefore, localization by the ideal () is the discrete valuation ring that lies above the localization
Fy[T] by the ideal (P).

We denote the completion of K with respect to the valuation v(p) by K(py and the completion
of Kpe with respect to the valuation v(y) by (Kpe)(y). Then, by the proposition 1:

(Kpe)n) = K(p) - Kpe = K(p) (),
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where A is the primitive root of Cpe.
Since Cp € Fy[T](7), it means that it lies in Ok, [X], and therefore for any m :

Cp’m:CPOCPO---OCp.

m times

Thus Cpe = Cpge. It remains to notice that according to the proposition 4,
Kp)(A) = K(p)(Cp).

Thus, the extension Kpe/k induces on K, (p) the Lubin-Tate extension of order e.
[e.@]
Passing to the projective limit with respect to e, we obtain that |J Kpe induces the maximum
e=1
abelian extension of the local field K(py. O
Artin maps for global and local fields

In order to relate theories for the local and global cases, we need first to recall the Artin map
in the global case.

DEFINITION 3. Let X be a projective smooth irreducible curve over Fy and K = k(X) be its
field of functions. Then:

e For an arbitrary closed point P € X, we denote the completion of the local ring in P by 5;,
and the field of quotients of Op by Kp.

e By the idel group Ik of the field K we call bounded product of groups of invertible elements
K, by groups of ring units Op, by all closed points P € X.

Consider the maximal unramified extension K. We call the Artin map [9]:

oY T/ [[ Op — Gal(K™™/K)
PeX

(- ,ap, ) — Frob;rdp(ap),

REMARK 1. If the extension of the field K is abelian, then for any point (ideal) P we can define
the Frobenius automorphism/8, p. 136-137]. It can be described as a mapping Frobp € Gal(K"“%®/K)
such that for any ideal B lying above P it holds:

Frobp(w) = wN") (mod B),
where N (P) is the dimension of the residue field of the local ring at the point P over the field F,.

Consider the local case. Since the maximal unramified abelian extension K, is used, then in the
local case it is natural to consider the completion of the maximal unramified extension for Kp,
denoting it by K. Then the map Artg,, (remark 9) restricted on Gal(K}% /K) is defined as:

Artg, : Kjp — Gal(Kp'/K)

T — gb;j, if vp(x) = 7,

where ¢p is the Frobenius map of the extension K3 /K.
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TEOPEMA 2. For a partially defined mapping, we introduce the notation
op : Gal(K"%®/K) — Gal(K"/K), which sends Frobp to ¢5'. Then the following commutative
diagram holds:

S VA

K5 /9% P~ Gal(K™“%/K)
iid op
— Art
K5 /9% s Gal(K /K p)

— —_

PROOF. Artkp|aal(xur/x) converts any element from 97 to one, since for any x from D it is true
that vp(xz) = 0.

Then ap goes to ap(Frob(gdP (ap )), therefore it goes to gb;,ordp (ap ), which by definition is the
image of ap under action of ATth|Ga1(K;§,T/K)- O

Conclusion

In Lemmas 1, 2 and in the theorem 1 it is proved that the extension tower of Carlitz module
induces the extension tower of formal Lubin—Tate modules over completion of the local ring at a
closed point of the curve.

In the theorem 2 the description was given of the connection between the Artin maps for an arbitrary
projective smooth irreducible curve X and the completions of local rings at its closed points.
Open questions

e The Carlitz module is a special case of Drinfeld modules of rank 1, which can be considered for
an arbitrary smooth projective curve over a finite field. One of the most interesting problems
is the generalization of the theorem I for an arbitrary smooth projective curve over a finite
field.

e As a development of Theorem 1, we can consider a morphism that takes T" to an arbitrary
polynomial in Fy[T|(7), which will be a Lubin-Tate polynomial of degree . For example, for
r =2, one can send T to the polynomial T- X + X9+ T - X4 Then, extending F,(T") by the
powers of this polynomial, we again get a tower of Lubin-Tate extensions for the ideal (7°),
but it remains unknown what will happen at the other points of our curve.

e Combining the previous two problems leads us to consider Drinfeld modules of rank greater
than 1.
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