ЧЕБЫШЕВСКИЙ СБОРНИК

Том 22. Выпуск 1.

УДК 512.542

DOI 10.22405/2226-8383-2021-22-1-495-501

Замечание о произведении двух формационных tcc-подгрупп¹

А. А. Трофимук

Александр Александрович Трофимук — кандидат физико-математических наук, Брестский государственный университет им. А.С. Пушкина (Беларусь, г. Брест). e-mail: alexander.trofimuk@gmail.com

Аннотация

Подгруппа A группы G называется tcc-подгруппой в G, если существует подгруппа T группы G такая, что G = AT и для любого $X \leqslant A$ и $Y \leqslant T$ существует элемент $u \in \langle X, Y \rangle$ такой, что $XY^u \leq G$. Запись $H \leqslant G$ означает, что H является подгруппой группы G. В этой статье мы исследуем группу G = AB при условии, что A и B являются tcc-подгруппами в G. Доказано, что такая группа G принадлежит \mathfrak{F} , если подгруппы A и B принадлежат \mathfrak{F} , где \mathfrak{F} — насыщенная формация такая, что $\mathfrak{U} \subseteq \mathfrak{F}$. Здесь \mathfrak{U} — формация всех сверхразрешимых групп.

Ключевые слова: сверхразрешимая группа, тотально перестановочное произведение, насыщенная формация, tcc-перестановочное произведение, tcc-подгруппа.

Библиография: 15 названий.

Для цитирования:

А. А. Трофимук. Замечание о произведении двух формационных tcc-подгрупп // Чебы-шевский сборник, 2021, т. 22, вып. 1, с. 495–501.

CHEBYSHEVSKII SBORNIK

Vol. 22. No. 1.

UDC 512.542

DOI 10.22405/2226-8383-2021-22-1-495-501

A remark on a product of two formational tcc-subgroups

A. A. Trofimuk

Alexander Alexandrovich Trofimuk — candidate of physical and mathematical sciences, Brest State A.S. Pushkin University (Belarus, Brest). e-mail: alexander.trofimuk@gmail.com

¹Исследование выполнено при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект Ф19РМ-071).

Abstract

A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any $X \leqslant A$ and $Y \leqslant T$ there exists an element $u \in \langle X, Y \rangle$ such that $XY^u \leq G$. The notation $H \leqslant G$ means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A and B are C-subgroups in C. We prove that C belongs to C, when C and C is a saturated formation such that C is the formation of all supersoluble groups.

Keywords: supersoluble group, totally permutable product, saturated formation, tcc-permutable product, tcc-subgroup.

Bibliography: 15 titles.

For citation:

A. A. Trofimuk, 2021, "A remark on a product of two tcc-subgroups", *Chebyshevskii sbornik*, vol. 22, no. 1, pp. 495–501.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. We use the standard notations and terminology of [1, 2]. The notation $H \leq G$ means that H is a subgroup of a group G.

It is well known that the product of two normal nilpotent subgroups of a group G is nilpotent. However, the product of two normal supersoluble subgroups of a group G is not necessarily supersoluble. It seems then natural to consider factorized groups in which certain subgroups of the corresponding factors permute, in order to obtain new criteria of supersolubility. A starting point of this research can be located at M. Asaad and A. Shaalan's paper [3]. In particular, they proved the supersolubility of a group G = AB such that the subgroups A and B are totally permutable and supersoluble, see [3, Theorem 3.1]. Here the subgroups A and B of a group G are totally permutable if every subgroup of A is permutable with every subgroup of B. In [4] Maier showed that this statement is also true for the saturated formations containing the formation $\mathfrak U$ of all supersoluble groups. Ballester-Bolinches and Perez-Ramos in [5] extend Maier's result to non-saturated formations which contain all supersoluble groups. This direction have since been subject of an in-depth study of many authors, see, for example, [6], [7], [8]. The monograph [9, chapters 4–5] contains other detailed information on the structure of groups, which are totally or mutually permutable products of two subgroups.

The following concept was introduced in [8].

Definition . A subgroup A of a group G is called tcc-subgroup in G, if it satisfies the following conditions:

- 1) there is a subgroup T of G such that G = AT;
- 2) for any $X \leq A$ and $Y \leq T$ there exists an element $u \in \langle X, Y \rangle$ such that $XY^u \leq G$. We say that the subgroup T is a tcc-supplement to A in G.

Now, we can state the main result in [10], which is the following:

THEOREM 1. ([10, Theorem A]) Let G = AB, where A and B are tcc-subgroups in G. Let \mathfrak{F} be a saturated formation of soluble groups such that $\mathfrak{U} \subseteq \mathfrak{F}$. Suppose that A and B belong to \mathfrak{F} . Then G belongs to \mathfrak{F} .

In this article we show that the hypothesis of solubility in Theorem 1 can be removed.

Theorem 2. Let G = AB, where A and B are tcc-subgroups in G. Let \mathfrak{F} be a saturated formation such that $\mathfrak{U} \subseteq \mathfrak{F}$. Suppose that A and B belong to \mathfrak{F} . Then G belongs to \mathfrak{F} .

2. Preliminaries

In this section, we give some definitions and basic results which are essential in the sequel.

A group whose chief factors have prime orders is called supersoluble. If $H \leq G$ and $H \neq G$, we write H < G. The notation $H \leq G$ means that H is a normal subgroup of a group G. Denote by Z(G), F(G) and $\Phi(G)$ the centre, Fitting and Frattini subgroups of G respectively, and by $O_p(G)$ the greatest normal p-subgroup of G. Denote by $\pi(G)$ the set of all prime divisors of order of G. The semidirect product of a normal subgroup G and a subgroup G is written as follows: G and G are G is a prime divisor of order of G.

The monographs [11], [12] contain the necessary information of the theory of formations. A formation \mathfrak{F} is said to be saturated if $G/\Phi(G) \in \mathfrak{F}$ implies $G \in \mathfrak{F}$. In view of Theorems 3.2 and 4.6 in [12, IV], for any non-empty saturated formation \mathfrak{F} there exists a formation function f (that is, any function of the form $f: \mathbb{P} \to \{\text{formations}\}\}$) such that $\mathfrak{F} = LF(f) := \{G \mid G/F_p(G) \in f(p) \}$ for all primes p dividing $|G|\}$. Here $F_p(G) = O_{p',p}(G)$ is the greatest normal p-nilpotent subgroup of G [12, IV, Section 7]. Such a function is called a local definition of \mathfrak{F} . Moreover, in view of Proposition 5.4 in [12, III], every non-empty saturated formation \mathfrak{F} has a unique local definition f (called the canonical local definition of \mathfrak{F}) such that $f(p) = \mathfrak{N}_p f(p) \subseteq \mathfrak{F}$ for all primes p, where $\mathfrak{N}_p f(p) = \emptyset$ if $f(p) = \emptyset$ and $\mathfrak{N}_p f(p)$ is the class of all groups A with $A^{f(p)} \leq O_p(A)$ whenever $f(p) \neq \emptyset$.

If H is a subgroup of G, then $H_G = \bigcap_{x \in G} H^x$ is called the core of H in G. If a group G contains a maximal subgroup M with trivial core, then G is said to be primitive and M is its primitivator. A simple check proves the following lemma.

LEMMA 1. Let \mathfrak{F} be a saturated formation and G be a group. Assume that $G \notin \mathfrak{F}$, but $G/N \in \mathfrak{F}$ for all non-trivial normal subgroups N of G. Then G is a primitive group.

Recall that the product G = AB is said to be tcc-permutable [7], if for any $X \leq A$ and $Y \leq B$ there exists an element $u \in \langle X, Y \rangle$ such that $XY^u \leq G$. The subgroups A and B in this product are called tcc-permutable.

Lemma 2. ([7, Theorem 1, Proposition 1-2]) Let G = AB be the tcc-permutable product of subgroups A and B and N be a minimal normal subgroup of G. Then the following statements hold:

- (1) $\{A \cap N, B \cap N\} \subseteq \{1, N\};$
- (2) if $N \leq A \cap B$ or $N \cap A = N \cap B = 1$, then |N| = p, where p is a prime.

Lemma 3. ([13, Theorem 4]) Let G = AB be the tcc-permutable product of subgroups A and B. Then $[A, B] \leq F(G)$.

LEMMA 4. ([8, Lemma 3.1]) Let A be a tcc-subgroup in G and Y be a tcc-supplement to A in G. Then the following statements hold:

- (1) A is a tec-subgroup in H for any subgroup H of G such that $A \leq H$;
- (2) AN/N is a tcc-subgroup in G/N for any $N \triangleleft G$;
- (3) for every $A_1 \subseteq A$ and $X \subseteq Y$ there exists an element $y \in Y$ such that $A_1X^y \subseteq G$. In particular, $A_1M \subseteq G$ for some maximal subgroup M of Y and $A_1H \subseteq G$ for some Hall π -subgroup H of soluble Y and any $\pi \subseteq \pi(G)$;
 - (4) $A_1K \leq G$ for every subnormal subgroup K of Y and for every $A_1 \leq A$;
 - (5) if $T \subseteq G$ such that $T \subseteq A$ and $T \cap Y = 1$, then $T_1 \subseteq G$ for every $T_1 \subseteq A$ such that $T_1 \subseteq T$;
- (6) if $T \subseteq G$ such that $T \cap A = 1$ and $T \subseteq Y$, then $A_1 \subseteq N_G(T_1)$ for every $T_1 \subseteq T$ and for every $A_1 \subseteq A$.

Lemma 5. Let G be a group and N a unique minimal normal subgroup of G. If G has a proper tcc-subgroup A such that $A \neq 1$, then N is abelian.

PROOF. Since A is a tcc-subgroup, it follows that G = AY, A and Y are tcc-permutable. If [A,Y]=1, then $A \leq C_G(Y)$. It is clear A and Y are normal in G. Thus $N \leq A \cap Y$. By Lemma 2, |N|=p and N is abelian. Therefore $[A,Y] \neq 1$ and $N \leq [A,Y] \leq F(G) \neq 1$ by Lemma 3. Hence N is abelian. \square

Lemma 6. Let $A \neq 1$ be a proper tcc-subgroup in a primitive group G and Y be a tcc-supplement to A in G. Suppose that N is a unique minimal normal subgroup of G. If $N \cap A = 1$ and $N \leq Y$, then A is a cyclic group of order dividing p-1.

PROOF. Since $N \cap A = 1$ and $N \leq Y$, by Lemma 4(6), $A \leq N_G(K)$ for any $K \leq N$. By Lemma 5, N is an elementary abelian group. We fix an element $a \in A$. If $x \in N$, then $x^a \in \langle x \rangle$, since $A \leq N_G(\langle x \rangle)$ by hypothesis. Hence $x^a = x^{m_x}$, where m_x is a positive integer and $1 \leq m_x \leq p$. If $y \in N \setminus \{x\}$, then

$$(xy)^a = (xy)^{m_{xy}} = x^{m_{xy}}y^{m_{xy}}, (xy)^a = x^ay^a = x^{m_x}y^{m_y},$$
$$x^{m_{xy}}y^{m_{xy}} = x^{m_x}y^{m_y}, x^{m_{xy}-m_x} = y^{m_y-m_{xy}} = 1, m_{xy} = m_x = m_y.$$

Therefore we can assume that $x^a = x^{n_a}$ for all $x \in N$, where $1 \le n_a \le p$ and n_a is a positive integer. Hence we have A induces a power automorphism group on N. By the Fundamental Homomorphism Theorem, $A/C_A(N)$ is isomorphic to a subgroup of P(N), where P(N) is the power automorphism group of N. Since N is abelian, it follows that $C_G(N) = N$ by [2, Theorem 4.41] and $C_A(N) = 1$. On the other hand, P(N) is a cyclic group of order p-1. Really P(N) is a group of scalar matrices over the field \mathbf{P} consisting of p elements. Hence P(N) is isomorphic to the multiplicative group \mathbf{P}^* of \mathbf{P} and besides, \mathbf{P}^* is a cyclic group of order p-1. Therefore A is a cyclic group of order dividing p-1. \square

LEMMA 7. Let \mathfrak{F} be a formation, G group, A and B subgroups of G such that A and B belong to \mathfrak{F} . If [A, B] = 1, then $AB \in \mathfrak{F}$.

PROOF. Since

$$[A, B] = \langle [a, b] \mid a \in A, b \in B \rangle = 1,$$

it follows that ab = ba for all $a \in A$, $b \in B$. Let

$$A \times B = \{(a, b) \mid a \in A, b \in B\},\$$

$$(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2), \forall a_1, a_2 \in A, b_1, b_2 \in B -$$

be the external direct product of groups A and B. Since $A \in \mathfrak{F}$, $B \in \mathfrak{F}$ and \mathfrak{F} is a formation, we have $A \times B \in \mathfrak{F}$. Let $\varphi : A \times B \to AB$ be a function with $\varphi((a,b)) = ab$. It is clear that φ is a surjection. Because

$$\varphi((a_1, b_1)(a_2, b_2)) = \varphi((a_1 a_2, b_1 b_2)) = a_1 a_2 b_1 b_2 =$$

$$= a_1 b_1 a_2 b_2 = \varphi((a_1, b_1)) \varphi((a_2, b_2),$$

it follows that φ is an epimorphism. The core Ker φ contains all elements (a,b) such that ab=1. In this case $a=b^{-1}\in A\cap B\leqslant Z(G)$. By the Fundamental Homomorphism Theorem,

$$A \times B/\mathrm{Ker} \ \varphi \cong AB$$
.

Since $A \times B \in \mathfrak{F}$ and \mathfrak{F} is a formation, $A \times B/\mathrm{Ker} \ \varphi \in \mathfrak{F}$. Hence $AB \in \mathfrak{F}$. \square

Lemma 8. ([14, Lemma 2.16]) Let \mathfrak{F} be a saturated formation containing \mathfrak{U} and G be a group with a normal subgroup E such that $G/E \in \mathfrak{F}$. If E is cyclic, then $G \in \mathfrak{F}$.

3. Proof of Theorem 2

Assume that the claim is false and let G be a minimal counterexample. Suppose that G is simple. By Lemma 3, A and B are normal in G, a contradiction. Hence let K be an arbitrary non-trivial normal subgroup of G. The quotients $AK/K \simeq A/A \cap K$ and $BK/K \simeq B/B \cap K$ are tcc-subgroups in G/K by Lemma 4(2), $AK/K \simeq A/A \cap K \in \mathfrak{F}$ and $BK/K \simeq B/B \cap K \in \mathfrak{F}$, because \mathfrak{F} is a formation. Hence the quotient $G/K = (AK/K)(BK/K) \in \mathfrak{F}$ by induction.

Since \mathfrak{F} is a saturated formation, it follows that $\Phi(G) = 1$, G has a unique minimal normal subgroup N and G is primitive by Lemma 1. By Lemma 5, N is abelian and $F(G) = N = C_G(N) = O_p(G)$, $G = N \rtimes M$, where $|N| = p^n$ and M is a primitivator.

By Lemma 2, is either |N| = p, or $N \le A$ and $N \cap Y = 1$, or $N \cap A = 1$ and $N \le Y$, where Y is a tcc-supplement to A in G. In the first case, by Lemma 8, $G \in \mathfrak{F}$. Suppose that $N \le A$ and $N \cap Y = 1$. Since Y is a tcc-subgroup in G, it follows that by Lemma 6, Y is a cyclic group of order dividing p-1. Then $Y \in g(p)$, where g is the canonical local definition of \mathfrak{U} . Since $\mathfrak{U} \subseteq \mathfrak{F}$, we have by [12, Proposition IV.3.11], $g(p) \subseteq f(p)$, where f is the canonical local definition of \mathfrak{F} . Hence $Y \in f(p)$.

Let Q be a Sylow q-subgroup of Y. It is obvious that $Q \leq G_q$ for some Sylow subgroup G_q of G. Then we can always choose a primitivator H of G such that $Q \leq H$. Really $G_q = M_q^g$ and $G_q \leq M^g = H$ for some $g \in G$ and some Sylow q-subgroup M_q of M. It is clear that H is a maximal subgroup of G. If $N \leq H$, then $G = NM = NM^g = NH = H$, a contradiction. Hence NH = G. Because N is abelian, then $N \cap H = 1$ and H is a primitivator.

Since $A = A \cap G = A \cap NH = N(A \cap H)$, we have

$$G = AY = N(A \cap H)Y$$
.

Prove that $(A \cap H)Y$ is a primitivator of G. Since

$$[A \cap H, Q] \le [A, Y] = F(G) = N$$

by Lemma 3 and $[A \cap H, Q] \leq H$, it follows that $[A \cap H, Q] \leq H \cap N = 1$. Therefore $A \cap H \leq C_G(Q) = T$. Besides $Y \leq T$. Then

$$T = T \cap G = T \cap N(A \cap H)Y = (A \cap H)Y(N \cap T).$$

It is obvious that $N \cap T$ is normal in T and hence $N \cap T$ is normal in $G = N(A \cap H)Y = NT$, since N is abelian. Thus is either $N \leq T$, or $N \cap T = 1$. In the first case, T = G and $Q \leq Z(G)$, a contradiction. Otherwise, $T = (A \cap H)Y$ and $G = N \rtimes T$. Hence $T = (A \cap H)Y$ is a primitivator of G. Thus we can always choose a primitivator M_1 of G such that $G = N \rtimes M_1$, $Y \leq M_1$ and $M_1 = (A \cap M_1)Y$.

Because $A \in \mathfrak{F}$, it follows that $A/F_p(A) \in f(p)$. Since $N = C_G(N)$ and $N \leq A$, we have that $N \leq F_p(A) = F(A)$. Let N_1 is a minimal normal subgroup of A such that $N_1 \leq N$. Then $F(A) \leq C_A(N_1)$ by [2, Lemma 4.21]. Since A is a tcc-subgroup in G, it follows that by Lemma 4(5), N_1 is normal in G. Hence $N = N_1$ and $C_A(N_1) = C_A(N) = N$. Then $F_p(A) = N$ and $A \cap M_1 \simeq A/N \in f(p)$.

Since f(p) is a formation, $A \cap M_1 \in f(p)$, $Y \in f(p)$ and $[A \cap M_1, Y] = 1$, it follows that $M_1 \in f(p)$ by Lemma 7. Because $N \in \mathfrak{N}_p$, we have $G \in \mathfrak{N}_p f(p) = f(p) \subseteq \mathfrak{F}$.

So, we assume that $N \cap A = 1$ and $N \leq Y$. Similarly, we can show that $N \cap B = 1$ and $N \leq X$, where X is a tcc-supplement to B in G. By Lemma 6, A and B are cyclic. Hence G is supersoluble and therefore $G \in \mathfrak{F}$. The theorem is proved.

4. Conclusion

Clear that by condition 2 of Definition 1, G = AT is the tcc-permutable product of the subgroups A and T. If G = AB is the tcc-permutable product of subgroups A and B, then the subgroups A and B are tcc-subgroups in G. The converse is false.

Example 1. The dihedral group $G = \langle a \rangle \rtimes \langle c \rangle$, |a| = 12, |c| = 2 ([15], IdGroup = [24,6]) is the product of tcc-subgroups $A = \langle a^3c \rangle$ of order 2 and $B = \langle a^{10} \rangle \rtimes \langle c \rangle$ of order 12. But A and B are not tcc-permutable. Indeed, there are the subgroups X = A and $Y = \langle c \rangle$ of A and B respectively such that doesn't exist $u \in \langle X, Y \rangle = \langle a^3 \rangle \rtimes \langle c \rangle$ such that $XY^u \leq G$.

Hence we have the following result.

COROLLARY 1. 1. Let A and B be tcc-subgroups in G and G = AB. If A and B are supersoluble, then G is supersoluble, ([8, Theorem 4.1])

- 2. Let \mathfrak{F} be a saturated formation containing \mathfrak{U} . Let the group G = HK be the tcc-permutable product of subgroups H and K. If $H \in \mathfrak{F}$ and $K \in \mathfrak{F}$, then $G \in \mathfrak{F}$, ([13, Theorem 5]).
- 3. Suppose that A and B are supersoluble subgroups of G and G = AB. Suppose further that A and B are totally permutable. Then G is supersoluble, ([3, Theorem 3.1]).

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- 1. Huppert B. Endliche Gruppen I. Berlin-Heidelberg-New York: Springer, 1967.
- 2. Monakhov V.S. Introduction to the Theory of Finite Groups and Their Classes [in Russian]. Minsk: Vysh. Shkola, 2006.
- 3. Asaad M., Shaalan A. On the supersolubility of finite groups // Arch. Math. 1989. Vol. 53. P. 318-326.
- 4. Maier R. A completeness property of certain formations // Bull. Lond. Math. Soc. 1992. Vol. 24. P. 540-544.
- 5. Ballester-Bolinches A., Perez-Ramos M. D. A question of R. Maier concerning formations // J. Algebra. 1996. Vol. 182. P. 738-747.
- 6. Guo W., Shum K.P., Skiba A.N. Criterions of supersolubility for products of supersoluble groups
 - Publ. Math. Debrecen. 2006. Vol. 68, №3-4. P. 433-449.
- 7. Arroyo-Jorda M., Arroyo-Jorda P. Conditional permutability of subgroups and certain classes of groups // Journal of Algebra. 2017. Vol. 476. P. 395-414.
- 8. Trofimuk A.A. On the supersolubility of a group with some tcc-subgroups // Journal of Algebra and Its Applications. 2021. 2150020 (18 pages).
- 9. Ballester-Bolinches A., Esteban-Romero R., Asaad M. Products of finite groups. Berlin: Walter de Gruyter, 2010.
- 10. Trofimuk A. A. Trofimuk A. A. On a product of two formational tcc-subgroups // Algebra and Discrete Mathematics. 2020. Vol. 30, № 2. P. 282-289.
- 11. Ballester-Bolinches A., Ezquerro L.M. Classes of Finite Groups. Dordrecht: Springer, 2006.
- 12. Doerk K., Hawkes T. Finite soluble groups. Berlin-New York: Walter de Gruyter, 1992.

- Arroyo-Jorda M., Arroyo-Jorda P., Martinez-Pastor A., Perez-Ramos M.D. On conditional permutability and factorized groups // Annali di Matematica Pura ed Applicata. 2014. Vol. 193. P.1123-1138.
- 14. Skiba A. N. On weakly s-permutable subgroups of finite groups // J. Algebra. 2007. Vol. 315. P.192-209.
- 15. Groups, Algorithms, and Programming (GAP), Version 4.11.0. [Электронный ресурс] // URL: http://www.gap-system.org (дата обращения 22.09.2020).

REFERENCES

- 1. Huppert, B. 1967, Endliche Gruppen I, Springer, Berlin-Heidelberg-New York.
- 2. Monakhov, V. S. 2006, Introduction to the Theory of Final Groups and Their Classes [in Russian], Vysh. Shkola, Minsk.
- 3. Asaad, M. & Shaalan, A. 1989, "On the supersolubility of finite groups", Arch. Math., vol. 53, pp. 318-326.
- 4. Maier, R. 1992, "A completeness property of certain formations", *Bull. Lond. Math. Soc.*, vol. 24, pp. 540-544.
- 5. Ballester-Bolinches, A. & Perez-Ramos, M.D. 1996, "A question of R. Maier concerning formations", J. Algebra, vol. 182, pp. 738-747.
- 6. Guo, W., Shum, K. P. & Skiba, A. N. 2006, "Criterions of supersolubility for products of supersoluble groups", *Publ. Math. Debrecen*, vol. 68, no. 3-4, pp. 433-449.
- 7. Arroyo-Jorda, M. & Arroyo-Jorda, P. 2017, "Conditional permutability of subgroups and certain classes of groups", *Journal of Algebra*, vol. 476, pp. 395-414.
- 8. Trofimuk, A.A. 2021, "On the supersolubility of a group with some tcc-subgroups", *Journal of Algebra and Its Applications*, 2150020 (18 pages).
- 9. Ballester-Bolinches, A., Esteban-Romero, R. & Asaad, M. 2010, Products of finite groups, Walter de Gruyter, Berlin.
- 10. Trofimuk, A. A. 2020, "On a product of two formational tcc-subgroups", Algebra and Discrete Mathematics, vol. 30, no. 2, pp. 282-289.
- 11. Ballester-Bolinches, A. & Ezquerro, L. M. 2006, Classes of Finite Groups, Springer, Dordrecht.
- 12. Doerk, K. & Hawkes, T. 1992, Finite soluble groups, Walter de Gruyter, Berlin-New York.
- 13. Arroyo-Jorda, M., Arroyo-Jorda, P., Martinez-Pastor, A. & Perez-Ramos, M. D. 2014, "On conditional permutability and factorized groups", *Annali di Matematica Pura ed Applicata*, vol. 193, pp. 1123-1138.
- 14. Skiba, A. N. 2007, "On weakly s-permutable subgroups of finite groups", J. Algebra, vol. 315, pp. 192-209.
- 15. Groups, Algorithms, and Programming (GAP), Version 4.11.0. (2020). Available at http://www.gap-system.org (accessed 22 september 2020).

Получено 22.09.2020 г.

Принято в печать 21.02.2021 г.