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Abstract

In this paper, we will start by deliberating at our project’s historical general view and then
we will try to construct a new Poisson bracket on our simplest example sl; and then we will try
to give a universal construction based on our universal variables and then will try to construct
lattice W5 algebras which will play a key role in our other constructions on lattice W3 algebras
and finally we will try to find the only nontrivial dependent generator of our lattice W, algebras
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1. Introduction

There is an old problem which has been considered and introduced by Boris Feigin in 1992. It’s
been born in its new formulation on quantum Gelfand-Kirillov conjecture in a public talk at RIMS
in 1992 based on the nilpotent part of U,(g) i.e. Uy(n) for g a simple Lie algebra.

Now, this problem is known as ”Feigin’s Conjecture”.

In the mentioned talk, Feigin proposed the existence of a certain family of homomorphisms on the
quantized enveloping algebra U, (g) to the ring of skew-polynomials which will led us to a deffinition
of lattice W—algebras.

These "homomorphisms” has been turned to a very useful tool for to study the fraction field of
quantized enveloping algebras. [6]

There have been many attempt for to construct lattice W-algebras in Feigin’s sence, which ensures
the simplicity of the construction process of lattice W-algebra; for example the best known articles
in the subject has been written by Kazuhiro Hikami and Rei Inoue who tried to obtain the algebra
structure by using lax operators and generalized R matrices. [7] [§]

Or Alexander Belov and Alexander Antonov and Karen Chaltikian, who first tried to follow Feigin’s
construction but finaly they also solved part of the conjecture by getting help of lax operators, and
it made very difficult to follow their publication.[9] [10]

But here in this paper we will proceed and will introduce the most simplest way of constructing such
kind of algebras by just employing Feigin’s homomorphisms and screening operators by defining a
Poisson bracket on our variables just based on our Cartan matrix. [1] [2]

In [2]|, Yaroslav Pugai has constructed lattice W3 algebras already, but here we will introduce its
weaker version based on a Poisson bracket as mentioned before, constructed on just Cartan matrix
Ay, which will make our job more easier and more elegant.

For to do this, let us set C' an arbitrary symmetrizable Cartan matrix of rank r and let n = n be
the standard maximal nilpotent sub-algebra of the Kac-Moody algebra associated with C.

So n is generated by elements Ey, - - - , E, which are satisfying in Serre relations. [11] Where 7 stands
for rank(C).
In [1], we proved that screening operators S,;i = Z:Z X7 for X' generators of the
7 E
B forji fixed
Clxy']

g—commutative ring C,[X7'] and for < o, >= ay; the ij’s

<XgiX£k_q<ai,aj>Xingi>
components of our Cartan matrix C; are satisfying in quantum Serre relations ad,(X;)!7% (X;)
for adjoint action ady(X;)(X;) = X;X; — ¢ X;X; and X; € (Ugpa, X; € (Ug)p [5], for

(
v
(Ug)a = {u € Uq(g)\qhuq*h = ¢®0y forall b € P} and Uy(g) = @Q(Uq)a, for

a m

v
Q) = @ Z,, the root lattice and for P a free abelian group of rank 2|I| — rankC with Z—basis
el

v v
{hili e I} U{ds|]s =1,--- ,|I| —rankC} and h = IF ®z P be the IF—linear space spanned by P. [5]
v

P will be called dual weight lattice and h the Cartan subalgebra. And IF will stand for our ground
field.|5]
Here for our Cartan matrix C', the quantum Serre relation will be
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j)
XX Xi + X; X7
=X2X; — (¢+ ¢ HXiX; X; + X; X?

—-n
19 __ in general.
q—q1! g

S
|
o

Where [2], stands for quantum number [n], =
And again as what we had in [1]|, we can define

Uy(n) == <SXiji’ SX]JC-k | (adq(SXiji))2(SXik) =0)
and for C,[X] the quantum polynomial ring in one variable and twisted tensor product ®, we can
define

X

gt _ 2yl
 Sxs Xy = a"Xj Sy,

U, (n)&C,[X]" = (SxssS ik,X;‘l | (adg (S y30))*(Sygv) = 0

2 S XP = XS )
such that we have the following embeding

Uq(n) = Ug(n)@Cy[X]"] = Uy(n)OC[X]'|EC (X7

where C,[X/1&C, (XMW" = C(X7', X3 | XI' X" = qum X3 X7 (1]
Which will ensure the well definedness of our definition of lattice W —algebras.

2. Weak Faddeev-Takhtajan-Volkov algebras

As it has been mentioned already in [1], the main tools that we use, will be difference equations,
screening operators, Feigin’s homomorphisms, adjoint actions, partial differential equations and
Cartan matrices, etc
We know that from an abstract view g = sl,,+1 is an algebra related to the Cartan matrix (a;;), for

2 ifi=j
a;; = ¢ —1 if |i — j| =1 and so for sl it will consist of just one row and one column, i.e. we have
0 ifli—j]>1
Ay = (2) and let us denote by C'(X) the skew polynomial ring on generators X = (X;); labeled by
i€{—o0,---—1,0,1,--- , 400} and defining g—commutation relations X; X; = q2X]-Xi forif 1 <j
with all having the same color.

DEFINITION . Let’s define our Poisson bracket as follows in the case of sla:

(1)

{XZ',X]'} = 2X1Xj ifi<j
{Xl,X,L} =0

The main problem is to find solutions of the system of difference equations from infinite number
of non-commutative variables in quantum case and commutative variables in classical case. It is
significant that commutation relations (1) depend on the sign of the difference (i — j) only and is
based on our Cartan matrix. We should try to find all solutions of the system:

) p—
(n) (2)
Hx 471 =0

Let us define our system of variables as follows

an) X1(21) Xf?’l) Xf‘“)
Xém) X2(22) X§32) X§42)
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X§13) X §23) X§33) X§43)
Xim X£24) Xf"l) Xi44)

And let us equip this system of variables with lexicographic ordering, i.e. jk, ¢ < j, ¢ if jk,, < Jk,
and jig, < jig, if ix,, < i,. And we need this kind of ordering because we have different kind of
set, of variables with a proper coloring such that each set has its own color different of its neighbors.

L (11) (21) +(31) (12) (22) +(32) . .
We have 7 = m[--, X, L, X7 X0 Xy T XS X7+ ], a multi-variable function
depend on {XZ-(]Z)}7S for i,j5 € {—o0,---,1,--+ ,n,---,+o0} and ’Dg(gn) comes from

_ - degr <ay,o;> B
{SXZ.J'“Tl}p_SXle_p BTLS sy T1SX%71 (3)

where < «;, aj >= a;; is related to our Cartan matrix and Sin is a screening operator on one
of our variable sets, i.e. Syji = > XZ]Z Then we will obtain the whole set of solutions by using the
‘ JEZ
following shift operator:

=[x S x@) x @), x6G)

75 = XY = x BV x BV 5 x U L (4)

DEFINITION . Lel us define our lattice W-algebra based on its generators according to [2] [1].
Generators of lattice W-algebra associated with simple Lie algebra g constitute of the functional
basis of the space of invariants

7 i= Invg, () (Co[XT'|i € Z]) (5)
with additional requirements
Hsz (;) =0 and DXiji (;) =0 (6)
where H yji and D ;i will be specified later.

Equation (4) means that the generators have to satisfy in quantum Serre relations and the first
equation (5) means that they should have zero degree.
Here in this paper we just will work on g = sl,, and will use 7™ instead of T

Where (n) sits for n in sl,.

2.1. Lattice W, algebra

Let us first consider the sly case for to open out the concepts of (2) and (4). And also for to
simplifying out notations, let us consider our set of variables as X; := X7*.

3
And as it has shown in [1], it is enough just to work with S;i =: Sy, = > X;, because the other
: i=1
parts for ¢ > 3 and ¢ < 1 will tend to zero.

By setting ¢ = e, for the Planck constant h, we will try to find generators of our lattice Wo-
algebra, in the case of sls.

First step:

First let us try to find Dg?).
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For to do this and for simplicity, we will set 7 := [+, X1, X9, X3,,---]. And as it has been
defined already, we have

g?) = {SXle}
={X1+Xo+ X3,71}
={X1, 1} +{Xo, 1} +{X3, 71}

= (Dx, + Dx, + Dx;)11 (7)

Now for to understand what is (6), we note that partial Dx, = {X;, 71} and also note that our
function 7 [ -+, X, X9, X3, -] is a polynomial function consist of powers of X;. What I mean is
that, it is enough to find Dy, on just powers of X, for different values of j € Z.

So

(6) = > ({0, X7} + {Xo, XJ'} + {X5,X]'}) (8)
J
Where according to rules which has been showed out in [1], we have
{X1, X}} = X1 X} — "X} Xy
0, ifj>1
_ 4 . .
=41 —-¢MXi X7, ifj<1
1—-¢)X1 X7, ifj=1
Where by setting ¢ = e and letting h = 1 at the end, we will have:
First case: 7 > 1;

{X1, X7} =0
Second case: j < 1;
{X1, X7 =(1- _4”")X1,X”

~ (1= (1 — 4nb))X;, X
= dnbh X1, X} ~ 4nX1,X”

BX”
=4X1X; 8X

Third case: j = 1;
{X1, X7} = (1 - ¢"") X1 X7
=(1—e 20X, XP
~ (1= (1—2nh)) X, X7
= b X 1 X] ~ 20X X7

_ oy29XT]
=2X{ 5%

And so we have
(7) ={X1, XT}H+ 2 A{X1, X7} + Z{XhX"}

j<1

+{X21X§L} + Z{X27X3n} + Z{X27Xj }
7<2 j>2

H X, X5 H+ 2 { X, X7+ 2o { X5, X7
7<3 >3

=2X%:9- 0 +0+0

+2X352 7% + 4X2X18X +0

+2X3 5% + 4X3 X055 + 4X3 X1 5%

= 2X1(X1 +2X5 + 2X3)aixl +2X5(Xo + 2X3)a%
+2X35%

So we found Dg?) which is as follows and we can omit 2, because finally we will make the action
equal to zero and we can cancel 2 out from both sides. So we have
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B o )
DY = X (X| 42Xy + 2X3)—— + Xo( Xy + 2X. x2_ 2 9
X (X1 +2X5 + 3>8X1 + Xo (X2 + 3)8X2 + e (9)

Second step:
Now we will try to find Hg?).
For to find H)(?), we note that it resembles degree of our polynomial function. So if for example

Hg?) acts on XP X5 XL then we should get (n +m +1).
So let us define

) 9
= ;XzaXi (10)

and then we have;
H (X X3 XY) = (%2, Xigo) (X7 X5 XY)

=3 Xi 8X18))((2 X3

_X8XX X3+X8XX X3+X8XX X}
X3

— nXPXPXL 4 mXPXPXL 4+ XD XX

=n+m+)XPXPXL.

Which gives us
HP(XPXPXL) = (n+m+ )XPXP X}
and in the other side we have
(n+m+D)XPXPXL=nX  XP XX, + mXPXo X XL+ IXP X XLt

Xy xtoxyp X xXrxloxm X XPXmoX)
1?*‘ QT"_ 37 0x,
X X, 0 Xo 0
= Xig T Aeg o+ 30x,

Which gives us
(n+m+ XXX = Z XZaX

And it shows that (2.9) is well defined.
Now the only thing which remains is just to find the solutions of the following system of 2-linear
homogeneous equations in one unknown 7y:

(X1(X1 +2X5 + 2X3) 5% +Xa(X2 + 2X3) 5% + X3 5%:)m [+ X1, Xo, X,
=0, (11)
(Xla +X28 +X33 ) [ o 5X17X2aX37”'] :O)

Now the goal is to find such 71[- -+, X1, X9, X3, - - -] which satisfies in our system of equations (10).
The second equation ensures that the solution has degree 0 and also the partial differentials will fix
us a multi-variable function dependent on just Xi, Xo, X3.

The system of PDEs (10) can be solved using the procedure described in Chapter V, Sec IV of [3].
And after all it became clear that the system (10) has only one functional dependent nontrivial
solution:

(X1+ X2)(X2+ X3) _ (Z1<11<2 le )(Zl<21<2 Xz(ll—)l—l)
XAXL+ X2+ X3) 3 (Ciciss X))

DXy, Xy, X3] = (12)

And again as before, (2) goes back to 2 in Slz and 1 is a default index which will be used later for
to employ shifting operator.
According to the number of variables, we will have two shifts and then everything will be in a loop.
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So here in sly case we have three solutions for our system of linear equations (2.10) which belong
to the fraction ring of polynomial functions.

™
P11, X, Xy = bz M i i),
X§ (Z1<11<3 X "
2) (22<11<3X11 ) 9<i; <3 Xi 31)
Ty [X2a X3, X4] (22<11<4 X(l)) ) (13)
2) (23<u<4 D (Ea<i<a X )
T3 [X?n X47 X5] (Z3<11<5X 1)) )

And as it already has mentioned we go to define our non-commutative Poisson algebra according
to definition of Poisson brackets given by Poisson himself [4] with the difference that here we work
Cixy]
X_jngkiq<aiﬁak>Xi;kai7

on g—comimutative ring based on the generators which are the solutions of

PDEs system (2.10).
For to do this we will use the following bracket based on

T(n)[ 1X17X27X37“'] and T(n)[ X17X27X37 ]

(2

So we have to define our Poisson brackets as follows:

( )

(n) _ ¢ _(n) n)
F b= Z Z o X (14)
Where {X;, X} is our previously defined Poisson bracket on our set of variables.
For instance in the case of sly we have
ard\ ,o:? ar? 67(2)
1 m) = (Gx) (Gag 10 X0} + G5 10, X5) X1})
a7l o 67'(2) 7'(2)
) (s 2, )
orIN (o a 2 a )
() (% )
or? 372( : a#” aT@)
(axl )(8X2 (2X:X2) + X5 (2X1X3) + X (2X1X4)>
671(2) 872(2) 87'2(2) 87’2(2)
+( 90X, ) ( ax, 0+ G, (2% Xs) + Fie (2X2X4)>
371(2) 87’2(2) 87’2(2) 67’2(2)
+( 9Xs ) ( 09X (=2X3X2) + e (0)+ X (2X3X4))
o X1X22X§X4(X1 + XQ + X3 + X4)
(X1 4+ X2)2(Xo + X3)3(X3 + X4)?
So we have 5 ws
PR = (), py - 20Xl Xt X + Xy (15)

(X1 4 X2)?(Xo + X3)3(X3 + X4)?

And it is enough to find our brackets on just first generator, because then we are able to find other
( )

brackets based on the other generators, so for 73"’ we have in a same process as follows

(2 2) (2
Y = {77}
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(@7'1(2)><87-:§2 XXl - a e ){Xl,X4} orl? ){Xl,Xg})
<a7'1 )(87’3 (X, X3) + 0 3( ){XQ, )
(871 )<8T3 (X, 8 (2) X,

|
)
RN )

87’1( ) 87352) 57.3(2) 87'352)
+( 0X> ) ( 0Xs5 (2X2X3) + X, (2X2X4) + e (2X2X5)>

ors”) ors”)
ox; XX + 5

+ (aﬁ@)) (aTéZ) (0) +

ax, )\ ax, (2XaX3))

- C2X1 Xa X2 X4 X5
(X1 + Xo) (X2 4+ X3)2(X3 + X4)?(X4 + X5)

(16)

We have to note that we almost are done with our Poisson algebra in sly case, but for our further
plan i.e. to find our Volterra system, the differential-difference chain of non-linear equations

H =3 [In(r)];

: (17)
Tj = {Tj,H} =75 X ZFi;

Where I'; stands for 7= [2|. Which means that we have to write down the brackets {r,7;} in
terms of their decompositions to 7;’s for 1 < j <.
So we need to write it as decomposition of our generators and it will be done by using the

Mathematica coding which we have produced in Appendix C.
And the result will be as follows

B = {n” n7) =20 - )1 =) (-1 + 77 + 57,
P9 — 2,9} = 201 - )1 o)1 ) (18)
FZ-(2) = {7’1(2),71-(2)} =0 for [i — 1] = 3;

This result are weaker than Faddeev-Takhtajan-Volkov algebra which has been mentioned in
[2] and if we continue this for sl3, then we will have again a weaker version of what which has been
mentioned in [2].

2.2. Lattice I3 algebra

In this case we will use the following defined Poisson bracket based on Cartan matrix

Ay = [ 21 _21 , but for to do this according to our previous ordering and list of variables, let us

for simplicity set our variables as follows
Set X" := X, and X*) := v;.,
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DEFINITION . Let’s define our Poisson bracket as follows in the case of sl3:

((X,,X;}:=2X:X,; ifi<j;
(Y. Vj}=2VY;  ifi<j;
(Xi, X;} =0
{Y;,Yi} :=0;

(X.,Y;} = X,Y;  ifi>j
{Xi,Y;} = -X3Y; ifi<yj;

And instead of (2.1) we will have the following g—commutation relations

Xin = q2Xin ifi < j;
VY, = ?Y;Y;  ifi < j (20)
X,Y; =YX ifi<j;

And we will get the following equations in a same manner as in sls:
First case: 1 < j;
(XY} = XY — g Y X

= X;Y]' — qOXZ-XJ”

=0
Second case: i > 7;

(X0 Y]} = XiY) — ¢ "YX;

— (1 _ q—Qn)XiY'jn

= (1 - )XY

~ (1= (14 20H) X;Y7

= —2nh XY}
~ -2 XY
oYy
= —2X,Yj5y-
({X;, X"} =0 if i < j;
ox™
(XY} =0 if i < j; (21)
oyn
(X0, Y]} = —2X,Y; 0 ifi> i
(V;, X7} = 2V, X, 5 if i < s

According to (2.20) we will try to find Hg?) as follows
(XX XYYV, Xo)
= XM X§¥2X§43 Ylﬁl Y2ﬂ2 Y353X0 — XpX X2042X3043 Ylﬁl Y252Y'353
_ (1 . q2a1+2a2+2a3—51 —ﬂg—Bg)X](?ll X512X§43 Ylﬁl Y2ﬁ2 )/353 X
~ (1= (1= nb(2a1 + 20z + 2a3 — f1 — B2 — £3))) X[ Xo2 XYM V32 Y{ X
= (21 + 202 + 203 — B — B2 — B3)nh X X2 XY VY X
~ (201 + 200 + 203 — B1 — B2 — B3)n X X5 XY YRV X
= (2)(1(9%(1 + 2)(23%9(2 + 2X3a;)9(3 — Ylaiyl — YQ%’,2 — K’)aiyg)ﬁ(g)-

Now let us as usual suppose ¢ > j and then we will define the following quantities
Here we have for Xjs:

x; Dx; = {Xi, X7}
= X; X7 — q2”Xj”Xi
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= (1-¢")X; X}

= (1—e ™)X, X7

~ (1= (1— 4nh)) X; X7
= 4nhX; X7

~4nX; X}

oxn
:4TLXZX] XJ

7%
And the same will be for Y;s.
And for the different quantities X; and Y;s we have:
First case: for ¢ > j;
v; Dx, = {X;,Y]"}

=X3Y' —q¢ "Y' X;

— (1 _ q—2n)Xi}/jn

= (1—e )XY}

~ (1= (1 - 2nh))X;Y7

= 2nh X;Y]"

~ 2nX;Y "

oY
— Y. J
= 2X;Yj 5y

Second case: for ¢ < j;
According to what has just mentioned we have
v,DY =y, Dy,

oyn
— . J
= 4Y1Y; ;-

And
v DY ==y, Dy,

_ 2 OYT"
- 2}/1 oYy *

And in a same way we can find the desired results for ij%/ and yj.D%f,
So let us define

Y Y <l py 0>l pY.
yDi =v; D1 +y Di +y~ Di;
Y . Y ,J<2 nYy ,7>2 Y.
Y . Y 4 J<8 pY 4 J>3 py.
yD3 i=yy Dy +y" D3 +y." D3 ;

And then we will have

0 0
DY =v2—— 21V ——
Y 1 6Y1 + : 1 ]ayyj +0
i<1
And
yDY:Y2i+22YY +0
2 2 Yy : 2 Jayj
7j<2
And

And finally we get

(3)

vy Dy’ :=y Dy +y Dy +y Ds

= Y1(Y1 +2Ya + 2V3) 5% + Ya(Ya + 2Y3) 2 + Y252
For 7 > 1 we have

x, Dy, :=={Y;, X1}
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=Y;X{' — ¢ " XY
= (1— ¢ MY X7
— (L= Y X]
~ (1= (1+ 2nb))Y; X7
= —2nhY; X7
~ —2nY; X7
— 0
= -2V X159
= —2X1 (Y1 + Yo + ¥3) 5%
For j > 2 we have
x,Dy; :={Y;, X3}
= ¥,X} — " XRY,
=(1-¢*"Y; X7}
= (1— ™Y, X3
~ (1= (14 2nh))Y; X3
= —2nhY; X3
~ —2nY; X7
)
= —2Y; Xopx,;
= —2X,(Y2 + V3) 5%
For j > 3 we have
x5 Dy; :={Y}, X3'}
= V,X§ — X3,
— (1-q ™)V, Xy
— (- MY,X]
(1= (14 2nb))Y; Xy
= —2nbhY; X7
~ —2nY; X7
— 0
BN
- _2X3Y387Xv3
And after all these, let us define
XDg) :=x, Dy; +x, Dy; +x; Dy;
= —2X1 (Y1 + Yo + Y3) 5% — 2Xa(Ya + ¥3) 5%
0
~2X3Y35%.

2

And finally let us define
D .=y D 4+ DY
= Yi(Y1 +2Y2 +2V3) 55 + Yo (Yo +2V3) 55,
+YE % — 2X3 (Y1 + Ya + V3) 5% — 2X5(Y;
+Y3) 5% — 2XsYag%;
Next step:
Now let us try to find Dg):
For 7 > 1, let us define y, Dy, as follows:
v Dx; = {Xivyln}
= X;Y! — g YPX,
= (1-q¢ )XYy
— (1— )X,y
(1= (14 2nb)) X,
= —2nh X;Y["
~ =2 XY = —2X,Y1 55

= —2Y1(X2 + Xg)aiyl

2
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For ¢ > 2 we have
Y2DXi = {XU}/Qn}
— leén _ q—nY2nXZ,
=(1—-¢ )XYy
— (1 - )XYy
~ (1= (14 2nb)) X,y
= —2nh X;Y
~ =2nX;Yy'
= —2XiYa5
= —2Y2X38%.
For ¢ > 3 we have 0.
Let us again have the following definitions

oY
Y1D5( ::Y1 DXQ = _2Y1X287}}17
oY
DY =y, Dx, = —2Y1X38—;1;

oYy
v, D3 ==y, Dx, = —2Y2X3TY12;

Now let us define

0 —YzXzi;

XDV i=vi DYy Dy, D = =YX + Xa) o o,

And now as before we have
Xij[X ::Xj l)X1
axm
=4X1 X524,
. 1 ]8Xj
X1D1 =X DX1

_ 20XT

And in a same way we are able to define for x; Dzt and X; D, So let us define

XDf( =X, Df( Jrj)él D{( +§(>j1 Df(;
<2 j>2
xD§ =x, DY+ DY+ Dg' (23)

X . X 1J<3 pX 1 7>3 pX.
xDg i=x, D3+ Dy +x." D35

Then we will have

B, )
DX = X2~ 2X 1 X ——
X 18X1 + : 1 ]aX] +0
J<1
And
XDX—X2ﬂ+22X2X i+0
2 20X, ' ¢ 10X
7<2
And

So we will have
3
XD,(X) =x D1 +x Dy +x D3
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= X1(X1 +2X9 + 2X3)3X + Xo(Xo + 2X3) 52

+X252- e
And therefore as in (10) we will have the following system of PDFEs

;

BXQ

67’1

)
(X1<X1+2X2+2X3) 8X +X2(X2+2X3> +X3?68X2

or® PRC)
_Yl(Xl‘f‘XQ'f‘XB)W_3/2(X2+X3)8Y Y:;Xg Tl )_O
ar® 87'( ) 87(3) or® 87(3>
(2X1 3X + 2X2 S + 2X3 8X Yl 8Y1 — YQT% }/3 8Y
DY =mm + 2%, 4 2y) 2+ Y (Ya + 2V) B+ Y7
( ) ( ) (3)
—Yl(X1+X2+X3) 1/2(X2+X3) fygxg%) —0;

(3) (3) (3) (3) (3)
87’ orT or 67’ or o7
(o + 2y + 20 - n - nl - n —o

)—0; (24)

0X3

And according to appendix A we have the following functional dependent nontrivial solution
for the whole system of PDEs (23)

RONS (Ci<icj<e XiVj)(Bi<ici<e Xip1Yjg1)
! XoYa(Si<icj<s  XiY)) ’

And again as before, (3) goes back to 3 in the Sl3 and 1 is a default index which later we will use

it for to employ our shifting operators.

According to the number of variables, we will have 6 shifts and then after that it will be in a loop.

So here in sl3 case we have six solutions which belong to the fraction ring of polynomial functions.

(25)

3) XoYo(X3Y3+Xo(Yo+Y3)+ X1 (Y14+Ya+Y3))
)[X17Y17X2’Y27X37Y3] (X Yo X1 (V1 Y2 (s Vot Ko (Vo 4 V3))
_ X3Ya(XoYi+(Xs+Xa) (Yi+Y2)+ XaY5)
V1, X2, V2, X3, Vs, Xu] = (et a1 4%3))

(3) _ X3y3(XaYa+X3(Ys+Ys)+Xo(Ya+Ys+Ya)) .
3 [X2, Y, X3, Y3, Xa, Va] = (X3Y3+X2(Yo+Y3))(XaYa+X3(Y3+Ys))

(3) _ XaY3(X3YoH (Xat+Xs5)(Ya+Ya)+XsYa) | (26)
Ty [YQ,X37YE‘>,X47Y47X5] - (Xiyz+)§4(2y2+;3))()5(4yj+)(3(Yg_;fy:))7

() XaVa(X5Ys+Xa(YatYs)+X5(Ya+Ya+Ys)).
(X3, Y, X4, Ya, X5, V5] = &fyjﬂ(yﬁyi))& Ys-in(YzLiY )5) ’

(3) X5 Ya(XaYat(Xs+Xe) (YatYa)+XeY5)
6 Y3, X4, Ya, X5, V5, Xo] = (ng-i-;s €Y3+}§4))(§(5Y5+X2(Y4fY§)) ’

Where 717 = 230 X1, V1, X, Vo, X3, Vs -],

Again by setting Xi(li) = X; and X,L-(Zi) :=Y; and Xi(?’i) := Z; and according to (2.4) we have to
write down the following brackets as a composition of Ti(s)
be done by using Mathematica coding in appendix A.

s, because of algebra structure and it will

FY = (59,9 = (1 - )1 - o))
10,9} = (1= )1 - O 4 7DD D),
{

2( 2 '3 2
) = -

A N .
3 3 3 3 3 3 3 3 3 3
F = (2 19) = 1)1 - ) e 7 4 o) (21)

3) (3)
— 77 +1);
A~ (9,1 = 1 - 1)1 1D — o D41

B3 _ {71(3)’T§3)} —0 for |i — 1] > 6;
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2.3. Lattice W, algebra; main generator

In this case we will use the following defined Poisson bracket based on Cartan matrix

2 -1 0
As=1|-1 2 -1
0 -1 2

But for to do this according to our previous ordering and list of variables, and the same as what
we din in sl3 case, let us for simplicity set our set of variables as follows:
StX() XandX()—Yi ndX()—Zandsoon

DEFINITION . Let’s define our Poisson bracket as follows in the case of sl3:
{XZ',X]'} = QXZX] if 1 < j;

(Y5, Y} = 2Y3Y; if i < J;
{Zi,Zj} = 2ZZZJ ’LfZ < j;

{Xl,Xl} = 0;
{Yi, v} = 0;
{Z;,Z;} = 0; (28)

(XY= XY ifi>j
{Xi, Y} = =X;Y;  ifi <j;
{Xi,Z;} = 0;

Y2} =YiZ;  ifi> g
Yi, Z;} = -YiZ;  ifi <j;

And instead of (1) we will have the following ¢g—commutation relations for j € {1,2,3} and as
always i € {1,2,3}:
X X;=¢X;X; ifi<j
YiY; = ¢*Y;Y; ife<j
Z:7;=q¢*Z;Z;  ifi<j
XYy =q 'YX, ifi<j
YiZ;=q'Z;Y; ifi<j
XiZ; = Z;X;

And by using the same approach as what we did for slo and sl3, it became clear that the
equations Dg?), Dgﬁl ) and Dgl) and also Hg?), H}(,4 ) and H (Z4) will have the following forms:

0 Y or  ,0m”
@X = Xl(Xl +2X9 + 2X3) 9X, -+ XQ(XQ + 2X3) 09X, + X3 9X5 — Yl(XQ + Xg) (30)
87'1(4) 671(4)
- Yo X3——;
oY 0Ys
(4) (4) (4)
4 T on 2 0T] 1
Dy’ =Yi(Y1 +2Ys +2Y3) By, + Ya(Y2 + 2Y3) Y, +Y5 oY, - Xi(Y1+ Y2 +Y3) (31)
87’1(4) 87’1(4) (971(4) 87'(4) 87'(4)
— X9(Yy 4+ Y- — X3Y3—— — Z1(Ys + Y- — 7
9X, 2(Ys +Y3) 09X, 3 36X3 1(Ya +Y3) 921 2Ys—— 97y
(4) (4) 4)
4 on, on, or
@?:Zﬂﬁ+wyﬂahw +%@ﬂﬂ%hw2 ﬁa%-Jﬂz+@+zg (32)
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871(4) 8T1(4) 871(4)
— Y5 (Z Z — Y33 ———:
oY, 2(Z2+ Z3) oY, LT
(4) (4) (4) (4) (4) (4)
(4) on on on on on on
Hy’ =2X 2X9—— +2X — Y - Y —Y- :
X ox, TMox, T ax, T oy oy, oy (33)
87(4) 87'(4) 87'(4) 87'(4) 67'(4) 87'(4) 37(4)
HY —oyi Tl 1oy, 7L 4oy x P x, O k%0 Y 4
Y Yoy, Ty, T oy, Yax, ~ “Pax, “Paxs Yoz (34)
_z 87'1(4) gz 87'1(4)'
20z, oz’
(4) (4) (4) 4) (4) (4)
HZ =27 97, + 275 97 + 273 97 Y; Y, Y, Y, Ys aY; ; (35)

And the functional dependent nontrivial solutions for the whole system of first order partial
differential equation is as follows:

@) _ Cicigjemer 2iyizm) (Crcicicm<s Tip1yir1Zme) .
! $2y222(21gigjgmg3 xiyjzm) ’

And again as before, (4) goes back to 4 in the Sl4 and 1 is a default index which later we will use
it for to employ our shifting operators.

According to the number of variables, we will have 9 shifts and then after that it will be in a loop.
So here in sly case we have nine solutions:

7_1(4) = 7-1(4) [X17Y1> Z17X2a }/27 Z27X37 }/37 Z3}7

2V =t WX, 5V > 20,721 — X, Xo — Vo, Ya — Zo, Zo — X3, X3 — Ya, Vs — Zs);
W=7 5 20,20 = Xo, Xy = Yo, Yo = Zo, Zy — X3, X3 — Y3,Ys — Zs, Z3 — Xu;
=2 5 Xo, Xy = Yo, Yo = Zo, Zy — X3, X3 — Y3,Ys = Zs, Z3 — X4, X4 — Yi;
2=t WXy 5 Y5, Ys o Zo, Zo — X, X3 — V3, Ys — Z3, 75 — Xy, X4 — Y4, Vi — Z4);
=Yy = Zo, Zy — X3, Xg — Y, Vs — Zs, Z3 — Xg, X4 — Y4, Ys — Zu, Za — Xs);
=72y = X3, X5 = Ya, Vs = Zs, Z3 — Xa, X4 — Y4, Ys — Z4, Zs — X5, X5 — Yi];
V=t (Xg > Y5,V — Z3, Z3 — Xay Xa — Y4, Ya — Z4, Z4 — X5, X5 — V3, Vs = Zs);
@) . _(4)

Ty =Ty (Y3 23,23 — X4, Xy = Y4, Yy — Zy, Zy — X5, X5 = V5,5 — Z5, Z5 — Xgl;
which belong to the fraction ring of polynomial functions.

2.4. Lattice IW; algebra; main generator

In this case we will use the following defined Poisson bracket based on Cartan matrix

2 -1 0 0
Ag=1]-1 2 -1 0
0 0 -1 2

But for to do this according to our previous ordering and list of variables, and the same as what
we din in sly case, let us for simplicity set our set of variables as follows:

Set Xi(li) = X, and Xl.(%) =Y, and Xi(3i) = Z; and XZ-(4i) := K, and so on.
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DEFINITION . Let’s define our Poisson bracket as follows in the case of sly:

{Xi, X} =2X;X; ifi<y;
oY} =2y, ifi<j;
(Z:,2;} =27:2;  ifi<j;
(Ki, K} = 2K,K; ifi<j;

{X;, X} :=0;
1Y, Y} =0;

{Zi,Z;} = 0;
{K;, K;} :=0;

37
{X;,Y;} = X}Y; if 1> 73, 37)

{(Xi, Y = =X3Y;  ifi <j;
{Xi,Zj} = 0;

{Xi,Kj} = 0;

{Yi, Z;} = YiZ; ifi > jj
{Vi, Z;} = -YiZ;  ifi <
{Yi, K} == YK if i >
{Y:, K} =YK, ifi <j;

And instead of (2.1) we will have the following g—commutation relations for j € {1,2,3} and

as always i € {1, 2, 3}:

(wimj = quj:L‘i ifi<j
vy = yjye i<y
2izj = qzzjzi ifi <y
kik; = ¢*kjk;  ifi<j
Ty = q_liji ifi<j
yizi =q 'zyi ifi<j
Zz‘kj = q_lkai ifi< j
.TUZ'Zj = Zjl'i
yik; = k;y;
zikj = kjx;

And by using the same approach as what we did for sly and sl3 and sly , it became clear that
the equations Dg?), D§,5), D(Z5) and Dg) and also Hg?), H}@, H(Z5) and HS) will have the following
forms:

©) omy” o | 0m”
= X1(X 2X 2X Xo(X 2X X — Y1 (X X 38
Dy 1(X1 42X + 3)8X1+ 2(Xo + 3)8X2+ e 1(X2 4+ X3) (38)
87'1(5) (97'1(5)
- Yo X3——;
Y7 0Ys
(5) (5) (5)
Dy =Yi(Y1 +2Ys +2Y3) oY, + Y2(Ys + 2Y3) Yy +Y;5 Y3 Xi1(Y1+ Yy +Y3) (39)
9.5) 9.5) 5.9) 5.5) 9.5)
L Xy (Yo + Va) G — XaY3 o — Zy (Yo + Ya) Tl — Zoys L

6X1 6X2 8X3 821 822
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) 7(5) 9+ , 07! (5)
QZ = Zl(Zl + 222 + 2Z3) (9Z + ZQ(ZQ + 2Z3) 8% + Z3 aZ Yl(Zl + Z2 + Zg) (40)
87’1(5) 87’1(5) 87’1(5) 87’1(5) 87'1(5)
—Y5(Z 43)——— — Y3/3——— — K{(Z 73)—— — KoZ3——:
oY 2 (2o + Z3) oY 3735y, 1(Z2+ Z3) Ok, 223 510,
(5) 9 0T (5)
(5) i T
@K :Kl(K1+2K2+2K3) 8K1 +K2(K2+2K3) 8K +K3 8Z3 Zl(Kl—l-KQ (41)
87'(5) 87’1( ) 87(5)
+ K3 ) oz — ZQ(KQ + Kg) B2 — Z3X3 823
(5) (5) (5) (5) (5) (5)
(5) on, o, on on, on B or
HX =2X3 9X, +2X9 e + 2X3 9X; -V oY, -Y Y, Y3 aY; ; (42)
(5) (5) (5) (5) (5) (5) (5)
5) on on ony B on B on B on B on
By =gy 2 gy P20 5y ~Nigx, 2y, M ax, Yo (43)
_ 87'1(5) _ 87'1(5)_
07, “ozy’
(5) (5) (5) (5) (5) (5) (5)
(5) on on ony on ony on oy
H, =27 27 27 — Y] — —Y;— - K 44
z oz T, Y TNy ey, By, Mar, W
(97'1( ) 87(5)
e Kk
(5) (5) (5) (5) (5) (5)
5) oy on oy’ on’ _on~  0n
HK =2K; 0K, + 2K9—— oK, + 2K3 0K A 97, 79 97, 73 823 (45)

And the functional dependent nontrivial solutions for the whole system of first order partial
differential equation is as follows:

-6) _ (Bicicjem<i<a  Ti¥iZmk)(Bi<i<j<m<i<z  Tit1Yj41Zmeikiv1) (46)
1 - 3

ToYozoko(Xi<i<j<m<i<s  TilYjZmki)

And again as before, (5) goes back to 5 in the Sl5 and 1 is a default index which later we will use
it for to employ our shifting operators.

According to the number of variables, we will have 12 shifts and then after that it will be in a loop.
So here in sls case we have twelve solutions just as what we did in sly, and here skip to write them
down.

2.5. Lattice IV, algebra; main generator

Here for sl,,, we skip to write down all steps which we have done in previous sections and just
will write down our main generator of the lattice W, algebra.
The functional dependent nontrivial solution for the whole system of first order partial differential
equations will be as what comes in follow:

Tl(n) = (47)
(B1<is <ip<in_1<2 551(11)131(22) e 9%(3:1))(21§i1§i2~--§in_1§2 wﬁfllefil - 'ﬁfffiﬂ_
2SS T (S <y <ipin <3 90511)%(22) e 935:__11))

We should notice that x( )5 are different of each other for any j € {1,---n—1}
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