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B nmammnoit pabore Mbl MOIBITAJIHCH OOOOIINTH OOBITHOE MOHSITHE IKCTPE-
MyMa (DYHKIMH BEIeCTBEHHOI'O IEPEMEHHOI'0 Ha BEeKTOPO3HAUHBIE (DYHKIUN
HECKOJIbKUX BEIECTBEHHBIX TepeMeHHbIX. Harreit 3amadeil 66110 MOCTPOUTD
Takoe 0000ITeHNe, ITOOBI JJIsT HENO OCTAJINCh BEPHBIMU OOBITHBIE CBONCTBA
U COOTHOIEHUsT JIJIsT IKCTPEMyMa BEIeCTBeHHO3HAYHBIX (GyHKImiA. Pacemar-
puBaemoe 0600IIIeHNEe TaKYKe XapPAKTEePU3yeTCsd SKBUBAJCHTHLIM OOOOIICHUEM.
Hammu ompejiesiennst u CBA3aHHBIE ¢ HUMHU PE3YILTATHI TPOULIIOCTPUPOBAHBI
MHOTOYUCIEHHBIME TPUMEPaMH.

EXTREMUMS OF VECTOR-VALUED
FUNCTIONS OF SEVERAL REAL VARIABLES

Jela Susic (Podgorica, Montenegro)

Abstract
In this paper we try to give a generalization of the usual notion of extremum
of real functions to the vector-valued functions of several real variables. Our
aim is that in this generalization remain valid the usual properties and relations
for extremum of real functions. A considered generalization is also characteriz-
ed by an equivalent generalization. Our definitions and related results are
illustrated by numerous examples.

1. The notion of extremums of vector-valued functions
of several real variables

Let R be the set of all real numbers, and let R" be the n-dimensional vector
space with the usual Euclidean norm || - ||, that is, for z = (xy,...,2,) € R",
n 1/2
|l = (3o 23)
Defintion 1. Let f: U — R™ be a function, where U is an open subset of R"™. The
point zy € U is said to be the extremum of a function f in U if there holds
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1f (z0) = f(a)I* + [I.f (x0) = FO)I* = [[f(a) — f(D)||* for all a,b € U.

Although it seems that Definition 1 is abstract, it can be shown that it is a
natural generalization of the notion of the usual local extremum of real functions
(see e.g., |1, Lecture 19]). This is shown by the following result.

Theorem 1. Let f: U — R be a function, where U is an open subset of R". Then
the point xo € U is an extremum of f U in accordance with Definition 1 if and only
if xo the usual local extremum of f in U.

Proof . Let xg be an extremum of f by Definition 1. Then there holds

[f(@) = fxo)? + [f(b) = f(xo)* = |f(a) = f(b)[* for all a,b € O(xo)

where O(zg) is a neighbourhood of a point xy. Suppose that x; is not the usual local
extremum of a real function f. This means that there exist points a,b € U for which
a = f(a) — f(zo) and B = f(x9) — f(b) such that a and /8 are positive numbers.
Substituting the previous equalities in above inequality, we obtain

2+ B3> (a+B8)Pea?+ 2>+ 2 +2a8 < 0> af.

This contradicts the fact that a and § are positive numbers, and hence, xg is the
usual local extremal value of a real function f. Conversely, suppose that zy is a
usual local extremum of a function f. Without loss of generality, we can suppose
that a function f does not attain a local maximum at a point zy. Then there exists
a neighbourhood O(xg) of o such that f(a) < f(zo) and f(b) < f(xo) for all a,b €
O(xy). Clearly, at least one of the following inequalities there holds: f(a) < f(b) <
f(zo) or f(a) < f(b) < f(xg). If the first inequality is satisfied then | f(a) — f(zo)| >
| f(a)—f(b)|. If the second inequality is satisfied then | f(b)— f(zo)| > |f(a)—f(b)|. In
both cases we have max{|f(a)— f(xo)|, |f(b)—f(x0)|} > |f(a)—f(b)|. This inequality
vields | f(a) — f(@o)|* + |f(b) — f(x0)[* > |f(a) = f(D)] for all a,b € O(xo), ie.,
xo is an extreme point of a function f by Definition 1. This completes the proof. B

Hence, Definition 1 may be considered as a generalization of the notion of a usual
local extremum of real functions to vector-valued functions of several variables (for
more information on these functions see e.g., |2, Chapter XIV]).

The following result gives a necessary condition for a point to be an extremum
of a vector-valued function of several variables, which is analogous to those of a real
function.

Theorem 2 (generalized Fermat’s theorem). Let f: U — R™ be a function, where
U C R™ is an open subset of R™. Suppose that xo € U is an extreme point of f
in accordance with Definition 1. If f is a differentiable function at a point xq then
f'(@0) = 0.

Proof . Let zg = (x},...,z5) and f(x) = (fi(x), ..., fm(x)) (fi i€ {1,2,...,m} are
coordinate maps of f). Then there exists a neighbourhood O(zy) of z( such that for
all a = (ag, ...,al) € O(xg) and b= (b}, ..., b3) € O(xy) there holds

> (fila) = filwo))* + 2235, (filwo) — fi(0))* = 3232, (fila) — fi(B))%. (1)
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Let a® = (2} +¢,...,2%) and b = (x} — ¢, ..., x7) where € > 0 is chosen so that
a®,b° € O(xp)). Replacing in (1) a and b by a® and b°, respectively, we find that

ZZl((fZ(xtl)—i_Ea (RS x8> - fZ(x(l]a (RS .%'8))2 +Z?ll((f1(x(1]7 cey .’L’g) - fl(xtl) —&, . .%'8))2 2
ity ((filwg +e, s af) = filwg — &, 2p))®. (2)

By the differentiability of coordinate maps f; with i € {1,...,m} it follows that
for sufficiently small ¢ we have

filzh 4+ e, xy) — filxd, ..., xl) = gﬁ (xo)e + o(e).

Substituting the above equality in (2), we obtain

S (B (wo)e + 0(e))? + S (8L (w0)e — o(—¢))? >
S (2 () + o(e) + 2L (wg)e — o(—¢))?

Dividing the above inequality by 2, we find that
m  Of; o m Of; o(— m Jfi o o(—
Zi:l(a_i(xo) + 9)2 + Zi:l(a_;{l(xo) + (,—56))2 > Zi:l(Qag]:l (20) + 9 + (,EE))Q-
Letting ¢ — 0 we get

DY (B2 2 AN (22 6 Y (252 <0 2 = 0 for alli € {1,...,m}.

81‘1 81‘1 81‘1
Assuming a®) = (2}, 22 +¢,...,2%) and b = (x},22 —¢,...,2%), and using the
previous considerations, we obtain g—j:; = 0 for each i € {1,...,m} ... etc. a®®) =

(zd, 22, ..,ap +¢) and b = (2}, 22,20 —¢) .. & % =0forallie{1,.., m}

af af
| oh L 2hT o .. 0
8—337;1 e ﬁ O e O

This shows that the Jacobian matrix [f'(zo)]nxm 1S & zero-matrix, and the proof is
completed. B

EXAMPLES
Example 1. The function f : R? — R? defined as f(z,y) = (2?+y3, z+1?) does not

attain an extreme value at the point (0,0) because of [f'(0,0)] = [(1] 8] # lg 8],
and so, f(0,0) # O. It is natural then to propose the question: is f has an extreme
point?

Example 2. The function f: R — R? defined as f(z) = (x,2?) does not attain an

extreme value at the point 0 because of f'(0) = (1> #+ (O>, ie, f'(0) # O. It is

0 0
natural to propose the question: whether f has an extreme point?
Example 3. The function f : R — R? defined as f(z) = (22, 2?) has an extreme
point, namely, the point 0 € R. Let I(0) be an arbitrary small interval which contains
zero and let €, € 1(0). Then
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1£(e) = £+ 11£ () = £FO)I = (%, )]l + [1(62,6*) || = 2¢* + 24
1£(€) = F(O)II? = ll(e* — 0%, e = &> = 2(* — 6%)% = 2™ + 26" — 4e2§°
From the above equalities it follows that

1f(e) = fFOZ+[1£(8) = FO = [1f(e) — F()I,
i.e., o = 0 is an extreme point of the function f. This is the only extreme point of

the function f because of if xy # 0 then f'(zq) = (gio) + (8), and hence xq is
0

not an extreme point of the function f.
Example 4. The function f : R — R? defined as f(p) = (cosp,sin¢p) has no

sin
However, there exist different examples of functions f : U — R™ where U is
an open subset of R", such that there exists a point zq € U for which f'(x¢) = O.
In order to verify whether some point is an extreme point of a function f we have
only Definition 1, but such a verification is very complicated and non-practical in
general. The following considerations solve this problem.
Definition 2. Let f : U — R™ be a function, where U C R™ is an open set,
f = (fi,-., fm) and let xy € U. A point zy is said to be an extreme point of a
function f if the function I' : U x U € R?*" — R defined as

F(ala ceey Uy bl? ) b") -
Z?ll fi(a17 ceey an)fi(bla ceny bn) - Z;il(fi(ala seey a’n) + fi(bl’ Y bn))fz(x())

attains a local minimum at a point (zg, zo) = (x}, 3, ..., 20, xh, 23, ..., 20) € R*".

extreme point because of f'(¢) = o g) for all ¢ € R.

It seems that Definition 2 is abstract, but the following result gives its complete
characterization.
Theorem 3. Let f : U — R™ be a function, where U C R"™ is an open set and let
xo € U. Then xq is an extreme point in accordance with Definition 1 if and only if
To 18 an extreme point of a function f in accordance with Definition 2.

Proof . Let xy be an extreme point of a function f by Definition 1. Then there
exists a neighbourhood O(xg) of a point xy € U such that for all a,b € O(z) holds

£ (x0) = f(a)I* + [1.f (x0) = fOII* = [[f(a) = fFO)I* (1)

For fixed a,b € O(x) consider the vectors f(xy)— f(a) and f(x¢)— f(b) in the space
R™. Then we have

2(f (o) — f(a), f(zo) = [(b)) =
1f (z0) — f(a)I* + [1f (z0) — f(O)I* = [[f (w0) — f(a ) — [(xo) + f(B)]* (iz (1))
= (f(xo) = fla), f(xo) = f(b)) 20 (2)

Hence, the inequality (2) is equivalent with the inequality (1). Multiplying scalary
in (2), we get || f(zo)|12 — (£(a) + £(b), F(z0)) + (F(a), F(B)) > 0, ie.,
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Z?;l fi(ala Ly} an)fi(bla sy bn) _Z?;l(fi(a’la (XY a’n)+fi(b17 (XY bn))fz(xO)_'_ Hf(l'o)”Q 2
0,

ie.,

F(al, ey Qs bl, ey bn) + ||f([L‘0)||2 > 0 F(al, vy A,y bl, ey bn) >
—[| £ (o)|I? (3)

The above relation is satisfied for all (ay, ..., a,, by, ..., b,) € O(xg) x O(xy) while for
(A1 oy @y D1y oy ) = (20, TGy oy T TG, Ty ey T

we have

F(a’la -eey O b17 ) bn) = _”f(l'o)”Q (4)

Conversely, if zg is an extreme point by Definition 2, then the relations (3) and
(4) are satisfied, where in (3) a neighbourhood O(zg) x O(z) of a point z is not
explicitly given, while this is the case for a neighbourhood O(zg, zo) € R*" (but each
neighbourhood of type O(zg, z) contains a neighbourhood of type O(xq) x O(x)).
The relations (3) and (4) are equivalent with the relation (2) , while the relation (2)
is equivalent with the inequality (1), that is, xq is an extreme point by Definition 1.
The proof is completed.l

Remark. We have used the fact that the scalar product (-, -) in a real Hilbert space
H may be expressed in terms of related norm by the following identity:

(z,y) = ||ﬂt‘||2+||y||;—II%—yII2 for all =,y € H.

Remark. As noticed above, by using Definition 2 it is very complicated and non-
practical to verify whether a point o € U C R™ is an extreme point of a function
f:UC R"= R™ where U is an open set.

By Definition 2, it is sufficient to examine whether (xg,79) € R?" is a local
extreme point of a real function I' : U x U € R*™ — R, and the function I' can be
easily consctructed from a function f. In dependence of the behaviour of a function I'
in some neighbourhood of the point (zy, (), we have different investigations related
to the question whether this point is a local minimum of the function I'. The following
considerations gives analytic solution of this problem.

2. The investigation of a function I' in a neighbour-
hood of the point z3(= (x¢, z0))

Theorem 4 (Necessary conditions for optimality). Let U be an open subset of R"
and let f : U = R™ be a function of class C' in some neighbourhood of a point
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xo € U such that f is a twice differentiable function at a point xo. If x¢ is an
extreme point of a function f, then the partial derivatives of the first and the second
order of f at a point xy are equal to zero.

Proof . By the assumptions for a function f, we conclude that there exist the partial
derivatives of the function T up to second order at a point x3. Clearly, by Fermat’s
theorem, the partial derivatives of the first order of I' at a point z3 are equal to zero.
For the partial derivatives of the second order we have

2 2’ fi 2’ fi —
e (13) = 0Ly get=(0) filwo) — Y01, got (o) filo) = 0

2 82 S 82 ;
e (18) = 2o ot (wo) filwo) — Yo st (wo) fi(wo) = 0

2 fi ofi _
afkgbs (25) = >, 80]; (370)31{5 (20) =0

for all k,s € {1,...,n} because of all partial derivatives of the first order of the
function f at a point x( are equal to zero. The proof is completedll

Remark. Theorem 4 shows that the second form I'(22) of the function T’ cannot
be applied for examining whether a point 22 = (x¢, 7o) is a local minimum of the
function I', i.e., whether xq is an extreme point of the function f. However, we have
the following result which gives sufficient conditions of optimality.

Theorem 5 (Sufficient conditions of optimality). Let U C R™ be an open set and
let f: U — R™ be a 2p times differentiable function at a point xy € U (p €
N and p > 2). If the forms T®(z2)(h,h,...,h) = 0 for k € {3,...2p — 1} and
@) (22)(h, h,...,h) > 0 then zy an extreme point of the function f.

Proof . By the assumptions, we find that

I"(z2)h = T7(22)(h,h r@p) (22)(h,h,....h
T(a3 + h) — T(a3) = Dot 4 DLgl) g D2Eglhend) 4 ()

r(h)
[In]]2

where — 0 as h — 0. As the forms I(z3) T"(x3) are trivial by Theorem 4, we

obtain
@2 (22)(h,h,...,h
[(23+h) — D(af) = @Gl 4y (1)
Suppose that I' does not have a local minimum at a point zg. Then there exists
a sequence {x2} C R? such that 22 — 22 as k — oo and I'(2?) < I'(z2) for all
k k 0 k 0

2 .2

k € N. 7 can be written as 27 = 22 + ||z} — x%”% Denoting ay = |7 — 22| i
2_ 2

h, = ﬁ the previous equality becomes 77 = x2 + a.hy where oy, — 0 as k — oo
k 0

and ||hg|| = 1 for all k£ € N. In view of the fact that {hy} is a subset of a compact

sphere in the space R?" it follows that it contains a convergent subsequence hy;, S0

that hy; — h with ||h]| = 1. In view of (1) for each | we have

TP (22) (g, by, Pty )

0 > T(zxf) —T(25) = D(@§ + aphy,) = T(25) = @)l

+’I"(Oéklhkl)
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whence it follows that
2p(F(Qp)(xg)(hklvhklv---vhkl) + r(akzhkl)) <0= F(Qp)(zg)(hklvhklv---vhkl) r(aklhkl)
ki (2p)! ozip (2p)! ek, b, 1122

< 0.

Lettlng [ — oo in above 1nequahty, and after this multiplying by (2p)! we obtain
@) (22)(h,h,...,h) <0 where h is a non-zero vector (because of ||h]| = 1).

This is a contradiction with the assumption of Theorem 5 that I'?P) () is a
positive definite form. It follows that z3 is a local minimum of the function T, i.e.,
Zp is an extreme point of the function f. This completes the proof. B

The following theorem gives a good classification of extreme points on an open
set U C R" (i.e., it immediately excludes some points).

Theorem 6. Let U be an open subset of R™ and let f : U — R™ be a 2p+ 1 times
differentiable function at a point xo € U (p € N and p > 1) and T®+V(22) is a
nontrivial form where the forms T'®) (22) are trivial for all k € {1,...,2p}. Then xg
18 not an extreme point of a function f.

Proof . By the assumptions of Theorem 6 it follows that for all h € R*\ {0}

r@e+) (z2)(h,h,....h
D(zd +h) —T(23) = ((2p0-‘2§)! L+ r(h)

where ”hr”(% — 0 as h — 0. Since T'®**V(22) is a nontrivial form, it follows that

there exists a vector h # 0 such that TPV (22)(h, h,...,h) # 0. Furthermore, we
have

— ( ) z3)(ah,ah x2+oh)—T'(z
r(2p+l)(x

(D) T(ah 2p+1
(2p+1)! sgn(a)||ah||2p+1 ||h|| - (1)

Now suppose that z is an extreme point of a function f.
Letting @« — 0+, we find that the left hand side of (1) is positivna in this

case (because I' attains a minimum at a point 3 i @ > 0) and it converges as

TP+ (22) (R, h,....R)
(2p+1)!

> 0. Letting @« — 0— and proceeding in a a

e+ (z2)(h,h,....h

a — 0+ because of the right hand side of the equality converges to
LCPHY (a3) (R ... h)
(2p+1)!

similar manner as previously, we arrive to the inequality op i) h) < 0.
F(QPH)((QﬁZg})L!’h"“’h) = 0, which contradicts the
assertion that TPV (22) is a nontrivial form. Hence, zy is not an extreme point
of a function f. This completes the proof.ll
Corollary. If 75 € R" is a point such that the third form I'(x3) is nontrivial, then
Zp is not an extreme point of a function f.

EXAMPLES
Example 1. The function f : R? — R? defined as f(z,y) = (2* + y* 2% + y?)
has the extreme point xy = (0,0) because of for the function I' : R* — R we have
[(ay, as, by, by) = 2(a? + a3)(b? + b2). Obviously, I' atttains a local minimum at a
point 3 = (0,0,0,0), and it is easy to verify that I"”(x3) is a trivial form (T'(23)
and I”(z2) are trivial forms by Theorem 4) and

Consequently, we have

The last two inequalities yields
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F(4) (xg)((hla h27 h37 h4)(h17 h27 h37 h4)(h17 h27 h37 h4)(h17 h27 h37 h4)) -
8(hihi + hihi + h3h3 + h3hi) > 0,

and therefore, T'(z2 + h) — T'(23) = w > (. This means that 22 is a local
minimum of the function I'; and hence, xg = (0,0) is an extreme point of a function
f.

Example 2. The function f : R? — R? defined as f(z,y) = (2% + y,x + y*) does
not have none extreme point in R? because of

[(ay, az,b1,b2) = (af +az) (b +ba) + (a3 +a1) (b5 +by) — (af + az 4+ b7 +bo) (2F +10) —
(a3 + ay + b3 + by)(y2 + o). This shows that %(:po,yo, To,Yo) = 2, i.e., [""(23) is
a nontrivial form for all z2 € R*, and by the previous consequence of Theorem 6 it
folows that f does not have none extreme point.

Example 3. The function f : R — R? defined as f(x) = (22, 23, 2°) has the extreme
point xq = 0 because of

[(a,b) = a®V* + a®b® + a°b° = a®b*(1 + ab + a®b*) > 0 = T'(0,0) for small a and b,
i.e., I attains a local minimum at the point (0,0), and therefore, o is an extreme
point of a function f.

Example 4. The function f : R — R? defined as f(p) = (cos p,sin ) does not
have none extreme point because of

['(a,b) = cosacosb+ sinasinb — (sina + sin b) sin xy — (cos a + cosb) cos xy =
cos(a — b) — cos(a — o) — cos(b — xg).

For a = b = ¢ we have ['(xg,z9) =1 —-1—1=—1.

For sequences a,, = ro + = and b, = xo — = holds (an, b,) — (w0, 70) as n — 00,
and it folows that each neighbourhood of a point 3 = (x¢, () contains points of
the form (a,, b,). We have

2T T o T T

'(ap,b,) = cos — — 2cos — = 2cos” — — 2cos — — 1.

n n n n
As z(t) = t* — 2t — 1 is a decreasing function in a neighbourhood of the point ¢ = 1
and cos 7 < 1 for all n, it follows that I'(a,, b,) < —1 for sufficiently large n, whence
it follows that (xg, x¢) is not a local minimum of the function I'. This shows that z
is not an extreme point of a function f.
Example 5. Let f : R" — R™ be a function defined as f(zy,...,z,) = ¢ =
(c1,...,cm) € R™ (c is a constant). Then T'(ay, ..., an, by, ..., bn) = > c? — > 2¢ic; =
—|le||? (= const). Tt follows that T' attains a local minimum at every point z3 =
(wg, o) € R™, that is, each zy € R" is an extreme point of the function f.
Example 6. (The function with countably many extreme points). Let f : U C
R™ — R™ where U = |JU; (U; are open disjoint subsets of the set U). Clearly, such
a set U exists. For example, about every point in Z X Z X ... X Z C R"™ we describe
a ball with the radius 3. Define
flug, nuy) = ((ug — a)? + oo+ (up — )% o, (ug — a)? + oo+ (u, — al)?) na
U, (o, .. ,al)eU, i €{l,..,n}
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Before we give another definition of extremum of a function f: U C R* — R™,
we will prove the following two lemmas.
Lemma 1. Let ® : R™ — R™ be a mapping of the space R™ into itself and let
{e1,...,em} be the orthonormal base of this space. Then the following assertions are
equivalent.

1. R preserves the scalar product.
2. R is a linear isometry, i.e., holds

(a) R is a linear mapping.
(b) For each x € R™ ||Rz|| = ||z|| holds.

3. R 1s a linear orthogonal operator, i.e., it holds

(a) R is a linear mapping.

(b) For alli,j € {1,...,m} holds (Re;, Re;) = &7, where &7 is the Kronecker
delta.

Proof. (1) = (2). We have (R0, R0) = (0,0) = 0, i.e., [|[RO||> =0 = ||R0]| =0 =
RO = 0. Let x € R™ be an arbitrary vector. Then

[Re|| = (R, Re)2 = (2, 2)2 = [|l=].
Prove that R is a linear mapping. Let z,y € R™. Then we have

[R(z +y) = Rz = Ry[> = (R(z +y) — Rz — Ry, R(z +y) — R — Ry) =
Rz +y),R(x+y)) — 2Rz +1y), Rr) — 2(R(xz +y), Ry) + 2Rz, Ry) + (Rz, Rz) +
Ry, Ry) = (z +y,xz+y) =2 +y,2) =2 +y,y) +2(x,y) + (z,2) + (y,y) =
(z+y,x+y)—2@+y,r+y)=—(r+y,z+y)+2z,9) + (2,2) + (y,y) =
—(z,7) = 2(z,y) — (y,y) + (z,2) + 2(z,y) + (y,y) =0,

ie.,
IRz +y) — Rz — RNy||? =0 = Nz +y) = Rz + RNy.

By the additivity of the operator 8 and the fact that 80 = 0, it can be easily seen
that R(gz) = ¢Rx for each rational number ¢ and for each vector z € R™.

Now let « be an irrational number. Then there exists a sequence of rational
numbers ¢, that converge to the irrational number . We will now prove that R:

is a continuous operator.

|Rz—Ry|| = (Re—Ry, Rz—Ry)2 = R(z—y), R(z—y))? = (zr—y,2—y)? = |z—y]|,

i.e., R satisfies the Lipschitz conditition, and thus, R is continuous. It follows that
R(a,x) = a,Rx. Letting n — oo and since o,z — ar it follows that R(az) = aRz.
(2) = (1). Let z,y € R™. Then
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(R, Ry) = [Rz]+[|Ry|>~[Ra—Ry[|> _ [z*+[y[>~[RE@=I> _ lzl*+]yl*>~lz—y]
; 2 2 2

= (z,9).

(2) = (3). We also see from (2) that R is a linear map. Now assume that R(e;) =
1 - O1m
(@11, ooy Q1 )ee.. €te. R(e) = (1my ooy @) and R = | . ... . | . We have
Am1 - Amm
(Rey, Rey) ... (Req, Rey,)
RTR = : : :
(Rem, Rey) ... (Rem, Reyy,)

It follows (2) from that (Re;, Re;) = (e;,¢;) = 67, and hence, RTR = E,,,.

Besides (3) it is satisfied 1 = det(RTR) = det RT det R = det Rdet R = det R?
whence it follows that det R =1 ili det R = 1.

(3) = (2). Again we have that R is a linear map, and as it is showed previously,
from (2) = (3) we have RTR = E,,. It follows that (Rz,Rz) = (Rz, Rz) =
(R"Rz,z) = (Enz,7) = (2,7), i.e., (Re,Rz) = (z,2) = [|Rz]|* = ||z]|* = |Rz| =
|z]|. (R denotes the matrix of the linear operator ®). The proof is completed.l
Definition. The mapping which satisfies any of the conditions (1), (2) or (3) of
Lemma 1 is said to be the rotation of the space R™.

Corollary (of Lemma 1). LetR be a rotation of the space R?, and let R be a matrix

of the operator R, i.e., l 7} . By Lemma 1, we have RTR = FE,, { ay+p5=0 .
ﬁ 5 ,.Y2 + 52 =1

It follows that there exist real numbers ¢, 0 € [0, 7) such that a = cos p, f = sin ¢,
v =cosf, 0 =sinf and from ay+ 56 = 0 it follows that cos ¢ cos @ +sin psinf = 0,
ie,cos(p—0)=0=¢p—0=7% = 0=p—Z. Therefore, R = {COSS@ sin

’ 2 2 ’ siny —cosp

some ¢ € [0, 7).
Lemma 2. Let S be a set of vectors in the space R™ where m € {1,2}. If S is
a set such that (a,b) > 0 for all a,b € S, then there exists an orthonormal base
(v1, ..., Um) of the space R™ such that a =Y _.", afv; for all a € S, where of > 0 for
alli € {1,...,m}.

Conversely, let m be any positive integer and let S be a set of vectors of R™ such

that a = Y"1"  afv; for all a € S, where {v;}1", is a certain fized orthonormal base
of the space R™. Then (a,b) >0 for all a,b € S.
Proof. Let m = 1 and S be a subset of R such that (a,b) > 0 for all a,b € S.
Let {v;1} be a base of the space R. Without loss of generality, we can suppose that
|v1|| = 1 (otherwise, we assume Hz—iH) If S contains only zero vector, then (0,v;) =0
and clearly, the assertion is true.

Now we suppose that for a € S it holds (a,v1) # 0. Then either (a,v;) > 0
or (a,vy) < 0. If (a,v1) < 0 then instead of v; we assume —v; ({—v;} is also an
orthonormal base of R). It follows that (a,v;) > 0. We will prove the last inequality
for all a € S\ {0}. Suppose contrary, i.e., that there exists b € S\ {0} such that
(b,v1) < 0. Therefore, 0 < (a,b) = ((a,v1)vy, (b,v1)v1)) = (a,v1)(b,v1) < 0. This
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contradiction implies that the assertion is true for m = 1.

Next suppose that m = 2. If S contains only zero vector, then proceeding as
in the previous case, we find that the assertion is true for any orthonormal base.
Further, we assume that there exists a € S different from zero. Consider the function
F(x) = (ﬁ, x) for z € S. We can assume that each element a in S of length 1 (if

this is not true, then instead of a we consider the vector ﬁ) (S is a closure of the
set .S).
The function F is continuous and S is a compact set as a closed subset of a

compact central sphere with the radius 1. By Weierstrass theorem, there exists
vy € S such that inf, g F(z) = (IIZ_II’ vy). Since F(x) > 0 for all z € S it follows that
F(n) = (||?T||> v1). Consider the orthogonal subspace L*(v) to the vector v;. This is
one-dimensional vector space, and hence, its base is {vs}, so that ||vg|| = 1. Clearly,
we have (v, v3) = 0 and |Jv1|| = 1 because of v; € S. If (a,vy) > 0 then for such a
vy we have an orthonormal base {v, v}, while if this is not true then instead of v,
we assume —uvg such that (a, —ve) > 0. In both cases we have an orthonormal base
{v1,v9} of R? for which (a,vy) > 0 and (a,v;) < (m, b) for all b € S. Now let b € S
be a non-zero vector. Then we have b = (b, vy)vy + (b, v2)vs. It follows that

(b,v1) = ||b||(||b|| v1) 2 ||b||(||a||, vy) = T (a,v1) > 0. It remains to prove that

llall
b, vg) > 0. Suppose conversely, i.e., that (b,v2) < 0. Then we have (ﬁ ﬁ) >

% )( ol v1) + (W vg)(ﬁ,vg) > (v, ﬁ) >From this we find that
% va) (qam> v2) = (qap v)(1 — (ﬁ,vl). Multiplying this by ||a||||b]| we obtain

(b, 02)(a, 02) > (a,01)([1b] = (b, v1). *)

Now consider the following three cases.

Case 1. (a,v1) = 0. Then since a # 0, a = (a,v1)v; + (a,v2)ve and (a,ve) > 0 it
follows that (a,vy) > 0. Then in (*) we obtain (b, ve)(a, v2) > 0 which is impossible.

Case 2. ||b]] = (b,v1) = ||(b,v1)v1 + (b, v2)va|| = (b,v1) = (b,v1)* + (b, v9)? =
(b,v1)? = (b,vy) = 0, which contradicts the assumption that (b,vy) < 0. From
the previous consideration and since by the Cauchy-Schwarz inequality, (b,v;) >
|b|l[|v1]| = [|b]] we find that (b,v1) < ||b]|, i.e., ||b]| — (b,v1) > 0.

Case 3. (a,v2) = 0. Since a # 0, a = (a, v1)v1 + (a, v9)vy and (a,vy) > 0 it follows
that (a,v,) > 0. In this case the left hand side in the relation (*) is equal to 0 while
its right hand side is greater that Oe. A contradiction.

Thus, from the previous cases we conclude that (a,v;) > 0,(a,v5) > 0 and
16|l = (b,v1) > 0, while from (*) we have (b,vy) > w > 0, we have

a,v2

(
(v1 ) or equivalently,
(
(

(b,v9) > 0, which contradicts the assumption (b,v2) < 0. Hence, we must have
(b, v2) > 0. Therefore, b = (b, v1)v1+ (b, v2)ve where (b, vy) and (b, v9) are nonnegative
numbers, and so, the assertion is proved for the case m = 2.

It remains to prove the converse assertion of the lemma. Let m € N and let S be
a set of vectors in R™ for which there exists an orthonormal base {v,...,v,,} C R™
such that a = >_" | ofv; for all @ € S, where of > 0 for each i € {1,...,n}. Now
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assume that a,b € S. We have a = >_/" afv; and b = D" | abv; where af, a? > 0
for all i € {1,...,n}. It follows that (a,b) = D", afa? > 0. The proof of lemma is
completed. B

Example (which shows that the first part of the assertion of Lemma 2 is not true
for m > 3).

Firstly, we will show the following auxiliary assertion.

The assertion. There exists a countable set {&1,&s, ..., &, ..} of vectors in the space
R™(n > 2) such that every its subset consisting of n elements is a linearly indepen-
dent set.

Proof. Assume that &, &, ..., &, is a standard base of the space R". Choose a vector
&ni1 such that it does not belong to the set L({f1, f2, ..., fn_1}) (L(A) is a vector
space generated by the set A) where { f1, fa, ..., fn_1} are arbitrary subsets of the set
{&1, &, ..., &} consisting of n — 1 elements. It follows that the set {&,&s, ..., Enrn}
possesses the above property. Choose &, 5 such that it does not belong to the subsets
L({f1, f2y s fu_1}) where {f1, fa, ..., fu_1} is an arbitrary subset of {{1,&s, ..., &ni1}
consisting of n — 1 elements, ,... etc, we procced inductively.

In other words, &, is chosen so that it does not belong to the the subsets
L({f1, fay - fu—1}) where { f1, fa, ..., fa_1} is any subset of {£1, &2, ..., Enin—1}(k € N)
consisting of n — 1 elements.

Every subset of the set {&,&s,...,&, ..} consisting of n elements is a linearly
independent set. Clearly, if there would be be exist a subset consisting of n linearly
dependent vectors, then one of thes vectors should be a linear combination of other
vectors (their maximal number is n — 1), which contradicts a construction of this
vector. This completes the proof. B

Now we return to the example. Consider the following subset of R™(m > 3):

K = {(21, 22, ey tn)| T =/ >oiy @2 } (K, is a conus).
Assume that x,y € K,,, i.e.,

r = (1'1,1'2, vy Tm—1, Zznllx ) a‘nd Yy = (ylayZa s Ym—1, \/ 221_11 1%2)

Using Cauchy-Schwarz inequality, we have

(.fll',y) ;nllxlyl_'_\/Zz 1 €3 \/Zz 1 yz =

Suppose that

KCA= {i ;U;
=1

Assuming that a,b € A and (a,b) = 0 then (>°1", av;, > .-, biv;) = 0, whence it
follows that > " a;b; = 0. The last equality shows that at least half of coordinates
of the vector a or b is equal to zero. It is necessary that the set K also has this

property i.e., that for every pair of vectors in K that are mutually orthogonal, and

one of these vectors must lie in a vector subspace of < L%j of the space R™. The

number of such subspaces is finite, because of they are subspaces of the space R™

> 0 and
{v1,v9, ..., v} is an orthonormal base of the space R™ |
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and generated by subsets of the set {vy, va, ..., v} (v; belongs to the subspace if for
all z,y € K with (x,y) = 0, assuming that z is such a vector which has greater than
half of its coordinates in the base {vy,vs,...,v,,} viSe that are equal to zero, then
ith coordinate of the vector x is # 0).

Now we claim that there exists a countable subset E of K satisfying the property:
E ={ay,b1,as,bs,...;a., by, ...} with (a;,b;) = 0 for all i € N, and every subset of the
set {ay,as, ..., a;, ..} consisting of m — 1 elements is a linearly independent set, and
every subset of the set {by, b, ..., b;, ..} consisting of m — 1 elements is also linearly
independent set.

Firstly, we will construct the vectors (a;);en. Let {&}ien be a set constructed
in the previous assertion, regarded as a subset of the space R™™!. If we define
a; = (&, &), then a; € K, for all ¢ € N and it is easily seen that the set
{a1,as, ..., a;, ...} has the property that every its subset consisting of m — 1 elements
is linearly independent set. Take b; = (=¢&;, ||&]|). We also have b; € K, for alli € N
and (a;, b;) = —(&,&) + ||&]|* = 0 holds. Hence, we have constructed the set E with
the mentioned properties.

As the pairs {a;, b;} are mutually orthogonal and they lie in K,,, it follows that
at least one of vectors a; or b; must belong to the previous constructed vector spaces
of dimensions < || for all i € N. It follows that there exists a subsequence of a
sequence (a;)ien or (b;)ien (we assume that (a;;)jen C (a;)ien) that lie in subspaces
of dimensions < [% |. Since the number of these subspaces is finite, it follows that
there exists infinitely many terms of a sequence (a;;);jcn, namely, its subsequence
(@ij),),cy Which lies in one of these subspaces of dimension < [ |. Assume that
Aijys ijyy s Qij, | € (aijk)ng C (a;);ey- It follows that these vectors are linearly
independent, their number is m — 1 and they lie in a subspace of the space R™ whose
dimension is < || < m—1 for m > 3. A contradiction! Therefore, it is not possible
to lie the conus K, in the set A = {3, a;v; | a; > 0 for all i € {1,2,..,m}} where
{v1,v9, ..., v} is a orthonormal base of the space R™.

Remark. The answer to the question why it is not possible to apply the previous
proof in the cases when m < 3 is as follows: it is not possible to construct F with
the mentioned properties.

Definition 3. Let f : U — R™ be a function where U C R" is an open set, and
let zp € U. A point z; is said to be a strong extreme point of a function f if there
exist a rotation R of the space R™ such that the mapping F' : U — R™ defined
as F(z) = f(xo) + R(f(x) — f(xo)) has the property that all its coordinate maps
F;: U — R with i € {1,...,m} attain a local minimum.

Theorem 7. Let f : U — R™ be a function where U C R" is an open set, and let
xo € U. If xg 1s a strong extreme point of a function f, then xy is an extreme point
of a function f. Conversely, if m < 2 (m € N), then all extreme points are also
strong extreme points of a function f.

Proof. Let zy be a strong extreme point of a function f. Then there exist a rotation
R prostora R™ satisfying the following property: There exists a neighbourhood O(z)
of xy such that the funcction F'(z) = f(xo)+R(f(x) — f(x0)) in this neighbourhood
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has the property that the coordinate maps attain a local minimum.

Let eq, ..., e,, be the standard orthonormal base of the space R™. Then for each
v € Oag) we have F(z) — f(zg) = R(f(x) — f(z0) € {S0awei | g > 0},
ie, R(f(O(zo)) — f(zo)) C {>oi%, aie; | oy > 0}. It follows from Lemma 2 that
(R(f(z) = f(x0)),R(f(y) — f(yo))) > 0 for each (z,y) € O(xo,xp). It follows from
Lemma 1 that (f(x)— f(x0), f(y) — f(y0)) > 0. This shows that '(z,y)+|| f (x0)|* >
0= T(z,y) > —||f(xo0)|]* i T(x0,70) = —||f(w0)|? i.e., T attains a local minimum
at the point x3 = (0, ¥¢) and hence, z( is an extreme point of the mapping f.

Conversely, suppose that m < 2 and g € U C R" is an extreme point of the
function f. Then the function T(z,y) = (f(x) — F(zo), f(y) — F(y0)) — |F(wo)?
attains a local minimum at a point 22 = (g, zg). Since T'(z¢)? = —|| f(z0)]?, this is
equivalent with (f(z) — f(zo), f(y) — f(yo)) > 0 for all z,y € O(x3). Hence, there
exists a neighbourhood O(x) of a point xy which lies in U C R™ such that the above
relation is valid for all x,y € O(xy).

It follows by Lemma 2 that there exists an orthonormal base {vy, ..., v, } of the
space R™ such that f(z) — f(zo) € {di~, aue; | @y > 0} for all x € O(x). Hence,
f(x) = f(xo) =" ofv; where of > 0 for each i € {1,...,m}. By using Lemma 1,
there exists a rotation $ of the space R™ such that R(v;) = e¢; for alli € {1,...,m},
where (e;)7",— is a standard orthonormal base of the space R™. It follows that
R((2) — [a0) = ROTL, ofv) = 0, afR(v) = S, afe; for all & € O(xo).

Therefore, the coordinate maps of the function R(f(z) — f(x)) attain local
minimums at a point xy which are equal to zero. It follows that this is also true for
the function F'(x) = f(xo)+R(f(z)— f(z0)) where the local minimums of coordinate
maps F; of this function at a point z( are equal to f;(zo) (f; are the coordinate maps
of the function f). The proof is completed. B
Corollary. If f : U — R™ s a function where U C R™ is an open set, and if xg € U
is a strong extreme point of a function f, then f'(xy) = 0.

Proof. By Theorem 7, xg is an extreme point of a function f, and thus the assertion
follows from Theorem 1.

We give here another proof of the corollary. Namely, F”(x) = 0 holds (because of

F(@o)(has s hn) = S0 ()i = S, 0), and therefore, (R(f(x) — f(z0))),, =
0,1.e., (Rf(20)) =0=Rf'(20) =0 = f'(20) = 0.
Remark. In the case when m = 2, i.e., for a function f : U C R® — R? we have
that zo(zg € U) is an extreme point of a function f, if a function f maps points
that are “near"to a point z; in a rectangular part of the plane R? with a vertex at
a point f(xg).

In order to verify extreme points of these functions, or to determine all extreme
points of f there are numerous criteria (necessary and sufficient conditions).

EXAMPLES

1
25| (1 —cosz, 7?)

V3
Example 1. The function f : R — R? defined as f(z) = [ 2
2

has a strong extreme point or an extreme point, namely, the point x = 0, because
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P T s
S1n 6 COS G

1 s in T
@] = [COS ¢ Sy } is a matrix of rotation for the angle %, and
2

flz) =R=(1 - cosz,2?) =
= (1 - COS:L‘,xz) = %gflf(l') = %7%(]0(1') — £(0)) + £(0) = F(x).

Since the coordinate maps F' attain local minimums at the point zy = 0, it

follows that o = 0 is a strong extreme point of a function f and hence, it is an
extreme point of a function f.
Example 2. We have previously determined the extreme points and strong extreme
points of a given function f. For a given point xy € R" we will now determine the
function f : R™ — R? such that a point z( is an extreme point of f. We proceed as
follows.

There exists a R—rotation of the space R? for which
Flz) = f(zo) + R/ () — f(x0)) > [(x) = RN (F(2) — f(x0)) + [(z0), ie., f(z) =
R (F(x) — f(xo)) + f(zo) (R, = R™'— is also a rotation).

Now we proceed as follows. Choose an arbitrary function F' = (F}, ..., F},) such
that the coordinate maps F; : R" — R (i € {1,...,m}) attain a local minimum at a
point zg. Let f;(zg) = Fi(xo) zai € {1,...,m}, and define f(x) = R(F(z) — f(xo)) +
f(xg) for an arbitrary rotation R. Clearly, x( is a strong extreme point, and hence,
it is an extreme point of a function f.

Example 3. Consider the mapping f : R — R? defined as f(x) = (cosz,sinz). If
there would be exist a point xy which is a strong extreme point of f, then would be
exist a rotation R of the space R? such that

_|cosp  singp
R(f(x)) = {sincp —CoS
(cos x cos ¢ + sin x sin ¢, cos x sin ¢ — sinx cos ) = (cos (z — @), sin (x — ¢)) =

F(z) = R(f(x) = f(x0)) + f(20)) =

(cos (x — ¢) — cos (xg — @) + cos zg, sin (z — @) — sin (g — @) + sin xg).

} (cosz,sinz) =

Then must be exist ¢ such that Fj(zg) and Fy(xo) are local minimums of the
functions F} and Fy. As F; and F, are differentiable functions, it follows that
Fl(xo) = 0 and Fi(xo) = 0, i.e., sin(xg — ¢) = 0 and cos(zg — ¢) = 0, which is
impossible because of the functions sin i cos does not vanish at the same point.
Example 4. Consider the function f : R?> — R? defined as f(z,y) = (z,y, /22 + 2.
The point (0,0) is an extreme point of the function f because of I'((aq, az, by, b2)) =
arby+agba++/a? + a3\/b? + b2 > 0 by Cauchy-Schwarz inequality, and I'(0, 0,0, 0) =
0, i.e., (0,0,0,0) is a local minimum of the mapping I', and so, (0,0) is an extreme
point of the function f. Now we will prove that the point zo = (0,0) is not a strong
extreme point of the function f.




134 JELA SUSIC

Suppose contrary, i.e., that there exists a rotation R of the space R? such that

F(x7y> = f(Oa()) + %(f(l‘,y) - f(Oa())) = %(l‘aya T2+ yQ) =
= (Fi(z,y), Fo(z,y), F3(z,y)) = (f1(0,0), f2(0,0), f3(0,0)) = (0,0,0)

for each (z,y) € O((0,0)) C R? i.e., that there exists a rotation R of the space
R? such that the set R(x,y, /r? + y?) for (z,y) in this neighbourhood O((0,0)),
is a subset of the set A = {Z?Zl ae; | a; > 0,i € {1,2,3}}, or equivalently,
(7,9, /22 +y2) € B = {30 a;Re; | a; > 0,5 € {1,2,3}}. By Lemma 1 it
follows that {R'e;, R™tey, R71es} is an orthonormal base of the space R3.

In the same manner as in example for conus K,, we can prove that the the
previously mentioned is not possible. The only change consists in the fact that
the set £ = {ay,b1,...,a;,b;,..} (see the example for conus K,,) must belong to
f(0(0,0)). This can be made in the manner that instead of a; (i € N) we assume

oo where no(0) € N with roey € f(0O(0,0)). In a similar manner we proceed

for vectors b; (i € N). Hence, the 7point (0,0) is not a strong extreme point of the
mapping f.
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