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AnHOTanusa

DTOT JOKYMEHT COCTOMT U3 3 pa3ienoB. B mepBoM pasjesie Mbl JaUM KPATKOE BBEICHUE
B «romomopduambl efirnHay W yBUIUM, KAK OHH IIOMOIYT HaM JIOKa3aTh HAIU OCHOBHbBIE U
dyHIaMeHTATIBHBIE TEOPEMbI, CBS3aHHbIE ¢ KBAHTOBbIMU cooTHOmeHussMu Ceppa u oneparopamu
SKPAHUPOBAHUS.

Bo BTOpOM pa3zesne Mbl BBeIEM JIOKAJIbHBIN HHTEIPAJ IBUKEHNN KaK MPOCTPAHCTBO HHBAPH-
AQHTOB HUJIBIIOTEHTA YaCTh KBAHTOBBIX adpduHHBIX anredp Jlu u HaligeT AByX- U TPEXTOUEUTHBIE
uHBapuaHTHL B ciydae Uy ( hatsly), ncmonb3ys cxemy Bomxosa.

B Tperbem pazmese MbI BBEJEM peleTodHbIe anreOpbl Bupacopo Kak MpOCTPAHCTBO WHBa-
puanTos 6opesnesckoit uactu Uy (By) B Uy(g) ans npocroit anredpst Jlu g u HalimeM MHOXKECTBO
obpasyromux Pemerounas anrebpa Bupacopo, coennnennas ¢ slo u U, (sla)

1 kax HOBBI PE3YIBTAT, MBI HAILIA MHOXKECTBO HEKOTOPHIX OOPA3YIOIINX PEIETKH AJIre0ph
Bupacopo.
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This paper consists of 3 sections. In the first section, we will give a brief introduction to the
"Feigin’s homomorphisms” and will see how they will help us to prove our main and fundamental
theorems related to quantum Serre relations and screening operators.

In the second section, we will introduce Local integral of motions as the space of invariants
of nilpotent part of quantum affine Lie algebras and will find two and three-point invariants in
the case of U,(sly) by using Volkov’s scheme.

In the third section, we will introduce lattice Virasoro algebras as the space of invariants
of Borel part U,(By) of Uy(g) for simple Lie algebra g and will find the set of generators of
Lattice Virasoro algebra connected to sly and Ug(slz)

And as a new result, we found the set of some generators of lattice Virasoro algebra.
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1. Introduction

In this section we will introduce Feigin’s homomorphisms and we will see that how they will
help us to prove our main and fundamental theorems on screening operators.
"Feigin’s homomorphisms"was born in his new formulation on quantum Gelfand-Kirillov conjecture,
which came on a public view at RIMS in 1992 for the nilpotent part U,(n), that are now known as
"Feigin’s Conjecture".
In that mentioned talk, Feigin proposed the existence of a family of homomorphisms from a
quantized enveloping algebra to rings of skew-polynomials. These "homomorphisms"are became
very useful tools for to study the fraction field of quantized enveloping algebra. [6]

Feigin’s homomorphisms on U,(n)

Here we will briefly try to show that what are Feigin’s homomorphisms and how they will guide
us to reach and to prove that the screening operators are satisfying in quantum Serre relations.

Set C' as an arbitrary symmetrizable Cartan matrix of rank 7, and n = n; the standard maximal
nilpotent sub-algebra in the Kac-Moody algebra associated with C' (thus, n is generated by the
elements F1, ..., B, satisfying in the Serre relations). As always U,(n) is the quantized enveloping
algebra of n. And A = (A;;) = (dic;;) is the symmetric matrix corresponding to C' for non-zero
relatively prime integers dy, ..., d, such that d;a;; = djaj; for all i,j. And set g as a Kac-Moody
Lie algebra attached to A, on generators F;, F;, H;,1 < i < n .[11] Let us to mention some of the
structures related to g that we will use them here:

the triangular decomposition g =n_ @& h S ny;

the dual space h*; elements of h* will be referred to as weights;

the root space decomposition Ny = GacayJa, 9o; = CE;;

the root lattice A € b*, {a1, -+ ,an} C Ay C bh* being the set of simple roots;

the invariant bilinear form A x A — Z defined by < o, oj >= d;a;j. [11]

Set A; and Ao as a A— graded associative algebras and define a ¢— twisted tensor product
as the algebra A;®As isomorphic with A; ® As as a linear space with multiplication given by
(a1 ® ag) - (¢ ® ab) = <> a} ® agah, where o/, = deg(d}) and ay = deg(az). And by this
definition A1®As become a A— graded algebra.

PROPOSITION 1.1. Set g an arbitrary Kac-Moody algebra, then the map

AUy (9) = Ui (9)®U; (9) (1)
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Such that .
All)=1®1
é(El) =E®1+1Q E;
A(F) =FEe1+1F

for 1 < i < n, is a homomorphism of associative algebras. [9][6]

REMARK 1.2. there is no such map as qu (9) — Uf(g)@Uét(g) in the case that g is an associative
algebra. [9]
And as always after defining a co-multiplication, A, then we can extend it by a iteration as a

sequence of maps [1]
A" :U;(9) = Uy (9)%",n=2,3,... (2)

determined by A° = A, A" = (A ®id)o A

Now set C[X;] as a ring of polynomials in one variable and by equipping it by grading structure
degX; = «; for any simple root «;, we can regard it as a A— graded.
By this grading there will be a morphism of A— graded associative algebras

¢i 1 Uq (9) = CXi] : Fy > b5z (3)

By following this construction for any sequence of simple roots 3;,,- - - , B, , there will be a morphism
of A— graded associative algebras

(61, ® ¢i) 0 A" : Uy (9) = C[X11,]® - - BC[Xps, ] (4)

(the cause of double indexation here is the appearance of i;s more than once in the sequence). And
finally, C[X1;,|® - - - ®C[ Xk, ] is an algebra of skew polynomials C[X1;,,- -+ , Xk, ], with A— grading
Xi, Xpi, = q=%s%t” Xy, X, for s > t. But let us to simplify it as X; X; = q<degXi’d69Xj>Xin;
the one that we will use it always.

So very briefly we constructed the already mentioned family of morphisms (Feigin’s homo-
morphisms) from U, (g) (the maximal nilpotent sub-algebra of a quantum group associated to an
arbitrary Kac-Moody algebra) to the algebra of skew polynomials.

2. The contribution between Quantum Serre relations and screening
operators

THEOREM 2.1. Set Q = ¢? and points x1,--- ,x, such that rx; = Quix; for 1 < j. And set
Y=+ +a, QY =1 and me = 0 for some natural number N, then we claim that
(29N =0

PRrROOF. Tt’s straightforward, just needs to use g-calculation. O
2.1. sl(3) case

_ 2 -1
As we know, My = [ 2 1 ] is the generalized Cartan matrix for si(3). Set My, = [ qq,1 4 9 ]

-1 2 q
and call it Cartan type matrix related to Mo.
THEOREM 2.2. Suppose we have two different types of points x;, Namely, set (z2;_1);, that we will

call them of type 1 and (x2;);, that we will call them of type 2 for i € I = {1,2}, and the following
q— commutative relations:

TiTy = P, if j < j'andj,j’ € {1,3}andj = j'
TiTy = QPTix; if i <i'andi,i’ € {2,4}andi =7’
TiTj = qilzrjxi ifi<y
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Set X7 = Xjcrxoir1 and X§ = Yjerxo;. We will call them screening operators.
Then we claim that 37 and X3 are satisfying on quantum Serre relations:

(59)7%5 — 20,27 855 + 25(21)° = 0 (5)
(35)°5f — [2], 555755 + £ (25)* = 0
PRrROOF. It’s straightforward, just needs to use g-calculation. O

THEOREM 2.3. Prove Theorem 2.2 in a general case, i.e. Set points X; € {Xy,---,X,} and
Y; € {Y1,---,Y,} with the following relations;

X X;=q¢X;X; ifi<j
Y;Y; = ¢*Y}Y; ifi<y
XY, =q¢'Y; X, ifi<j

and the screening operators X = EleXi and XY = Z‘;‘?:le.
We claim that X7 and XY are satisfying in quantum Serre relations.

PROOF. Proof by induction on k.

As we see in theorem 2.2, it’s true for k = 2.

Suppose that is true for £k = n, we will prove that it’s true for k =n + 1.

As we set it out, n is a nilpotent Lie algebra, so the Cartan sub-algebra of n is equal to n with
Chevally generators Ef( and XY as they are satisfying in quantum Serre relations.

So we can define Uy(n) :=< X%, 2Y|(29)?SY — (¢ + ¢ )ZISYS? 4+ 222 =0 > .

Let C4[X] be the quantum polynomial ring in one variable. We define:

Uy(WEC[X] =< 2,5, X|(S2)°SY — (g + ¢ )TInVEs + SU(55)? = 0,5%6X — ¢X%F,
X =q X3y >

Here ® means quantum twisted tensor product.

We define the embedding U,(n) — Uy (n)@C,[X]: T — ¥ + X ; XY — XY,

Claim 1:

(X7 4+ X)andXy are satisfying on quantum Serre relations.

proof of claim 1:

(ZF+X)22Y — (g + g DH(EF+ XDV (EF 4+ X) + 2V (2 + X)2 = (29)°8Y + 29X 2Y + X2iey +
X22§ —(q+q (IS 4 X DY 4RIV X 4+ XYY X) 4 DY ()2 4 2YSIX + RYX ST 40V X2 =
(29250 — (g + ¢ )SIEYST + 4(51)% + (P XFE) + XTIS + X25) — (g + ¢ ) XSUS] -
(¢+ ¢ NgXEI%Y — (¢ + ¢ g XY + g XTYST + ¢ XTYNT + ¢ 2X2%Y =04+ 0= 0.

So it’s well defined.

Now set X = Xy41.

We will have the new operators X' = X7 + -+ + X, + X,,41 and YW=V, + - +Y,.

Now define:

Ug(n) = Ug(n)@C[X] = Uy(n)@Cy[X]RC,[Y]
such that

N 3 4 X s 27

IR 3 A 3 L

Notice that C;[X]®C,[Y] =2 C < X,Y|XY =¢ 'YX >.
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And Define:
U,(n)®C,[X,Y] =< X¢,3Y X, Y|S¢ and XY stisfying ¢-Serre relations and X = ¢?X¥7,
WX =q¢ IXTY,2%Y = ¢ VS 21V = 2Y S XY = ¢ 'YX >

Claim 2:
S and(XY' +Y) are satisfying on quantum Serre relations.

proof of claim 2:

2 _ 2 2 2 _
() (S +Y) = (a+ ¢ HEYEY +VZ + & +Y)(E]) = ()5 + (5F)°Y ~ (g+¢7)
(D2 S 32y 57 ) 40 (57) 4y (522 = (52)25Y — (g¢ HET RV ST 40V (52) 2 +(52) Y+
BEY = 0+ 2Y (552 — (g4 ¢ g Y (552 + Y(59)2 = 040 = 0.
lets do some part of this computation that maybe make confusion:

(ST)2Y = (S 4 Xo1)2Y = (S1)2Y + X2,V + 57X, 0Y + Xt S5 +¢72Y (59244 72V X2, +
G ST X+ 42 X1 B = ¢ 2V (572 4 X240+ S X + Kot B9)) = ¢ 2Y (577,

And 2¥Y = (B8 + X0 ))Y = 20V + X, 1Y = ¢ Y20+ ¢V X = ¢ N (Y (B8 + Xpi1)) =
¢ 'Y'X¥. And by substituting these, we have the result.
So our definition is well defined.
Now set Y =Y, 11 and we are done. O

~

2.2. affinized Lie algebra si(2)

2 =21. . ) A . qz q72
is the generalized Cartan matrix for si(2). Set My, = P

-2 2 q
and call it Cartan type matrix related to M.

sl(2) is satisfying in Theorems 2.2 and 2.3 as well; but what we need is just to change the
quantum Serre relations in the following case:

As we know, My = [

(B8] — (@ + 1+ ¢7)(ED) 2] + (¢ + 1+ ¢ )] (S])” - B{(5))’ =0 (6)

3 - 2 - 2 3
(ED)°5F = (@ + 1+ ¢ )(ED BT + (¢ + 1+ ¢ 2)BYS(E])” - SH(EY)° = 0.
And to change the g— commutation relations also; according to our new Cartan type matrix

XZ'Xj = q2Xin ifi<j
YiY; = ¢*Y}Y; i<y
XY, =q%Y;X; ifi<j

But lets try to prove it in the case of Laurent skew g—polynomials C[X, X ~1].

THEOREM 24. Set points X; € {X1,--,X;} and X; " € {X7',---, X'} with the following
relations;
XiX; =¢X;X; ifi<jy
{ XX =q XX i<

and the screening operators % = ¥¥ | X; and Zf_l = E?ZIXJ-_l.

Again we claim that 7 and X% ' are satisfying in quantum Serre relations (6).

PROOF. Proof by induction on k.

For k =2, Set X{ = 1 4+ z2 and Z”fl = a:l_l + :c2_1 and as we checked out, it’s straightforward to

show that they are satisfying in quantum Serre relations (6).

Suppose that it’s true for £ = n components x1,--- ,x,. Again as before we define:

1
|

_ _ _ _ 1.2
Uy(n) = {25,597 [(S9°50 " — (P + 14+ ¢ (028 ST+ (P + 1+ ¢ )T ' SHE )
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~Tf(29)° = 0)
Define Uy (n) — C,[X, X71]; 2% AX; 27— X~ for A € C*
And define Uy(n) = Uy (n)8U,(n) — Uy(n)@C[X, X~ 1]; 2 s Y @14+ XDXEET s ¥ @1+
X lgxr .
And Uy(n) — Uy(n)®U,(n)& - - - ®U,(n) — C[X1, X; |BC[X2, X5 '|® - BC[X,, X, ] =

nterms

C[XlaXl_lv e 7Xn7X'r;1]
O

3. Local integral of motions; Volkov’s scheme

Set two screening operators

S =Sy (7)
Ef = E]’IE]'.
“1 1—ai;
as we already saw, for these operators we have (ady%7 1) 9 (Ef) =0.
The project here is to find an analogue of R— matrix ”R” such that

(X1 4+ Xp)R(Xy, -+, Xg) = R(Xq,- -, Xp) (X1 + - + Xp) (8)

satisfy.

In this section we will try to find a solution for this equation as Volkov planed. We call these
kind of solutions as "Local integral of motions”.
In the sense of Feigin-Pugai [13], the main idea for to solve such kind of equations is to add "spectral
parameter” 8 to k points screening operator and to define an analogue of R— matrix:

(Bxi+ a2+ -+ Xi)R(x1, 22, -+, Xi) = R(z1, 22, -+, X)) (1 + 22+ - - - + BX}), 9)

(B"L‘II +$51 +eeet :E];I)R(x17x2a te )Xk) = R(xlax% to )Xk)('xfl +$51 + 51:];1)

Example Uq(szg); two point invariants

Let us try to solve this equation for just two points x1 and xs.
In this case, our equations (9) will reduce to the following ones:

(Br1 + 22) R(w1, 22) = R(z1,22) (21 + B2), (10)

(Bry' + 23 ) R(w1, 22) = R(wy, 2) (a7 + By )

There is a solution for these equation in [2]|, but we are interested on re finding them again here.
For to do this, let us change the equations (10) to the following one, for simplicity. Set oy = x125 !
and R(wl,l'z) = Rl,g,

(Br1 + 22)R(z123 ") = R(zizy ') (21 + Baa), (11)

(Bzy' + 25 ) R(z125 ") = R(zy23 ") (27! + Bas )

The solutions of these equations are identical to the previous one, we did this change just because
to find the solutions in these ones are easier than the previous one and less confusing.
Then both of (11) will reduce to this linear difference equation:

(Bar + 1)Rio(q 'u; B) = (u+ B)Ri2(w; B), (12)
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Let us do it for one of them (the first one) for to see the procedure (there is an identical approach
for the second one):

(Ba1 + w2)R(z12y ") = R(aizy ) (21 + Bas)

(Brizg ' + Vo R(z175 ") = R(zyzy ) (w125 + B)ws

Set R(ay) = XCoaf" and then distribute x2 in it from the left and then bring it out to the right
hand side, by using the g—commutation relations. The idea is to disappear x2 from the both sides
by multiplying the equation by x5 ! from the right side. So we have

(Brizyt + 1) R(q w125 ) ze = R(21, 22) (125 " + B)2o

(Bar + 1) Ri2(q a3 B) = Rig(an; B)(ar + B) (13)
Lets try to find Ry 2(cu; B3):

(12) = Ri2(q;8) = %ﬁfBlRLQ(q_lal;ﬁ)

1 -1 1 -
= futt. 5}10314:?3 Ro3(q %a1; )

_ Bai+l  Bg lai+l  Bg Zai+l -3 . _ _ Tqo° .
a1 +B ' qflal_i_ﬂ : q72a1+6 R374(q Oé176) == Hz:O RZ,1+1
= [ Bgtar+1

— 11li=0 ¢=ta14p

But we need some thing more, so lets continue;
For to find its recursive sequence we have to pass the following steps:
(Bx1 + x2)R(ar; B) = R(aw; B) (w1 + Ba)
(Bar +1)R(g~ au; B) = R(eu; B) (a1 + B) , ‘
= RlansB)=52, Croat BicoCind Bay™ + B20Cioq~ al = B20Cipar™ + 232, Ci0fa]
322, Cic1,0¢” T Bal + B2, Cioq " ad + Coo = 532, Ci_100] + 22, Ci0Ba) + BCop
2 (g7 B =1)Cis10+ (¢ = B)Cip)at =0
And then by comparing the coefficients in both side of the equation, we reach to the following
key rule recursive sequence that we will use it for to find our final solution in the case of two points.

Copo=1
1— —i+1 .
0= q'iii_BCi,l,o fOTZ = 1, ..., 00

Copo = BCoo=p =1

And now let us to set an general agreement for to simplify writing:

Set (B)n := (1 — B)(1 —gB)(1 — ¢?B)---(1 — ¢""'3) and let our summation be finite, i.e.
set i € {0,---,n} and R(aq; ) = £ ,Cioa} and in the next step we can extend our radius of
convergence.

Now lets try to find it:

1— 7i+16
Cio = 7;11-_,3 Ci—10
_ 1=¢""'8 1-¢ "8
Cio = —F=5~ - =5 Ci—20
— 1=q7"B  1-q72p  1-q~H3p
Ci,O ~ "¢ -8 : ¢TI : g T2-p Cz'—3,0

C- 1—q~ 1B 1—q=*23 1-q~ 38  1-¢28 1-¢%8 1-q¢ '8
40 = q-p g—tl-pg  ¢Tit2-p q>—p q—pB 1-8

O o= =B (=g~ *28)(1—q—""*8)-(1=¢*B)(1—¢*B)(1—q_ ')
&0 (=B (g1 =B) (¢~ F2=B) (¢~ F3-B)--(a®*—B)(¢—B)(1-B)

Cine (=g ™B)(—¢ "*2p)(1—g "**B)(1=g *B)(1=¢ >B)(1—q"'5)
00 = (=g’ B)q T (1—¢" 1B)q " 2(1—q" 2B)q " +3(1—q" 3p)~q 2(1—¢*B)q ' (1—qB)(1—7)
Cio= (1—g~ ") (1—g~"2B)(1—g~**3p)--(1-¢*B)(1—g*B)(1—¢~ ' B)

P g i gT 28 g2 (1" B) (1—¢* 1 B) (1—¢' 2 B) (1—¢"~3B) - (1-¢*B) (1—¢B) (1-B)
C: o — (1—g “t1B)(1—g~"+28)(1—g_"*3p)
10 T GO F (i DT (i D F (i) F (i + (= 2) F(— i G— 1) F(— i+ (+0))

,  (1—q38)1—q~2B)(1—¢"'B)
A=¢B)(1—¢ B)1-a 28)(1—q' 3B)-(1—B)(1—aB)(1-B)
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In infinity when i — 400 we have ¢~* — 1; So we have:

O 08— 2B)(1—g *3p)
0 = GOFDFOFEF G2+ F(F0)

,  (1-g7*8)(1-¢"28)(1-¢"'B)
T (1—g B¢ 281 8)- (1281 —aB) (1 P)
Cio = (1—¢~ "' B)(1—q~"28)(1—q~*3B)--(1—¢38)(1—¢—28)(1—¢" ' B)

’ n(n—1)

, v a2 (ab)n )
Ci o — (1—¢~"¢B)(1—q~ " qB)(1—q~*2¢B)--(1—q—*qB) (1—q¢*qB) (1—q—%¢B)
7,,0_ n(n—1)
- q 2 (%82711 »
Cio = (qﬁ)(qﬁ - )(qﬂ)(f—Q"“)(qﬁ)(%—t{‘”j) (g )(T_ aB) (5~ )(qﬁ)(f—q %) (1-%)
’ L, P (q/ﬁ) l( 3qﬁ) )
C @B g g g2 ) (T 1)( (L5~ —1)( )(%—1)(*—1)( -%)
1,0 = n(n—l)
q (@B8)n(—qB)~?
L a(n=1) 1 i3 . )
(=B T )(1-15 )(1—7)(1 ) %)( )( —5)(1—3)
Ci70 - n(n n(n—1)
(qﬁ)n
(_qﬁ)n(%%z
Ciop= ————"—— 14
0 (aB)n (14)

Example U,(sl,); three point invariants

As what we had for previous example in two points; we will proceed the same steps for to find
the solution of the equation (8) for three points g, 1, x2.
Set o; = x;x H—l’ such that a;a; = qaja for 4,5 € I as usual, and R(ag, a1) = X, mCn magal’.
We are trying to solve the following difference equation subject to R;

(Bxo + 1 + 22) R(, 15 B) = R(aw, a1; B)(zo + 21 + Br2), (15)

The process is exactly same as the previous one, so we will skip writing them here.
For this equation We got the following recursive sequences, that will guide us to reach to our main
solution for n,m =1, ..., 400 .

Cop =1
—m+1_  —n—m+2 —n—m-+1
Cnm_q qq —-p ﬁC 1m1+ q_mﬁ Cn,ml
—m-+1
Com =5 = Com—1

And by considering the second sequence as our main key, and following it; we arrived to a nice
and important sequence:

m(m—1) 1

(*Q5)nq (B)n
(B)m(aB)n—m

That is compatible with the equation (14) when m = 0. And this can show the correctness of our
calculation.

Cnm = (16)

4. Lattice Virasoro algebra

In this section we are interested on solutions 3;, of system of difference equation
XZ'Xj = quXi
deg(¥1,) =0
(ETRXi, ] =0
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that will be a generator of lattice Virasoro algebra.
If we be able to find such kind of solution; then we can extend it to an another generator by a shift
operator:

22 :Elw[xl — X2,T9 —> X3,T3 —> T4, (17)

x

x
23 :EQ[CCQ — X3,T3 —> T4,T4 — T5, "

T

where X1, = 31, (v1, 22, -+ , 7).

Lattice Virasoro algebra connected to sl

Here as always, we have the g—commutation relation X;X; = ¢X;X;,7 < j between the points
in sls.

Let us try to find three points invariants; this means to try to solve the following system of
difference equation:

XZ'X]‘ = quXi
deg(¥1,) =0
(X1 4+ Xo+ X3)21, (X1, Xo, X3) = 21, (X1, X2, X3) (X1 + Xo + X3).

One can find easily the trivial solutions of the second equation as follows:
{EuT (X1, X2, X3) = X1 + Xo + X381, (X1, X2, X3) = X1.X5 ' X3

but as we see, non of them have zero grading. So we should find another solution.

By just keeping to look at them for a while, we can see that by multiplying these kind of solutions,
one can find a zero grading expression, but it’s not satisfying for these two ones. Again we note that
for a solution; it’s inverse is again a solution, so by this remark, we have two options here. We can
inverse 11, or Y12, and then multiply it with the other one. In both case we will have same set
of generators except that in the first case (inverse of 11, ), lattice Virasoro algebra is generated by
elements of form ¥;, = XiXijrllXHg(Xi + X411+ Xi12)7! and in the second case (inverse of Y13, ),
lattice Virasoro algebra is generated by elements of form ¥, = (X; + X; 11 + XHQ)XZ._lXiHX;rlQ.
And by a simple fact that our space of working is closed under multiplication, so these new recently
found objects can be a trivial solution for our system of difference equation. And then by shift

operators (17), we will have the set of generators for our lattice Virasoro algebra connected to sls.

Lattice Virasoro algebra connected to U,(sl,)

Set A = g@ﬁ% the algebra of polynomials in variables ¢, z; over C for i € I{our ordered
iLyj gL

index set), such that
qr; = Tiq foriel
TiTj = qT;T; ifi<j
Our first project is to extend the usual binomial expansion to this algebra, for example we can see
the shape of such expansion in a lower exponent 3:
(z; + ;) = (2 + x5) (@ + x5) (@ + x5)
= TiTi%; + TiTT; + TjTT; + LT84 + Tk T + Tik5T5 + TjX3%5 + T2
= LT + QT+ T+ T+ T+ Cririe + qrirei+
LjTjTj
=z} + quja; 4+ xjx] + 23w + il + Cair + gt + o
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=2+ (1+q+¢*)a? x1+(1+q+q2)xjx?+:c§?
= Do (k)25 "t
But for to prove it in a general case, we will use some techniques from combinatorics:

Suppose x; and x; as above and set w as a word formed by x; and z;. Then it’s easy to see
that any such kind of words can be permuted to xéxf along with a factor power of ¢, by using the
g—commutation rule. For example, z;xjr;v;x;x;jx;20,20,2;0; = q13x?x?, as the first x; should pass
5 ;’s and the second and third x; should pass 3 x;’s and forth and fifth z; should pass 1 x; and
sixth will be stable.

Now according to this fact , each word w consist of k x;’s and n — k = [ z;’s in (z; + x;)".
That corresponds to a partition which lies inside an (n — k) x k rectangle. On the other hand
each such partition corresponds to a unique word w. Lets look at our example again; we have
W = TTjTjX;250,2,2;2, and the partition is 533110. If w = qu?_k:vf, then as we see m is
the sum of the parts of the partition. And the generating function for all partitions lie inside an
(n— k) x k rectangle is the definition of the g— binomial coefficient (," k) (Z)q. So for a positive

complex number n we will have
n K,k
(i ay)" = 5o () 2374
q

But what will happen for the negative exponents?
It’s our next deal for to face. What we need to prove is to see what (Z)q will be when we replace n
with —n?
According to the definition ¢g— binomial coefficient, we have

(1), = (1-¢M)(A-g""H(A—¢""?)-(1—¢" ")

k/q (1-¢*)(1—g*~1)--(1—q") '
Now by replacing n with —n we will have:

("), = (A—g~™")(A—g""H(A—g "72)--(1—g "7+
k/q (1—gF)(1=g*=1)--(1—¢1)

(1=g~'")(1=g " (g ") (1mg "

(=g ) (1—g 1 ) (1—g=17)
(l_q_l'n#»kfl)(l_q_ln+k72)“‘(1_q_17L+k7(k72))(l_q_lnﬁ»kf(kfl))(l _17L+k7(k))
(@)~ ((¢HE=1)) g~ (g7 )1 =1))(¢7 1)~ (¢~ 1) -1))
(1_q,1n+k71)(1_q,1n+k72) ( _1n+k—(k— 2))(1 q,1n+k (k— 1))(1 _1n+k— (k))

)

q
(D)~ F (g )= (g HH(=DFA—=(g=HF)A=(g~ ) 1)-(1— ( DY
q

1—
Y
(1,q*1”+k_1)(17q*1n+k_2) (1— _1n+k—(k— 2))(17q71ﬂ+k (k— 1)) 1— ,1n+k (k))
(
)

(
E(—k+1) 1—(g=HF)(1—(g=1)k=1)-.(1—(g=1)1))

(
(@27 (=D
—k(=k+1) 1 1— q,1n+k 2) (1— q,1n+k (k— 2))( _q,1n+k7(k71))(1_q,1n+k7(k))
. 1=(g=HF)(1—(g= k1) (1=(¢~ )

i L PP B

T (A= HHA=(gHE ) (1=(g" D))

k _

= (1R (")

So as what we had for a positive exponent, we will have the result for negative exponent as

_(=D)Fg z (1—g MR

follows:
n o [P\ —n—k k 0o k(5 (T k—1 —n—k,k
(@i + ;)" = X ) T = reo(—1)"q\2 A T (18)
q q!
REMARK 4.1. And it’s identical to write the summation (18) from —oo to 0 as follows:

_ —n _ _ ket fn—k—1 _ _
(xi + Hfj) n _ EO:OO( B ) 1'%'] n-l—lc k: EO_,m(—l)kq 5 ( L ) xj n+k$i k (19)
q- q
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Formulation for to extend to four and more invariant points

Set % = U_ + zlexi + Uy, where Uy =375, X; and U_ = 5f___X;.
Set (F7)©) = f(z1,--- ,x3) = XC3XP - X% such that

U, (F3,) O] = Uy (F k)(o) (Fi)OUy

= U, (FF ) — (F¥ )( )Xk+1—(Fﬁk)(O)Xk+2—“'

€. 0) T
= Uy (F} 1k ) dg( ) (Xk+1+Xk+2+"‘)(F1,k)(O)
= Uy ( 19619) —deg( ) U+(le,k)(0)

= (1 — ¢ * Ty (7 ) © (20)
as well as for U_

ﬁk)<0)

V-, (FR) O] = (1 = ¢*F o (P y)© (21)

If we suppose deg(Ff”k)(U) = 0, then both of [Uy, (ka)(o)} and [U_, (Fﬁk)(o)] will be zero and

we will have to check the correctness of [ZF_, (lek)( )] £ 0. If it was true? then we will have a
generator for lattice Virasoro algebra and by the shift operator, we will have all set of generators
for it.

Let us define a Poisson bracket as Drinfeld defined and then compute some results by using
that:

dX 77.

{X;, X[} i= Limg1 —2— 7 and then we have:

aXmXZ = 0, in both classical and quantum case.

adx, X7 = (1 —¢")X; X7 and adx; X' = (1 — ¢")X; X[ for i < j in quantum case.

adXiXJ” =0 and adeXi" = 0 for 7 < j in classical case.

Now let us find the Poisson bracket for X; and X" in classical case

1—-g") X X!
(;1_)(]11 = —nX 1 X['0x, fori <1 (22)

(1—¢ )Xy X7
L—q
For example we have {X;, Xo} = X1 X90x,
By using this operators in the case of the equation (21) we see that this part when ¢ — 1 will
be zero and so after this time we just will deal with ¥Xi = EleXi +Uy.
And also we can find these relations in a more general case for a one variable function on X; as
follows:

And let us consider F;, F;, H; as the generators for Uq(slg), then F; and H; will produce the
Borel part B4; One of the ways that we can act By on the C[Xj, Xi_l} is as follows

{X1, X'} = Limg_

{X1, X"} = Limg— =nX; X]'0x, fori > 1 (23)

m: By x C[X;, X; '] = C[Xy;, X, Y] : (Bi, P) = 7(E;)P := adyx P = [, P], (24)
m: By x C[X;, X; '] = C[Xy, X;7 ') : (H;, P) = 7w(H;)P :=< j,degP > P (25)
where «; is a simple root related to H; and P an arbitrary homogeneous element of C[X;, X ;1]

DEFINITION 4.2. Generators of lattice Virasoro algebra associated to simple Lie algebra g constitute
the functional basis of space Invy, (g, (C[Xi, X;1). And for to find these generators we need to solve
the following functional equations;|13]

[2i,, 5] = 0andH;%;, = 0(x%)
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Now the next question is that "how many variable X; is enough for to find a nontrivial solution
for equations (x)?
The answer is if we deal with ¢ in a general position, then one can expect that the dimension is
dim(B4) + 1. [13] So in the case of sl it will be 3, the number of variables.[13]
Now let us to go back to our example;
X1f(Xo) = f(g~' Xo) Xy
Set ¢ = exp(H);
= fle X)X,
When ¢ — 1 then e — (1 — H) and e’ — (1 + H);
= f((1 — H)Xo)X1 = f(Xo — HXo)X1
= (f(Xo) — f(HX0)) X1 = (f(Xo) — Hf(X0)) X1
= (f(Xo) = X1 H f(X0)) = (f(Xo) — X1 X00x, f(X0))
= {X1, f(Xo)} = —X1X00x, f(Xo) So in general if we repeat the process for any X;1,
we will have

{Xi, f(Xj<i)} = = XiX;0x; f(Xj<i) (26)

According to the Poisson bracket and our early calculation, equations (xx) will have the following
form

EY, = (X1(X1+ Xo+ X3+ Uy )0x, + Xo(Xo+ X3+ Uy )0x, + XsUi0x, + U209y, )%, =0 (27)

HiEim = (X16X1 + X28X2 + X38X3 + U+8U+)Ez'm =0

in three point invariants X7, Xo and Xs.
As well as there is a same process with a minor differ for when we have j > 1 ;

{Xi, [(Xj>i)} = XiX;0x, [ (Xj>i) (28)
And also X;f(X;) = f(Xi)X; = fle X)) X;
= f(1+ H)X;)X; = f(X; + HX;) X;
= [(Xi)X; + XiHf(X;) = f(Xi)Xi + X7Ox, (X))

{Xi, f(X0)} = X7Ox, (X)) (29)

Now set f = f(X1,Xs) = (FfQ)(_%), (here (—3) means that our polynomial is of the degree —3 )

then by previous definition of dy, , we have Jy, f = 0.

Set (Fﬁ)(%) = [2X, (FfQ)(_%)]q = adzx(FfQ)(_%), then by using the previous discussion we
have (F,)(2) = (Ff',)(®) (U, X1, Xp).

Now consider the following representation of (slz),;

F =0y,
H = U+6U+ + X10x, + X20x, (30)

E=U20y, + (X7 + X1 X + X1U3)0x, + (X35 + XoUy)0x,

We need the highest weight vector of this representation that is the solution of equations (30). So
we should have E(Fﬁ)(*%) = adyx [, (FT2) 7%)} = 0. There is a solution for these equations in

[13]. Here we use the same solution and procedure.
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The Idea is to suppose existing of the local fields [13] (F{Ck)(o) (F3 k+1)(0) -++ (here (0) means
that the degree is 0) and the modules created from these local fields as follows for degrees ¢ and j.
According to [13] we try to find the exchange algebra relations

(F) = 2% 251 =5 (FE) @] )G — times) (31)
And then again will use the shift operator and will shift it once for to find another module as follows
(Fér,kﬂ)(j) = [va [EX, [, [EX, (F;k-i-l)(o)} ~ (G — times)

Let us to proceed as what we planned:
Set k € {2} and i = —3

1

1 _1
(Ffy)"%) = X7 X, 2 (X1 + Xp) 72 (32)
as [13]. Then

1 _1
(52X, (FFp) 2] = [U- + (X1 + Xo) + Uy, X2 X, 2 (X + X) 7]

11
= (1—q UL X7 X, * (X1 + Xo) 72 [13].
Where Uy = EJFOO Let us to call it (F} 2)( ): because it’s degree is 5 L and to find another module
from it by using shlft X1 — X3 and X9 — X, as follows:

1

1 _1
)= X2X,2(X34 Xy) "2 (33)

[N

(F54)C
And again in a same process we will have
11
(B3 = [£¥ F5)03) = (1= g 2)(Us = Xa = X) X3 X, 2 (Xa+ Xa)2[13]  (34)

Now let us multiply the equations (33) and (34) (because we need zero degree) with each other
for to see what will happen?

M\H

1 1 1
=X12X22<X1+X2>—%<<1— ><U+—X3—X4>X;X (X3 + X4)77)

1 1
= X2X, 2(X) + Xy) 2U, X2X (X3+X4)*§

1 1
—X2X, 2(X) + Xo)~ 2X3X2X4 (X3 +X4) 2
1 1
CXEXE(X) 4 Xa) B XUXEX, (X3 + X473
1 1
g EX X (X Xo) RULXG X (X X
11
—q XX, 2 (X + Xy)” 2X3X2X (X3 + X2
11
CEXEX, (X1 4+ Xo) B XaXZX, (X + Xo) b
And again let us proceed as [13] and to find:
! B (Fz =D
—q2 (FY 2) 2 (F3,4) 2 (36)

N\»—A

= ¢ ((1 ¢~ 2>U+X2X2 <X1+X2> %>X;X4 (X3 + X4)~
1

:—q2U+X2X (X1+X2) 2X2X (X3—|-X4) 2
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11
FULXEX, 2 (Xy + Xo)™ 2X2X4 (X3 +X4)2
i
= —XP X, (X1 + Xp)” 2U+X2X (X3 + X472
b EXEXG (X X)) BULXEX 2 (X + Xy)
And again by following [13], by adding the equations (35) and (36) for to find an object with
zero grading that can be a four point invariant generator of lattice Virasoro algebra

1

_1 1 1 1 _1
pra= (Fio) 72 (F5) @) — g2 (F) 3 (1)) (37)
11 11
= (14 2) X7 X, (X0 + Xo) 72 (X + Xa) X5 X (X5 + X) 72
But now let us follow precisely the notation from [13] for to not be confused
11 1 11 1
A173 = X12X2 2 (Xl + XQ)_§(X3 + X4)X32X4 2 (Xg + X4)_§ (38)
that is a four point generator of lattice Virasoro algebra, but we are not looking for such kind of
solutions, because to extend it to a general form is somehow difficult. So we are looking for a simple
solution.
Now let us to define another such kind of solutions as we experienced.

11
(F55) 2 = X2 X, % (Xa + Xg) 72 (39)
11
(F§3)(#) o= (1— q72)(Us — X3)X3 X5 * (Xo + X3) 75 (40)
then define
Z1y, o (L 1, (1) g (1
P13 = (quiz)( 2)(F2,3)(2) - q2(F1,2)(2)<F2,3)( 2) (41)
Let us calculate it;
1 1
(le2)( 2)(F23)(2) (42)

1

= XX, 3 (X0 X0) (g U~ XXX + )
_X2X (X1+X2) (U+—X3)X2X (X2+X3)*%
—q2X2X (X1 + Xa)™ (U+—X3)X2X (X2+X3)*%
—XQX (X1+X2) 2U+X2X (X2+X3) 3
—XlX (X1 + ) X3 XZX, (X2+X3)
—q 2X2X (X1+X2) 2U+X2X (X2+X3)

+q_5X12X2 (X1 + Xo)™ 2X3X22X3 (X2 + X3)~
Now let us calculate the other part

»

N M\H

N

—q7 (Fiy) D) (Fg5) %) (43)

1

:_q%(1_q*%)U+X5X 2(X1+ Xo)™ %XQ% (X2 + X3)"2
:_q%U+X§X;%(X1+X2) 2X% %<X2+X3)
+U+X X, %(X1+X2) ZXQX ( Xo + X3)73
—_sz 1(X1+X2) YU, X3 X, ) (X + Xa)

+q 2X2X (X1+X2) 2U+X2X3§<X2+X3>_%

N|=

w\»—t

[
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And again by following [13], by adding the equations (42) and (43), we have another generator
of lattice Virasoro algebra, but of three point invariant:

11 11
prs = (a7 — X7 Xy ? (X; + Xo) 5 X3 X7 X5 7 (Xp + Xy) 73 (44)

But now let us follow precisely the notation from [13] for to not be confused

1 _1 1 _1
At = XX, (X1 + Xo) 2 X3X2 X5 2 (X, + X3) 2 (45)

_ 1 L1 _ 11
(A1) ' = (X3 + X4)2 X2 X5 2 (X3 + Xg) " HX) + Xo)2 X7 X,

SIS
—
N
o
S—

is again a solution.
Now let us multiply the equations (45) and (46) for to see what will happen?
(A1,3)71A1,2 =
11 11 11 11
(X3+Xa)7 X2 Xy 2 (X3+Xa) (X1 +X2)2 X2 X, 2XP Xy 2(X14+X2) 2 X3 X2 X, 2 (Xo+ X3) 2
1 1 1 71
= (X3 + X4)2 X2 X, 2 (X3 + Xyg) ' X3 X2 X5 ?(Xo + X3)~
by using the equations (45) and (46) we have the following result which has been mentioned in
[13]:

D=

11
Y= (x3+ x4)_%x2x§ (z2 + 953)_% (47)

Our next goal is to prove that ¥ is a generator for lattice Virasoro algebra.
Now let us to set some g—commutation relations such that any other relation comes from them
by using the inverse and multiplication operators.

(Xin = quXi
XX =g XX,
XZ-Xj_

=

Rt
:qiiX] QX,,;
1 1
XiX? =2 X, °X;

1 1

2yv—1_ 113
leXi —‘JIQXi f(j
Xj2 X, = qierinj2

] ;
e B
RERY 12 = quli foj

S
5t teai b
X, 2X2=qiX?X, ®

s
=
[

o
>

Set X% = E?ifzx] We want to show that ©X will commute with

Y= (z3+24)

by using the usual commutator|x, y] = xy — yz, i.e. to show that the equation [¥X7, ¥ Z 0is correct.
For to show it, one can easily check that the contributions of many entries vanishes. Namely, the
elements X; with indexes j from minus infinity to 1 and from 5 to plus infinity definitely commute
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due to the rules mentioned above. And after that we can concentrate on the sum x5 + x3 + x4. So
lets do it,

11
[0 + 23 + 24, (X3 + T4)~ xj §(9C2+5U3)_%]
1

2 11 11
= (w2 + 23+ 2a) (03 + 2a) 22203 (w0 + 03)72) — (03 + 24) 2220d (22+
1
3)” %) (22 + 23 + 24)
for to do this job, let us divide the project to the following small projects. We must demonstrate
that the following equations are satisfying.

1

(22) (w3 + 54) 2303 (22 + 23)~F) & (3 + 34) 325 03 (32 + 13) ") (22) (48)
(28) (3 + 54) 2303 (22 + w3) ) & (s + 14)~ 325 03 (32 + 13) ") (23) (49)
(24) (w3 + 54) 32323 (22 + 23) %) & (s + 14)~ 323 03 (w2 + 73) ") (2a) (50)

Let start with equation (48):
111 12 11 1
(@2) (w5 + wa)"2wfwg (w2 + w3)72) = (w3 + 24) " 20f 2 (22 + 73)72)(22)
multiply the equation from the left 51de with (z3 + x4)

1
(x3+x4)2:r2(x3+:c4) 2x4$3($2+$3) s x4:r3(x2—|—x3) %xg

Now we have two options for zo to move, it can go to the left direction and act on the (z3 + x4)%

or to the right direction and act on the (z3 + a:4)_%.

As we see, in (x3 + x4)7%, our summation will take part from k& = 0 to k = +00. We can use of
this fact for to skip some factors in the powers of ¢ that will appear in our calculation when that
our partners in action are not two.

In the case of xs, in the left hand side we have no problem in our action; because xo will act
on x3 and x4 and we have two different partners in our action. So we can move xo to the left hand

side and act it on (x3 + x4)

11 1y ;11
(215:0(2)(]1:2 x’;)xg(ﬂvg +x4) "2z j 23 (22 + 23)
1 1 1 l_ 1 1 1
22(570(3) 42 2 TR hak) (g + wa) 22222 (20 + w3)

1
2

1oy Ay 3k g 13 1
Taq 2(Zk:0(i)qx4 x5)(x3 +x4) 2023 (2 + 23) " 2

1 11 1o 11
q 2xoxias (vo+a3) 2 = xjws (x2 + 933)75:1:2
Now multiply both side of the equation from the right hand side by (z2 + xg)% we will have:
qféxgxé%xé L :Léxé (z2 + 113)7%.112(1‘2 + acg)%
In the right hand side, we have just one partner in action, i.e. we just have the action of z9 on
x3; So there will be a factor of the power of q. And as I mentloned it already for to skip this factor

we will use of limit in infinity. So x2 should act on (x2 + x3)” 2. Lets see what will happen; (here

we have to use the equatlon (18) for to expand (z2 + x3)~ %)

1 1 ? k(k+1) 3 g —diak 1
q 2x2x4x3 :x4x3 (Ek__oo(—l)kq ( 2 ) T3 ? Ty k)xg(x2+:z3)2
1 1117 713 k(1) 3 _py 1_g —i4k 1
q 2xox Xy :xjxg(zzzfoo(—l)kq 2 ( 2. )qq2 km32 x5 k)$2($2+$3)2
—k

By using the fact that when k£ — +o00 then q% — q% we have:

q 2xpxia5 = a:4 333 q2x2(1‘2 + 333)7
1

1

_1 L 1
q 2932@% §:q2x49§3x2(z2—|—x3)

1 = = 9? 1
-3 2,2 L 5
q 2372:64963 L q2aaq” 2x4q 222 (g + 3)2

_1
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So it’s correct in the case of xs.

The case of x3 and x4 are almost identical to the case of xo with just some minor differs.

Lets do it for z3;

1 11 1. 7
(z3)((w3 + m4) " 22f 23 (22 + 23)" 2)

2

1 1 1 1
((a:g + x4)_5xja:§ (1‘2 + wg)_i)(lB)

multiply the equation with (z3 + x4)% from the left hand side;

(23 + $4)%

L (oo (1Y) (T3)  pTE Ry a gl -1 2,2
(w3 +24)223(5 2 (1) ') (02) L2y * "af)afaf (z2 + 23) 2 = 2

K\ ,_3 1
(w3 + 24) 2 (5725 (- 1)) (02), g 3 Fa,?

1 101 1092 101 1
x3(r3 + x4) 203 (X2 +23)" 2 =23 (x2 +23) 223

k 11
qulg)xng x3 (x2 + x3)
1

By using the fact that when k —> 400 then ¢ -3k q~ 2 we have:

1 17 L

q 2x3w4x3(x2+$3) 2 —x4x3(x2+x3) 2:r3

multlply the equation with (z9 + :1:3) from the right hand side;

11, 11

q- 2x3x4x3 —x4x3(3:2—|—x3) %CL‘g(ZEQ—{—‘Tg)%

1

L ? +o0 k(5 (=3 —5=k 1
q 2953954953 :x4x3 (E reo(—1)"q"2 (kQ)qflx?) *wy)ws(wa + x3)

N

here again we have to change our equation to (18);

11

-

q 2x3x;$§ ;xjx (Z0___(—1)*q

1 1

-

? 1
a 2IBIM% —$4$3$3(Ek7 «(~1)*q

By using the fact that when k& — +o00 then ¢~
1

L i3 33
q 2x3x42x§ =Tjr3T3

1
q- 2x3x4x3 =q 2137573

Lets do it for x4;

L0101 . IR B
(x4)(z3 + xa) 22fas (x2 +23)"2) = ((x3 +24) 22523 (T2 + 23)

k(k+1) ,_ 3 _p _1lap
— 2 2
2 ( Zk ) T3
K(h41) 3 g —Lig
2 2 —k
2 ( Zk )qx3
k 1 we have:

[NIES

multiply the equation with (x3 + x4)% from the left hand side;

(x3 + 5134)%964

1 ky 3 —k _17 L1 _1
(73 +$4)2$4(Ez§)(—1)kq<2)( kQ)q—lmél $I§)$4 ng 3 (w24 13)72 = xf w3 (wg + 23) 274

(x3 + 1:4)% (Z+f°(—1)kq(§) (_k%)

q

_1%4

1 11 192 11 1
(x3 + 24) " 2zf 2] (T2 +1‘3)_5 — @iy (1'2 +x3)" 2y

_1_ 109
=y kxlsf)mﬂfwg (w2 +a3)77 =

By usmg the fact that when k& — 400 then ¢ % — 1 we have:

1

? l
w4x4 a:3 2(wg + x3)~ 3= =x;xs (o + (133) 214

multlply the equatlon with (ze + :1:3) from the left hand side;

1 1
$4l‘4 ;U3 = jx3 (o + x3) 2x4(20 + 23)2
11, 1 1 1o log
warfaf £ ofaf (ar+xs) 224(57_0(}) 73 1’2)
11, 11 A 1
2202 2 222 3(2 2\ g 3tk,.27 " —k .k
vyxjus = vjs (v +x3)" Q(Zkzo(i)qq 2 q r5)74
11, 11 P INIE SDF N S
2,2 L .22 50— 3(N2 (3 2
rax;xs = xjxg (vo+x3) 2¢ 2(216:0(%) T3 T5)T4
1 1 1 1
A = 22020 5
4Ty Ty = TyT3q 224
11, 4, 1,1
TAT]TF = q 23475 Q273
11 11

TATF X5 = T4T[ T3

N[

l‘;k)xg(%Q + x3)

_ 1
g 2y ") (22 + 23)2

)

And then again by using the shift operators (17), we will have the set of generators ¥;  for our
lattice Virasoro algebra connected to Uy(sla).
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Generators of lattice Virasoro algebra coming from 2-dimensional representation
of SlQ

CLAIM 4.3. [2?21?13, (23 + 24) twgzs(zo +23) 7 =0

PROOF. The proof is identical to the proof for fractional exponent %,above. o

CLAIM 4.4. [Zgitgb’cg, (xg + x3 + a:4)_1(ac3 + $4)$2(w1 + $2)_1] =0

PRrOOF. The proof is identical to the proof for fractional exponent % Just what you need is to set
x3 + x4 = x%. The rest is exactly identical. O

CLAIM 4.5. [Ej:fooccj, (o4 +xp) g+ -+ ap)za(mr +22) 7 =0

J=—00

PRrROOF. Proof by induction on k.
It is true for k = 3.
Suppose that it is true for k¥ — 1 component. Then for £ component we have:

[SI0%00 (o + -+ apm1) + ) (w3 + -+ 2pm1) + T2 (71 + 72) ]

j=—00

Set (xg+ -+ xp_1) = 5”2713
= (D120, () _y + @) @y + ap)z2(rs + 22) 7

—0o0
So the rest will come from £ = 3 and we are done. O
And then by using the shift operators (17), we will have the set of all generators.

Results; Generators of lattice Virasoro algebra coming from 3 and 4-dimensional
representation of si,

Let us suppose the following 3—dimensional representation of slo. The process of defining this
representation is the same as (30).
Define:

F=0w,-xs)
H =U,0y, +X10x, + X20x, + X30x, (51)
E= Uy — X3)*0w, —x) + (X7 + X1 X2 + X1 X3 + X1(Uy — X3))0x,
H(X3 + Xo X3 + Xo(Us — X3))0x, + (X5 + X3(Uy — X3))0x,
As before set

(Flfx,k+1,k+2)(i) = [Exv [EXa [ ) [ZX7 (Flm,k,k—i-l)(l)n e H
(Fif+1,k+2,k+3)(j) =25 =5, 25, (Fik,k-i—l)(j)]] ]

11
Set k =1 and i = —% and set (Ffa3) —2) = XX, 2 (Xo + Xg)_%; because it’s satisfying in the
relation [SX, [BX] (Fﬁ273)(7%)ﬂ = 0 and is our highest vector in this representation.
Then ) )
1 = == 1
[SX, (FEy4) 2] = [U- + (X1 + X2 + X3) + (Uy — X3), X7 X, 2 (X2 + X3) 2]

_1

11
= (1= 2)(Us = X5) X7 * (Xo + X3) 2
where as usual Uy = % X;. We call it as usual (Ffflg)(%), because it has degree 3.
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Set X; — X3 and X2 — X4 and X5 — X5 in (Ff’273)(_%), then we will have,

1

1 1
(=2) = X2 X, 2(X4 4 X;5)72 (52)

N
N

(F545)
and again in a same process we have,
(Ff45)72) = [BX, (B, 5)2)]

= (1-q2)(Uy — X3 — Xy~ X5)X2X 3(X, + X5) b
Now let us multiply (Ff,,)("2) = X12X2 2(Xz + X3)72 with (F§, )2 =
(1— ¢ 3)(Us — X3 — Xy — X5)X2 X, 2 (X4 + X5)~3 for to have
(Fiog) "2 (Fgy 5)®)

- X%X;l(XQ +X3) 21— q 2)(Uy — X3 — Xi— X5)X3%X;%(X4 +X;5)2

= X%X 2(Xy + Xg)—*((U+ — X5 — X4 — X5)X2X 2(Xy+ X5)72) —
¢ UL~ X - Xy - X5)X32 X;® (Xt Xs)” b

= XfX2 (Xg +X3) 2 (U — X3 — Xi— X5)X X, (X + Xg) b —
q*éxﬁx’%(xg +Xs)” Uy — X3 — X - X5)X2X4 2( X4+ X5)~

- XfX (X2 + X3)™ 2U+X2X (X4 +X;5)"3

m\»—t

—X2X (X2+X3) 2X3X2X4 *(Xa+ X5)” 2

—X2X (X2+X3) 2X4X32X (X4+X5)‘%

—X12X2_5(X2+X3)*%X5X%X *(Xa+ X5)” 2

g EXEX, 2 (Xo + Xs)” 2U+X§X4 (Xt X5)
TR X (X Xa) EXG XX (X o+ X)
_q—%Xﬁ ;%(XQ—i—Xg) 2X4X2X (X4+X5)‘%
P ‘%(X2+X3) 2X5X2X4 (X4+X5) >
—(1—q‘%)X1%X2 (X2 + X3)~ 2U+X2X 2(Xy + X5) 2
+(1—q*%)X%X2%(X2+X3) 2X3X2X (X4+X5)7%
+(1—q_%)X1%X2%(X2+X3) 2X4X2X (X4+X5)_%
+(1-gq %)X%X %(X2+X3) 2X5X32X4 (X4+X5)’%

And again let us calculate the multiplication:

—q 7 (Fi5) ) (Ff45) ) (53)
=—q3(l—q %)(UJr—XS)X X, (X2+X3)_7X2X (X4+X5)_%
= —q (1 —q ) U X} X (X2+X3) X2X 2(Xy 4 X5) 2
+q 3 (1—q %)XSXQX (X2+X3) X2X4 (X4+X5)’5

1
= —(1—q 2)X?X, 2 (Xo+ X3)~ 2U+X2X 2(Xy + X5) "2
11

B)XF X (X o+ Xg) EXG XS X (X 4 Xp) _ 1

1 1 1 B 13
)(F345)( ) —q 2(F123)(2)(F§6,4,5)( 2 =(1-q2)X7 X, (Xo+ X3) 2 X3

1

X4 2 (X4 + X5) 2
Lets call it p1 5. But the coefficients here are not so important for us, so let us skip it and write it
as follows:
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1 _1 1 _1
prs=X2X, 2(Xo+ X3) 2 X2 X, 2(X, + X5) 2 (54)

that is a five points generator of lattice Virasoro algebra, but again we are not interested on it and
still looking for a simplest one of type ABCD.
So let us to define another such kind of solutions as we proposed and experienced already;

(F3.0) ) 1= X X 2(Xa+ Xo) 75 (55)
(Fg5.) ) = (1= g H)(Uy — Xy — X4)X X5 2 (X + X4) (56)
and then define;
pra = (Fy3) "2 (Fg )@ — g3 (Fy )2 (Fgy )2 (57)
Let us calculate it
(Ffp3) "2 (Fgy )2 (58)
— XXy (X + Xy) H((1— g ) (U — Xy — X4>X2X 2(Xy+ Xa) 3
= (1= g XX, (X + X) 2 (U = Xy — X0)XG X, (X + Xo)
= (1 - g H)XF X, F (X + Xg) UGG (X 4+ X))
(1= 3N X (0 Xg) XX X (X X
(= XX, T (Ko + X)) EXaXF Xy 2 (X5 + Xq) b
Now let us calculate the other part as well;
—q B (FPag) ) (Fey )72 (59)

1

N

%)(U+—X3)X X, (X2+X3)_%X2%X;%(X3+X4)_
—2)U, XP X, (Xp + Xa)™ 2X2X 3(X3+ X4) 3

X2 X, 2 (Xo+ X3)™ 2X2X 2(Xy 4+ X4) b
X25(X2+X3) 2U+X2X (X3+X4)*%

1 1
—l—(l—q_ )X12X22(X2+X3) 2X3X2X (X3—|-X4) 2.

So we have

1 1 1 1
pra=—(1—q 2)X7 X, ? (X + X3) 2 X4 X7 X, * (X3 + X4) 72 (60)

that has degree zero, so it can be one of the generators for lattice Virasoro algebra, but still again is
not interested for us, so we should look for a simplest one. And again the coefficient is not important
for us, so lets skip it. So we have

1

1 1
p1a= XX, 2(X2+X3)7%X4X22X3 (X34 Xy) 2 (61)

M

and
1 _1 1 _1
prh = (Xa+ X5)3 X7 X, 2(Xa+ X5) "} (Xo + X3)2 X7 X, 2 (62)

Let us calculate the multiplication pfé p1,4 for to see what will happen?

CrAIM 4.6. The claim is that pi%pm should give us the answer?
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1 _l 1 _l
PROOF. pyipra = (X4+ X5)7 X7 X, (X4+X5)—1X4X2X (X3+X4)*%

— Xy 4 Xs5)3X P b (X + X5) 1 X5 2X4X2X (X3+X4) 2
= (X4+ X5)2q 2 %(X4+X5) 1X2X 2X4X2X 2(X3+ X4) 72
= Xyt X5) PXEX PXuXEX, (X3+X4) >
X0 X)X XX, X (4 X
Xyt X)X XuXEqh Xy (X3+X4)*%
(a-+ 0) " XX (0 4 X))

= 1(Xy+ X5) 2X2X2 (X34 Xy4) 2

And as always the coefficients are not important for us, so let us the set the final solution as follows:

_ 1,4 1 _1
prapra = (Xa+ X5) X2 X2 (X3 + Xy) 72

as we were looking for. O

Now suppose the following representation of sls.
Define:

F = 0w, —x5-x4)
H = (Uy — X3 — X4)O, - x4—x,) + X10x, + Xo20x, + X30x,
E=Us — X3 — X4)*07, —xy-xs) + (XT + X1 X2 + X1 X5+ X1(Uy — X3 — X4))0x,
F(X2 + Xo X3+ Xo(Uy — X3 — X4))0x, + (X2 + X3(Uy — X3 — X4))0x,
As before set

(FE i) = (Fepiapronss) = B 25 [ 12 (B ) V] -]

(Fk+1 k+4)( 7 = (Fk—H k+2,k+3, k+4)(]) - [2X7 [EXv [ ) [EXa (Flf+1,k+4)(j)“ o ]

1

(X2 + X3+ X4) 2.

m\»—\

1
Set k=1 and i = —1 and set (Fle)(_l) =X X,
and as what we had already, set

1 _1
(Ff4)(%) = (1— ") Uy — X3 — X)XEX, 2(Xo + X3+ X4) 2

where as usual Uy = 3% X;.

(63)

(64)

(65)

Now as before, set X7 — X3 and X9 — X4 and X3 — X5 and Xy — Xg in (Fi"”A)(_%), then we will

have,

-

1 1 _1 1
(F?fﬁ)(_§) = (F§4,5,6)(_§) =X X, P (Xg+ X5+ Xg) 2

1

11
(F3$,6)(%) =(1- q(_%))(UJr — X3 - Xy — X5 — X6) X7 X, > (Xy+ X5+ X6)~

and then we will proceed as before again

[

(FE)C2 (Fg) @)

>)X2X (X2+X3+X4)*%(U+—XS—X4)X2X 2(Xy + X5 + Xg) 2

1

)XQX (X2—|—X3—|—X4) 2X5X2X (X4+X5—|—X6)_2

—(1—q=

_X2X (2+X3+X4)—%(1_q<—%>)(U+—Xg—X4—X5—X6)X2X (X4+X5+X6)—
2
)

(66)

(67)

(68)

1
2
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11 11
—(1—q2)X2X, 2 (Xo+ X5+ X4) 2 X6 X2 X, * (X4 + X5+ Xg) 2
and on the other hand, we have

—CD(FF )P (F) 7 (69)
= —¢D1 - ¢\ Uy - X3 — X4)X2X (X2 4+ X5+ X4) 2X2X (X4 1+ X5+ X6)—%
1 1
= —(1-q"2)X2X, 2(Xy+ X5+ Xy)~ (U+—X3—X4)X X, ® (X4+X5+X6) 3
and so (Ff,)"2)(Fgg)3) — q<-*><F14><%><F3,6> 2

1

1 11
— —(1—qU)XZX, F(Xo + Xz + X4)"2(X5 + X6) X7 X, 2 (X + X5+ Xo) 2
as always let us call it

11 11
pre= XXy 2 (Xo+ Xz + Xa) 77 (Xg + X5 + Xe) X2 X, 2 (X4 + X5 + Xg) 2 (70)
11 11
i = (Xa+ X5+ X6)2 X7 X5 (Xy + X5+ Xo) " (Xo + X3+ X0)7 X3 X, 2 (71)
Now again let us define another such kind of solutions:
1 1 1 _1 1
(F2x,5)(_§) = (F2x,3,4,5)(_§) =X X (X3 + Xy + X5)7 2 (72)

1 _1
(F55)®) = (F3545) %) = (1= U 2) (U — X3 — X4 — X5) X3 X3 2 (X + Xa+ X5) 72 (73)

and we are looking for the value of the following objects;
()2 (F5)) (74)

:X X, (X2+X3+X4)*l((1—q*% )(U+—X3—X4—X5)X X5 (X3+X4+X5)*l
((1—q(—2>)X2X 2(Xy + X3+ X4)~ %(U+—X3—X4)X2X 2(X3+ X4+ X5) 72

(1 - g D) XX T (X + X5+ Xa) B XsXZX, 2 (X3 + X4+ X5)
and on the other side we have:

M

) (75)

NI

)(FéTE))(f

= —¢D1 - ¢ Uy - X3 — X4)X2X 2(Xy + Xa+ X4)
1
2

NI

—q D (F,)

1

1
X22X (X3—|—X4—|—X5) 2

[\J\H

N|=

11 11
p1s=X7X, 2 (Xo+ X3+ X4)_%X5X22X3 (X3 + Xa+ X5)™ (76)

CrLAaiM 4.7. piép1’5 has degree zero.

ol

1 _l 1 _1
PROOF P16915—(X4+X5+X6) 2 X7 Xy (X4+X5+X6)_1(X2+X3+X4)%X22X12X
X (X2+X3+X4) 2X5X2X (X3+X4+X5) 2
1 _1
— (X4t X5+ Xo) S XZX0 2 (Xo+ Xs + Xo) ' Xs X2 X5 (X3 + Xy + X5) >
1

1 1
= ¢ (Xg+ X5+ X6) X[ XF (X + Xy + X5) 72 O
So we have:

1 1 1
prep1s = (Xa+ X5+ Xo) 2 X2 X7 (X3 + X4+ X;5) 72 (77)
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5. Conclusion

Four point invariant, that’s coming from the 3-dimensional representation of sl;

(52X, (X + X5) ' XuXo (X3 4+ Xa) 7y =0

Five point invariant, that’s coming from the 4-dimensional representation of sls;

[SHOX, (Xg+ X5 + Xo) ' Xy Xo(Xs + X4+ X5) g =0

CraiM 5.1. We have the following n-point invariant that’s coming from the n-dimensional
representation.
(Xa+ -+ X)X X (X + -+ Xpo1) ™

And then by using the shift operators (17), we will have the space of all nontrivial generators
of lattice Virasoro algebra.
We call these kind of generators that are the only nontrivial ones:

Generatorso ftype” ABCD”

These (new lattice) algebras are so important and may in principle lead to a new integrable
chain equations which people can hardly provide.

Now let us check the satisfactory of our generators in quantum Serre relations.
”

3 1
We need to show the correctness of (Xo +X3+X4+X5)((X4+X5)_%X42 X3 X?:l(X3+X4)%) '

(X4 + X5)—%X§X§X3—1(X3 +X40)72)(Xs + X3+ X4+ X5)
So let us proceed it as before on each component:
Xo(Xa+ X5) 5 X2 XEXT (X5 + Xa)b & (X4 + X5) 3 X2 X2 X; (X5 + Xa) 3 X0
(Xa+ X5)3Xa(Xa + X5) 3 X2 X2 X5 2 X2 X7 X, (X5 + Xa) 3 Xo (X5 + Xa)b
X2X§X§Xg1 q%X§X§X;1X2
X7 X7 X5 L gEgX] X, X X7
ngfxéxgl X XX X!
X2X42X22X3 — P iXE X X2 X
X2X2X2X ! X2X§X§X51
Lets do it for X3,
Xy(Xa+ X5)™ 2X42X2 X3 (X3 +X4)7 = (Xt X5)—%X§X§X3—1(X3 +X4) 2 Xy
q 2X3X2X2X ! _5X2X2X X3
q 2X3X42X22 X3t zqu4 X3X X5t

q 2X3X42X22X3 l=g¢ 2X3X2X2X !
And after repeating a similar trend for Xy and X5 we will get the desired result.

[l Al 1=
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